Academic literature on the topic 'Pima Indian Diabetes (PID)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pima Indian Diabetes (PID).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pima Indian Diabetes (PID)"
Dwianti, Westari, and Abdul Halim Dr. "Performa Comparison of the K-Means Method for Classification in Diabetes Patients Using Two Normalization Methods." International Journal of Multidisciplinary Research and Analysis 04, no. 01 (2021): 18–23. https://doi.org/10.47191/ijmra/v4-i1-03.
Full textZamil, Mohammed F., Dunia H. Hameed, and Usama Samir Mahmoud. "A Comprehensive Data Enhancement Method for the Pima Dataset to Improve Diabetes Prediction Performance." Journal Port Science Research 8, no. 4 (2025): 314–20. https://doi.org/10.36371/port.2025.4.1.
Full textAman and Singh Chhillar Rajender. "Optimized stacking ensemble for early-stage diabetes mellitus prediction." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 6 (2023): 7048–55. https://doi.org/10.11591/ijece.v13i6.pp7048-7055.
Full textZhao, Jian, Hanlin Gao, Chen Yang, Tianbo An, Zhejun Kuang, and Lijuan Shi. "Attention-Oriented CNN Method for Type 2 Diabetes Prediction." Applied Sciences 14, no. 10 (2024): 3989. http://dx.doi.org/10.3390/app14103989.
Full textKangra, Kirti, and Jaswinder Singh. "Comparative analysis of predictive machine learning algorithms for diabetes mellitus." Bulletin of Electrical Engineering and Informatics 12, no. 3 (2023): 1728–37. http://dx.doi.org/10.11591/eei.v12i3.4412.
Full textKirti, Kangra, and Singh Jaswinder. "Comparative analysis of predictive machine learning algorithms for diabetes mellitus." Bulletin of Electrical Engineering and Informatics 12, no. 3 (2023): 1728~1737. https://doi.org/10.11591/eei.v12i3.4412.
Full textAman, Aman, and Rajender Singh Chhillar. "Optimized stacking ensemble for early-stage diabetes mellitus prediction." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 6 (2023): 7048. http://dx.doi.org/10.11591/ijece.v13i6.pp7048-7055.
Full textAl-Nussairi, Maryam Mohammed, and Mohammad Ali H. Eljinini. "A Hybrid Approach for Enhancing the Classification Accuracy for Diabetes Disease." Journal of Information Technology Research 15, no. 1 (2022): 1–18. http://dx.doi.org/10.4018/jitr.298024.
Full textCHALO, Sarbast, and İbrahim Berkan AYDİLEK. "A New Preprocessing Method for Diabetes and Biomedical Data Classification." Qubahan Academic Journal 2, no. 4 (2023): 6–18. http://dx.doi.org/10.48161/qaj.v2n4a135.
Full textKolo, Silue, Johnson Grace Y. Edwige, Konan K. Hyacinthe, Asseu Olivier, and Bourget Daniel. "PREDICTIVE ANALYSIS OF DIABETES WITHOUT DATA PRE-PROCESSING VIA THE EVALUATION OF TREE ALGORITHMS." International Journal of Advanced Research 10, no. 12 (2022): 1059–69. http://dx.doi.org/10.21474/ijar01/15940.
Full textDissertations / Theses on the topic "Pima Indian Diabetes (PID)"
Quintana, Chimal Benjamín de Jesús. "Comparación entre regresión logística y perceptrón multicapa: Caso aplicado al conjunto de datos Pima Indian Database." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2021. http://hdl.handle.net/20.500.11799/111526.
Full textNatarajan, Keerthana. "Integrating Machine Learning with Web Application to Predict Diabetes." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627663657558303.
Full textMoffett, Carol D. "The Impact of Childhood Measures of Glycemia and Insulin Resistance Factors on Follow-Up Glycemic Measures." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/194096.
Full textBook chapters on the topic "Pima Indian Diabetes (PID)"
Pujari, P. "Classification of Pima Indian Diabetes Dataset Using Support Vector Machine with Polynomial Kernel." In Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics. CRC Press, 2022. http://dx.doi.org/10.1201/9780367548445-5.
Full textArora, Aditi, Chirag Sehgal, Shilpi Sharma, Soumya Ranjan Nayak, and Raghvendra Kumar. "Application of Data Mining Methods and Techniques for Diabetes Prediction Using Pima Indian Dataset." In Proceedings of 3rd International Conference on Smart Computing and Cyber Security. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0573-3_47.
Full textNivetha, S., B. Valarmathi, K. Santhi, and T. Chellatamilan. "Detection of Type 2 Diabetes Using Clustering Methods – Balanced and Imbalanced Pima Indian Extended Dataset." In Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2019). Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43192-1_69.
Full textSowmyayani, S. "Predictive Analysis of Diabetes Prediction." In Advances in Computational Intelligence and Robotics. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-4252-7.ch004.
Full textDharwadkar, Nagaraj V., Shivananda R. Poojara, and Anil K. Kannur. "Risk Analysis of Diabetic Patient Using Map-Reduce and Machine Learning Algorithm." In Advances in Data Mining and Database Management. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3053-5.ch014.
Full textLeema N., Khanna H. Nehemiah, Elgin Christo V. R., and Kannan A. "Evaluation of Parameter Settings for Training Neural Networks Using Backpropagation Algorithms." In Research Anthology on Artificial Neural Network Applications. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2408-7.ch009.
Full textChoubey, Dilip Kumar, Sanchita Paul, Kanchan Bala, Manish Kumar, and Uday Pratap Singh. "Implementation of a Hybrid Classification Method for Diabetes." In Intelligent Innovations in Multimedia Data Engineering and Management. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7107-0.ch009.
Full textMallikarjuna, Basetty, Supriya Addanke, and Anusha D. J. "An Improved Deep Learning Algorithm for Diabetes Prediction." In Advances in Wireless Technologies and Telecommunication. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7685-4.ch007.
Full textSoumya K N and Vigneshwaran P. "Prediction on Type-2 Diabetes Mellitus Using Machine Learning Methods." In Advances in Parallel Computing Algorithms, Tools and Paradigms. IOS Press, 2022. http://dx.doi.org/10.3233/apc220005.
Full textPadierna Luis C., González Martha B., and Romero Leoncio A. "PAC-Means: clustering algorithm based on c-Means technique and associative memories." In Ambient Intelligence and Smart Environments. IOS Press, 2012. https://doi.org/10.3233/978-1-61499-080-2-37.
Full textConference papers on the topic "Pima Indian Diabetes (PID)"
M, Manjula B., Harshavardhan A, Indrasena B.T, and Neha Annie S. "Exploratory Data Analysis and Predictive Modeling of Pima Indian Diabetes." In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS). IEEE, 2024. http://dx.doi.org/10.1109/iacis61494.2024.10721874.
Full textG, Arun, Pundru Chandra Shaker Reddy, Nagaveni Budati, B. Rebecca, Subhadra Perumalla, and Vijay Bhanudas Gujar. "A Deep Learning Framework for Diabetes Prediction: PIMA Indian Dataset." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910386.
Full textMishra, Soumya Ranjan, and Sachikanta Dash. "Machine Learning Based Diabetes Prediction Using the PIMA Indian Dataset." In 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2024. https://doi.org/10.1109/scopes64467.2024.10991027.
Full textN, Anushree, Shamyuktha V P, Tanuja K T, and J. Dhivya. "Predictive Modeling for Diabetes Diagnosis Using Diagnostic Measures: A Study on Female Pima Indian Patients." In 2025 3rd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2025. https://doi.org/10.1109/icaeca63854.2025.11012339.
Full textPatil, Vijaykumar, and D. R. Ingle. "Expression of Concern for: Comparative Analysis of Different ML Classification Algorithms with Diabetes Prediction through Pima Indian Diabetics Dataset." In 2021 International Conference on Intelligent Technologies (CONIT). IEEE, 2021. http://dx.doi.org/10.1109/conit51480.2021.10703017.
Full textKumar, Sambhu, Prashant Kumar Singh, Pankaj Kushwaha, and Sanjeev Kumar Prasad. "Early Diabetes Prediction Using CNN-LSTM and CNN-Bi-LSTM Models Optimized with Adam on the PIMA Indian Dataset." In 2024 2nd International Conference on Advancements and Key Challenges in Green Energy and Computing (AKGEC). IEEE, 2024. https://doi.org/10.1109/akgec62572.2024.10868093.
Full textGuan, Yining, Chia Jung Tsai, and Shuyuan Zhang. "Research on Diabetes Prediction Model of Pima Indian Females." In ISAIMS 2023: 2023 4th International Symposium on Artificial Intelligence for Medicine Science. ACM, 2023. http://dx.doi.org/10.1145/3644116.3644168.
Full textShabtari, Morteza Mohammad, Vinod Kumar Shukla, Harendra Singh, and Ipseeta Nanda. "Analyzing PIMA Indian Diabetes Dataset through Data Mining Tool ‘RapidMiner’." In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021. http://dx.doi.org/10.1109/icacite51222.2021.9404741.
Full text"COMPARISON OF DIFFERENT CLASSIFICATION TECHNIQUES ON PIMA INDIAN DIABETES DATA." In 13th International Conference on Enterprise Information Systems. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003496803650368.
Full textKala, Rahul, Anupam Shukla, and Ritu Tiwari. "Comparative analysis of intelligent hybrid systems for detection of PIMA indian diabetes." In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009. http://dx.doi.org/10.1109/nabic.2009.5393877.
Full text