Academic literature on the topic 'Pipe industry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pipe industry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pipe industry"
Parker, Rachel. "Industry Pipe Dreams." AQ: Australian Quarterly 69, no. 4 (1997): 39. http://dx.doi.org/10.2307/20637697.
Full textPoyarkov, V. G., A. V. Goncharuk, B. A. Romantsev, R. N. Fartushnyi, and A. V. Polivets. "Improving oil-industry pipe." Steel in Translation 38, no. 1 (January 2008): 57–59. http://dx.doi.org/10.3103/s0967091208010166.
Full textAbdulaga Gurbanov, Hajiaga Azizov, Abdulaga Gurbanov, Hajiaga Azizov. "APPLİCATİON OF NANOPARTİCLES AGAİNST EROSİON." PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions 26, no. 03 (March 14, 2023): 55–62. http://dx.doi.org/10.36962/pahtei26032023-55.
Full textDrake, Richard M., and Robert M. Walter. "Design of Structural Steel Pipe Racks." Engineering Journal 47, no. 4 (December 31, 2010): 241–52. http://dx.doi.org/10.62913/engj.v47i4.991.
Full textLi, Zheng, Hong Wu Zhu, Xiang Ling Kong, and Abdennour Seibi. "Combined Effect of Temperature and Soil Load on Buried HDPE Pipe." Advanced Materials Research 452-453 (January 2012): 1169–73. http://dx.doi.org/10.4028/www.scientific.net/amr.452-453.1169.
Full textFitkirana, Edwin, and Heru Arizal. "Perancangan Mesin Pembersih Pipa dari Oli Anticorit di PT. SPINDO Unit 6." Jurnal Mesin Nusantara 5, no. 2 (January 21, 2023): 174–81. http://dx.doi.org/10.29407/jmn.v5i2.18169.
Full textArviansyah, Naufan, Sumarji Sumarji, and Digdo Listyadi Setyawan. "PENGARUH BASIC SEDIMENT AND WATER TERHADAP LAJU KOROSI PIPA X52 DAN A53 PADA MEDIA OIL SLUDGE." ROTOR 10, no. 1 (April 1, 2017): 13. http://dx.doi.org/10.19184/rotor.v10i1.5141.
Full textIssa, Muntadher Adil, Ayad A. Alhaleem A. Alrazzaq, and Yasir Mukhtar. "Review of the Mechanisms for Preventing, Diagnosing, and Treatment of Pipe Sticking in Drilling Operations." Iraqi Journal of Chemical and Petroleum Engineering 24, no. 3 (September 30, 2023): 133–40. http://dx.doi.org/10.31699/ijcpe.2023.3.13.
Full textRohmannudin, Tubagus Noor, Sulistijono Sulistijono, M. Farian Amrulloh, Dian Nafi’, and Muhammad Fachri. "Pelayanan pengujian kekuatan pipa HDPE di Laboratorium Kimia Material Departemen Teknik Material dan Metalurgi FTIRS-ITS." Penamas: Journal of Community Service 4, no. 1 (June 1, 2024): 116–29. http://dx.doi.org/10.53088/penamas.v4i1.869.
Full textAy, Mustafa, Selim Hartomacıoğlu, Mühendisi Murat Manav, and Şaban Saraç. "ÇELİK DİRSEK ÜRETİMİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE MODELLENMESİ VE ÜRETİM PARAMETRELERİNİN OPTİMİZASYONU." Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences 8, no. 16 (July 25, 2021): 49–67. http://dx.doi.org/10.38065/euroasiaorg.582.
Full textDissertations / Theses on the topic "Pipe industry"
Shih-Yun, Liu. "Slurry dewatering in the pipe jacking industry." Thesis, University of Leeds, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619040.
Full textPåhlsson, Carl. "Improved pipe support design for the process industry to reduce mechanical loads on pumps." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-44338.
Full textEdward, Stuart James. "The design of a new pipe measuring system for oil and/or natural gas exploration." Thesis, Queensland University of Technology, 2000.
Find full textBerglund, Daniel. "Life cycle assessment comparison of CIPP lining and traditional pipe replacement." Thesis, KTH, Miljöstrategisk analys (fms), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169935.
Full textYardi, Chaitanya Narendra. "Design of regulated velocity flow assurance device for petroleum industry." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1527.
Full textHowell, Clarence III. "Implementing the Six Sigma Breakthrough Management Strategy to Reduce Bowed Pipe Defects in the Oil and Gas Industry, a Black Belt’s Approach." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1593025696718874.
Full textYarime, Masaru. "From end-of-pipe technology to clean technology effects of environmental regulation on technological change in the chlor-alkali industry in Japan and Western Europe /." Maastricht : Maastricht : Universiteit Maastricht ; University Library, Maastricht University [Host], 2003. http://arno.unimaas.nl/show.cgi?fid=6566.
Full textLima, Luiz Eduardo Melo. "Análise do modelo de mistura aplicado em escoamentos isotérmicos gás-líquido." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264105.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T15:26:34Z (GMT). No. of bitstreams: 1 Lima_LuizEduardoMelo_D.pdf: 3018902 bytes, checksum: ac45ca48369c0c21398892fa2f7de5ac (MD5) Previous issue date: 2011
Resumo: Escoamentos gás-líquido são frequentemente encontrados na natureza, bem como em diversas aplicações industriais. Na área de produção de petróleo, por exemplo, em sistemas de elevação natural ou artificial (gas-lift contínuo ou intermitente), gás e óleo escoam simultaneamente em tubulações. A previsão de escoamentos gás-líquido torna-se necessária à viabilidade técnica-econômica de muitos processos industriais, por exemplo, na indústria de petróleo devido ao aumento do consumo mundial de combustíveis e a descoberta de novos campos petrolíferos. Em escoamentos gáslíquido, as fases se distribuem espacialmente e temporalmente ao longo da tubulação dependendo das vazões, propriedades físicas das fases e das características da tubulação, entre outros parâmetros. A combinação destes fatores gera diversos padrões de escoamento gás-líquido que podem ser agrupados em três classes principais: disperso, separado e intermitente. Os principais objetivos deste trabalho são o desenvolvimento e a análise de uma modelagem unidimensional em regime permanente, baseada no modelo de mistura, que permita a simulação de escoamentos isotérmicos gás-líquido em tubulações com seção transversal circular constante, considerando a fenomenologia envolvida nestes escoamentos. Dentre as contribuições obtidas com a realização deste trabalho destacam-se: a identificação das vantagens e limitações do modelo; as análises de suas formulações, dos parâmetros de fechamento e de sensibilidade às variáveis relacionadas aos padrões; a proposição de um método de solução para um modelo fenomenológico de força de atrito na parede, aplicável aos diversos padrões de escoamento gás-líquido. Os resultados do modelo de mistura foram comparados contra dados experimentais do gradiente de pressão de escoamento nos padrões disperso, separado e intermitente, em diversas inclinações de tubo. Além disto, foram realizadas análises envolvendo transição de padrão de escoamento num tubo vertical. Os resultados obtidos demonstraram que o modelo de mistura captura de forma satisfatória o gradiente de pressão para os diversos padrões de escoamento gás-líquido, num único algoritmo de integração
Abstract: Gas-liquid flows are often found in nature as well as in various industrial applications. In the oil production, for example, in natural or artificial lift systems (continuous or intermittent gas-lift), gas and oil flow simultaneously in pipes. The prediction of gas-liquid behavior becomes necessary for technical and economic viability of many industrial processes, for example, the oil industry due to the increase of world oil consumption and the discovery of new oilfields. In gas-liquid flow, the phases are distributed spatially and temporally along the pipe depending on the flow rate, phase's physical properties and pipe characteristics, among other parameters. The combination of these factors creates different gas-liquid flow patterns that can be grouped into three main classes: dispersed, separated and intermittent. The main objectives of this work are the development and analysis of a steady one-dimensional modeling, based on the mixture model, which allows the simulation of isothermal gas-liquid flow in pipes with constant circular cross section, considering the phenomenology involved in these flows. Among the contributions obtained in this work stand out: to identify the advantages and limitations of the model; the analysis of their formulations, closing parameters and sensibility to variables related to the patterns; to propose a solution method for a phenomenological model of the wall friction force, applied to the different gas-liquid flow patterns. The mixture model results were compared against pressure gradient experimental data from flow in the dispersed, separated and intermittent patterns, in different pipe inclinations. In addition, it was performed an analysis of the flow pattern transition in a vertical pipe. The results showed that the mixture model captures satisfactorily the pressure gradient for different gas-liquid flow patterns, in a single integration algorithm
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
O'Grady, Erin L. "The implementation of a Kanban system in a multi-facility organization with a shared tooling constraint." Ohio : Ohio University, 2001. http://www.ohiolink.edu/etd/view.cgi?ohiou1174065058.
Full textBalogh, George W. "Entrepreneurs, city builders, and pine forest industries in south Arkansas, 1881-1963 /." Full-text version available from OU Domain via ProQuest Digital Dissertations, 1992.
Find full textBooks on the topic "Pipe industry"
Dullea, Mark. The competitive pipe industry. Norwalk, Conn., U.S.A: Business Communications Co., 1994.
Find full textForman, J. Charles. The competitive pipe industry. Norwalk, CT: Business Communications Co., 1997.
Find full textJ, Mooney Peter. The competitive pipe industry. Norwalk, Conn., U.S.A: Business Communications Co., 1987.
Find full textHealey, Joseph F., Mary F. Babington, David A. Petina, and Dawn J. Trebec. Plastic & other pipe. Cleveland: Freedonia Group, 2000.
Find full textJohn, Breckling, Thomas Karyn L, Shimko Donna M, and Leading Edge Reports (Firm), eds. Plastic and competitive pipe: Industry study. [Cleveland, Ohio]: Leading Edge Reports, 1987.
Find full textUnited States International Trade Commission. Office of Industries, ed. Hose, belting, and plastic pipe: .surelli. Washington, DC: Office of Industries, U.S. International Trade Commission, 1995.
Find full text1942-, Davey Peter, and Edwards Lloyd, eds. The Archaeology of the clay tobacco pipe. Oxford: Tempus Reparatum, 1988.
Find full textB, Clark E., and ASME Gas Pipeline Safety Research Committee., eds. History of line pipe manufacturing in North America. New York: American Society of Mechanical Engineers, 1996.
Find full textKraemer, Sandra R. The life-cycle analysis of materials competition for pipe in the construction industry. Washington, D.C: Bureau of Mines, 1991.
Find full text(Firm), Leading Edge Reports, ed. National and regional markets for large diameter pipe. Cleveland Hts., OH: Leading Edge Reports, 1991.
Find full textBook chapters on the topic "Pipe industry"
Zohuri, Bahman. "Application of Heat Pipe in Industry." In Heat Pipe Design and Technology, 335–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29841-2_4.
Full textZohuri, Bahman. "Erratum: Application of Heat Pipe in Industry." In Heat Pipe Design and Technology, E1—E2. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29841-2_7.
Full textMohapatra, Kailash, and Ashutosh Mohapatra. "Performance analysis of internal fin concentric pipe heat exchangers." In Industry 4.0 with Modern Technology, 97–102. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003450924-18.
Full textJafar, Ponnu, S. Swapnesh, and S. Shyama Prasad. "Production Optimization of a PVC Pipe Manufacturing Industry." In Lecture Notes in Mechanical Engineering, 79–93. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8343-8_7.
Full textPischiutta, Matteo, Gianni Arioli, and Alberto Di Lullo. "A Reduced Nonlinear Model for the Simulation of Two Phase Flow in a Horizontal Pipe." In Mathematics in Industry, 485–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_67.
Full textCarfagna, Melania, Filomena Iorizzo, and Alfio Grillo. "Mathematical Characterisation of a Heat Pipe by Means of the Non-isothermal Cahn-Hilliard Model." In Mathematics in Industry, 493–500. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_68.
Full textMattheij, R. M. M., and S. W. Rienstra. "On an Off-Shore Pipe Laying Problem." In Proceedings of the Second European Symposium on Mathematics in Industry, 37–55. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2979-1_2.
Full textAronsson, Gunnar. "Stationary Pipe Flow of Power-Law Fluids." In Proceedings of the Fifth European Conference on Mathematics in Industry, 135–38. Wiesbaden: Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-663-01312-9_19.
Full textZhou, Jie, Haowen Mou, Junchao Gao, and Xueping Chang. "Vibration and Stability Analysis of Functionally Gradient Flow Pipe with Axial Motion." In Lecture Notes in Civil Engineering, 34–46. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_4.
Full textLiang, Dianjun, Zhao Li, Xunhai Sun, Haitao Yang, Binbin Ma, and Hao Fan. "Research on the Application of Double-Pipe Split-Grouting Anchor in Deep Fill Slope Engineering." In Lecture Notes in Civil Engineering, 737–43. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_74.
Full textConference papers on the topic "Pipe industry"
Hooper, J., E. Maschner, and T. Farrant. "HT/HP Pipe-in-Pipe Snaked Lay Technology - Industry Challenges." In Offshore Technology Conference. Offshore Technology Conference, 2004. http://dx.doi.org/10.4043/16379-ms.
Full textHu, Yafei, Fang Shi, Zheng Liu, Eric Li, Huan Liu, and Xiang Peng. "Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods." In Smart Structures and NDE for Industry 4.0, edited by Norbert G. Meyendorf. SPIE, 2018. http://dx.doi.org/10.1117/12.2300812.
Full textBianchi, Ana-Maria, Nicolae Antonescu, and Liviu Drughean. "RESIDUAL ENERGY RECOVERY FROM CHEMICAL INDUSTRY USING HEAT PIPE HEAT EXCHANGERS." In Heat Pipe Technology: Volume 2. Materials and Applications. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/ihpc1990v2.550.
Full textGubareva, S. V., and A. N. Kudinova. "ANALYSIS OF LOSSES IN THE PIPE INDUSTRY." In Modern Technologies in Science and Education MTSE-2020. Ryazan State Radio Engineering University, 2020. http://dx.doi.org/10.21667/978-5-6044782-5-7-42-46.
Full textIslam, Moni, Richard Worth, and Charles Smith. "Insulated Bus Pipe (IBP) for Shipboard Application." In Record of Conference Paper Industry Applications Society 53rd Annual Petroleum and Chemical Industry Conference. IEEE, 2006. http://dx.doi.org/10.1109/pcicon.2006.359707.
Full textDikty, Mario, Peter Hilgraf, and Ray Worthington. "Energy-Saving Pneumatic Conveying Pipe System." In 2008 IEEE Cement Industry Technical Conference Record. IEEE, 2008. http://dx.doi.org/10.1109/citcon.2008.25.
Full textPutta, Pietro Della. "MODERN HEAT TREATMENT TECHNOLOGY FOR OCTG PIPE INDUSTRY." In 49º Seminário de Laminação. São Paulo: Editora Blucher, 2012. http://dx.doi.org/10.5151/2594-5297-22625.
Full textCheng, Yongming, Tao Qi, and Xiaoxian Chen. "Dynamic Analysis for a Pipe-in-Pipe Riser System." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83942.
Full textSugimoto, T., A. Kitamura, and Y. Higashiyama. "Air-Assisted Passive Ionizer for a Charged Pipe." In 2010 IEEE Industry Applications Society Annual Meeting. IEEE, 2010. http://dx.doi.org/10.1109/ias.2010.5615612.
Full textOlbrich, Manuel, Harald Wuest, Patrick Riess, and Urlich Bockholt. "Augmented reality pipe layout planning in the shipbuilding industry." In 2011 IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011. http://dx.doi.org/10.1109/ismar.2011.6143896.
Full textReports on the topic "Pipe industry"
Clyde, Greiner Woodward. L51818 Microtunneling Design Guidelines for the Gas Transmission Industry. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2000. http://dx.doi.org/10.55274/r0010297.
Full textChoquette, Gary. PR-000-23COMP-R08 Pipe in Casings Comprehensive Compendium. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2023. http://dx.doi.org/10.55274/r0000034.
Full textHan and Burns. L51587 Field Techniques to Determine Electrical Shorts Between Carrier Pipe and Casing Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1988. http://dx.doi.org/10.55274/r0010311.
Full textWilliams. L51703 High Pressure Pipe Design. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1993. http://dx.doi.org/10.55274/r0010135.
Full textRuschau and Beavers. L51898 Performance of Blistered FBE-Coated Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2001. http://dx.doi.org/10.55274/r0011245.
Full textRood, A. S., and G. J. White. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/12524.
Full textRosenfeld and Munoz. PR-218-104503-R01 Field-Expanded Line Pipe Causes Effects on Pipeline Safety and Appropriate Responses. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2012. http://dx.doi.org/10.55274/r0010785.
Full textGuest, Stuart, Aaron Dinovitzer, and Sanjay Tiku. PR-214-214504-R01 Identification of Hydrogen Susceptible Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2022. http://dx.doi.org/10.55274/r0000001.
Full textGrimley, Terry. PR-015-19603-R01 Practical Effects of Rough-Walled Pipe in Gas Metering Applications. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2020. http://dx.doi.org/10.55274/r0011742.
Full textRothwell, John. PR-164-2151-R01 Assessment of High Frequency Welded Line Pipe for Offshore Use. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2023. http://dx.doi.org/10.55274/r0000036.
Full text