Academic literature on the topic 'Pipes conveying fluid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pipes conveying fluid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pipes conveying fluid"
Wang, Xiao Yang, Zheng Zhou, and Xing Pei Liu. "Numerical Analysis of the Vibration of Pipes Conveying Fluid under the Influence of Vertical Branch." Advanced Materials Research 655-657 (January 2013): 620–24. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.620.
Full textDeng, Jiaquan, Yongshou Liu, and Wei Liu. "A Hybrid Method for Transverse Vibration of Multi-Span Functionally Graded Material Pipes Conveying Fluid with Various Volume Fraction Laws." International Journal of Applied Mechanics 09, no. 07 (October 2017): 1750095. http://dx.doi.org/10.1142/s1758825117500958.
Full textLin, Yih-Hwang, and Yau-Kun Tsai. "Nonlinear vibrations of Timoshenko pipes conveying fluid." International Journal of Solids and Structures 34, no. 23 (August 1997): 2945–56. http://dx.doi.org/10.1016/s0020-7683(96)00217-x.
Full textJayaraman, K., and S. Narayanan. "Chaotic oscillations in pipes conveying pulsating fluid." Nonlinear Dynamics 10, no. 4 (August 1996): 333–57. http://dx.doi.org/10.1007/bf00045481.
Full textPaı̈doussis, M. P., and G. X. Li. "Pipes Conveying Fluid: A Model Dynamical Problem." Journal of Fluids and Structures 7, no. 2 (February 1993): 137–204. http://dx.doi.org/10.1006/jfls.1993.1011.
Full textAriaratnam, S. T., and N. Sri Namachchivaya. "Dynamic stability of pipes conveying pulsating fluid." Journal of Sound and Vibration 107, no. 2 (June 1986): 215–30. http://dx.doi.org/10.1016/0022-460x(86)90233-6.
Full textChang, C. O., and K. C. Chen. "Dynamics and Stability of Pipes Conveying Fluid." Journal of Pressure Vessel Technology 116, no. 1 (February 1, 1994): 57–66. http://dx.doi.org/10.1115/1.2929559.
Full textHou, Yu, and Guo Hua Zeng. "Research on Nonlinear Dynamic Characteristics of Fluid-Conveying Pipes System." Advanced Materials Research 228-229 (April 2011): 574–79. http://dx.doi.org/10.4028/www.scientific.net/amr.228-229.574.
Full textAn, Chen, and Jian Su. "Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid." Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/6789634.
Full textZhai, Hong Bo, Jian Jun Su, Xiao Min Yan, and Wei Liu. "Dynamic Response of the Pipe Conveying Fluid with the Pressure Pulsation." Advanced Materials Research 1094 (March 2015): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amr.1094.491.
Full textDissertations / Theses on the topic "Pipes conveying fluid"
Hajghayesh, Mergen. "Dynamics of fluid-conveying pipes." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114479.
Full textCette thèse traite de la dynamique linéaire et non linéaire de tuyaux parcourus par un fluide. Composée de quatre articles scientifiques ayant fait l'objet d'un examen critique, trois publiés dans des revues techniques et un soumis pour publication, l'objectif étant d'étudier certains aspects du comportement dynamique des conduits extensibles et inextensibles transportant du fluide, de manière théorique et expérimentale.En particulier, (i) la dynamique tridimensionnelle non linéaire d'un tuyau de transport de fluide, contraint par un réseau de quatre ressorts attachés entre les deux bouts est examinée d'un point de vue théorique ainsi qu'expérimental; (ii) le comportement dynamique tridimensionnel d'un tuyau aux extrémités encastrées-libres avec une masse additionnelle au bout libre et un support flexible (ressort) supplémentaire, est également étudié; (iii) la dynamique non linéaire plane d'un tuyau extensible encastre-libre transportant du fluide est étudiée théoriquement par deux méthodes numériques différentes; (iv) le calcul du déphasage sur la longueur du conduit de mesure d'un débitmètre à effet Coriolis (et donc, du débit massique) est mis au point analytiquement au moyen d'une technique de perturbation et est confirmé numériquement. Lors des analyses théoriques, la méthode de Galerkin et les équations de Lagrange pour les systèmes contenant des volumes vides sont utilisés pour obtenir un ensemble d'équations différentielles ordinaires non-linéaires du second ordre. Ces équations sont résolues grâce à un schéma de différences finies de Houbolt, la technique de continuation à pseudo-longueur d'arc, et l'intégration temporelle directe par l'intermédiaire d'une technique de Rosenbrock modifiée. La méthode des délais multiples (dite "multiple scale method"), une technique analytique approximative, est également utilisée pour prédire le déphasage le long du tuyau de mesure d'un débitmètre à effet Coriolis.Une série d'expériences ont été réalisées à l'aide de tuyaux en silicone transportant de l'eau afin de pouvoir vérifier de manière concluante la validité des modèles théoriques.
Petrus, Ryan Curtis. "Dynamics of fluid-conveying Timoshenko pipes." Texas A&M University, 2006. http://hdl.handle.net/1969.1/3822.
Full textVan, Ke Sum. "Dynamics and stability of curved pipes conveying fluid." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66108.
Full textChampneys, Alan R. "The nonlinear dynamics of articulated pipes conveying fluid." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302850.
Full textGiacobbi, Dana. "The dynamics of aspirating cantilevered pipes and pipes conveying variable density fluid." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95074.
Full textCette thèse entreprend l'étude de la dynamique de deux types de tuyaux flexibles parcourus par un fluide : (i) un tuyau encastré-libre aspirant le fluide du côté libre et l'amenant vers le côté encastré, et (ii) un tuyau transportant un fluide dont la densité varie axialement au long du tuyau. Le contexte général de cette recherche est d'abord présenté en introduisant le domaine des Interactions fluide-structure (FSI) et en révisant la théorie de base des tuyaux transportant un fluide. Par la suite, une approche numérique couplant la simulation des fluides (CFD) et des structures mécaniques (CSM) est développée dans ANSYS. Dernièrement, une équation de mouvement linéaire est dérivée pour chaque système et analysée par une méthode Galerkin; les résultats numériques sont enfin combinés avec ces résultats analytiques pour déterminer les caractéristiques de stabilité de chaque système. Le tuyau encastré-libre aspirant est d'un intérêt fondamental et aussi pratique, possédant des applications, entre autres, dans l'industrie minière sous-marine. La raison d'une étude poursuivie est démontrée par un retour sur la recherche antérieure traitant du sujet s'étendant sur plusieurs années et produisant souvent des résultats contradictoires. Le nouveau model analytique, dérivé utilisant une approche Newtonienne et largement influencé par une analyse CFD, se distingue de ses prédécesseurs notamment par l'inclusion d'une dépressurisation en deux parties à l'entrée. Pour ce cas, les approches numérique et analytique suggèrent tous les deux une perte de stabilité par flottement dans le premier mode quoiqu'une instabilité très faible à des vitesses comparables, mais généralement moindre que le cas déchargeant. Dans le cas d'un tuyau transportant un fluide de densité variable, le modèle analytique est dérivé à l'aide d'une approche Hamiltonienne, pour des tuyaux (i) encastré-encastré et (ii) encastr
Muoka, Anthony E. "Dynamics of three-dimensional pipes conveying fluid using the Reissner beam theory." Thesis, Swansea University, 2018. https://cronfa.swan.ac.uk/Record/cronfa48136.
Full textLumijärvi, J. (Jouko). "Optimization of critical flow velocity in cantilevered fluid-conveying pipes, with a subsequent non-linear analysis." Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514280687.
Full textSemler, Christian 1966. "Nonlinear dynamics and chaos of a pipe conveying fluid." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60586.
Full textThe linearized system is first studied, to get the critical parameters corresponding to the stability boundaries, i.e. the local bifurcations. Then, the nonlinear equations are investigated, both analytically and numerically. Centre manifold, normal form and bifurcation theories are used to obtain complete bifurcation sets which provide the qualitative dynamics of the system. It is shown that chaotic motions may arise under perturbation, or when the motions are constrained by motion-limiting restraints, through calculations of the Lyapunov exponents and the construction of phase portraits, bifurcation diagrams and power spectra. This modeling is in close agreement with experimental observations.
張峻榮. "Optimal Design of Fluid-Conveying Pipes." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/79639577701653371653.
Full text國立海洋大學
機械與輪機工程學系
91
The purpose of this study is to investigate the dynamic characteristics and optimal design of pipes conveying fluid. Finite element method is applied to establish the equations of motions of both the uniform and the tapered fluid-conveying pipes. The established models are verified by using the results reported in the literature. To fully understand the system dynamic characteristics, root loci of the system are plotted to investigate the system stability properties. Sequential quadratic programming (SQP) is applied for the optimal design of pipes conveying fluid. This study shows that although root loci can be used to examine the modal stability properties, the modal vector information must be utilized to determine which mode is unstable when modes get to come across each other as the flow speed varies. For optimal design, it is demonstrated that significant improvement can be achieved for both the cases of minimization of pipe weight given a fixed critical flow speed and maximization of critical flow speed given a fixed pipe weight. The analysis is thus proved to be beneficial to engineering design and economical considerations.
Wang, Yi-Wen, and 王義文. "Analysis of Optimal Attachment Positions for Pipes Conveying Fluid." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/99514041990465907219.
Full text國立臺灣海洋大學
機械與機電工程學系
94
The purpose of this study is to analyze the optimal attachment positions for pipes conveying fluid. The finite element model is established and then simulated under the conditions of different fluid-beam mass ratios. By adding various attachments on different positions of the cantilever pipes conveying fluid, the optimal values and positions of the attachments can be obtained for achieving the highest critical flow velocity. The attachments used in this study are dampers and springs. The goal is to establish the critical flow velocity trend chart of the single attachment condition and to search the optimal parameters effectively by using the genetic algorithm. Furthermore, optimal design for the two-attachment case is also analyzed in this work. The analysis results reveal the optimal attachment positions vary with different mass ratios. As the fluid mass becomes larger, the best condition changes from the single-damper case (β=0.1 to 0.5) to the single-spring case (β=0.6 to 0.9). The critical flow velocity of the two-damper case is higher than that of the single-damper case. Similarly, the use of two-spring performs better than the use of single-spring. The two-damper case with β=0.1 to 0.6 is found to have the best performance. The use of one damper and one spring performs better for β=0.7 to 0.8. The two-damper case yields essentially identical results with those of the two-spring case at β=0.9. As compared with the incremental method for the analysis of one attachment case, the genetic algorithm is far superior in terms of computational time. For the case of multiple attachments, it is impractical to use the incremental method, whereas the genetic algorithm is still applicable and possess superior performance. Keyword : pipes conveying fluid, attachment, optimal design
Books on the topic "Pipes conveying fluid"
(Editor), M. P. Paidoussis, and N. S. Namachchivaya (Editor), eds. Third International Symposium on Flow-Induced Vibration & Noise: Stability & Control of Pipes Conveying Fluid (Third International Symposium on Flow-Induced Vibration & No). American Society of Mechanical Engineers, 1992.
Find full textBook chapters on the topic "Pipes conveying fluid"
Sugiyama, Yoshihiko, Mikael A. Langthjem, and Kazuo Katayama. "Cantilevered Pipes Conveying Fluid." In Dynamic Stability of Columns under Nonconservative Forces, 71–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00572-6_6.
Full textAn, Chen, Menglan Duan, Segen F. Estefen, and Jian Su. "Axially Functionally Graded Pipes Conveying Fluid." In Structural and Thermal Analyses of Deepwater Pipes, 155–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53540-7_11.
Full textKumar Sahoo, Shashendra, Loknath Panda, and Harish Chandra Das. "Dynamic Instability of Cantilever Pipe Conveying Fluid." In Lecture Notes in Mechanical Engineering, 149–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4795-3_15.
Full textTanaka, Masao, and Shinji Tanaka. "Optimal and Robust Shapes of a Pipe Conveying Fluid." In Lecture Notes in Economics and Mathematical Systems, 519–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59132-7_56.
Full textDe La Rosa Zambrano, Héctor Manuel, and Anne Cros. "Oscillation Characteristics of a Vertical Soft Pipe Conveying Air Flow." In Fluid Dynamics in Physics, Engineering and Environmental Applications, 501–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27723-8_47.
Full textYamashita, Kiyotaka, Hiroshi Yabuno, Yuuki Hirose, and Masatsugu Yoshizawa. "Mixed-Modal Self-Excited Oscillation of Fluid-Conveying Cantilevered Pipe with End Mass." In IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, 137–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5742-4_11.
Full textPaidoussis, Michael P. "Curved Pipes Conveying Fluid." In Fluid-Structure Interactions, 503–49. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-397312-2.00006-5.
Full text"Curved Pipes Conveying Fluid." In Slender Structures and Axial Flow, 415–62. Elsevier, 1998. http://dx.doi.org/10.1016/s1874-5652(98)80008-2.
Full textPaidoussis, Michael P. "Pipes Conveying Fluid: Linear Dynamics I." In Fluid-Structure Interactions, 63–233. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-397312-2.00003-x.
Full textPaidoussis, Michael P. "Pipes Conveying Fluid: Linear Dynamics II." In Fluid-Structure Interactions, 235–332. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-397312-2.00004-1.
Full textConference papers on the topic "Pipes conveying fluid"
Liu, Gongmin, Shuaijun Li, and Bryan W. Karney. "Vibration Analysis of Curved Pipes Conveying Fluid." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28327.
Full textCai, Fengchun, Fenggang Zang, and Xianhui Ye. "Dynamic Behavior of Cracked Cantilevered Pipes Conveying Fluid." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29826.
Full textSzabó, Zsolt. "Quasi-Periodic Motions of Articulated Pipes Conveying Flowing Fluid." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21424.
Full textGhayesh, Mergen H., Michael P. Païdoussis, and Marco Amabili. "Nonlinear Planar Dynamics of Fluid-Conveying Cantilevered Extensible Pipes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65785.
Full textChen, B., Y. Y. Huang, and Z. J. Yin. "Research for Adaptive Control of the Pipes Conveying Fluid." In International Conference on Computer Information Systems and Industrial Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cisia-15.2015.188.
Full textOlunloyo, Vincent O. S., Ayo A. Oyediran, Charles A. Osheku, Ajayi Adewale, and Arinola B. Ajayi. "Dynamics and Stability of a Fluid Conveying Vertical Beam." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29299.
Full textMahjoob, Mohammad, Ali Shahsavari, and Ali Marzban. "A Vibration-Based Damage Detection Method for Pipes Conveying Fluid." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2351.
Full textHellum, Aren M., Ranjan Mukherjee, and Andrew J. Hull. "Dynamics of Pipes Conveying Fluid With a Non-Uniform Velocity Profile." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12858.
Full textVedula, Lalit, and N. Sri Namachchivaya. "Stochastic Stability of Linear Gyroscopic Systems: Application to Pipes Conveying Fluid." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39024.
Full textOlunloyo, Vincent O. S., Charles A. Osheku, and Sidikat I. Kuye. "Vibration and Stability Behaviour of Sandwiched Viscoelastic Pipes Conveying a Non-Newtonian Fluid." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20065.
Full text