Journal articles on the topic 'PiRNA clusters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PiRNA clusters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Komarov, Pavel A., Olesya Sokolova, Natalia Akulenko, Emilie Brasset, Silke Jensen, and Alla Kalmykova. "Epigenetic Requirements for Triggering Heterochromatinization and Piwi-Interacting RNA Production from Transgenes in the Drosophila Germline." Cells 9, no. 4 (2020): 922. http://dx.doi.org/10.3390/cells9040922.
Full textRadion, Elizaveta, Olesya Sokolova, Sergei Ryazansky, Pavel Komarov, Yuri Abramov, and Alla Kalmykova. "The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline." Genes 10, no. 3 (2019): 209. http://dx.doi.org/10.3390/genes10030209.
Full textChen, Peiwei, Yicheng Luo, and Alexei A. Aravin. "RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility." PLOS Genetics 17, no. 9 (2021): e1009591. http://dx.doi.org/10.1371/journal.pgen.1009591.
Full textAssis, Raquel, and Alexey S. Kondrashov. "Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution." Proceedings of the National Academy of Sciences 106, no. 17 (2009): 7079–82. http://dx.doi.org/10.1073/pnas.0900523106.
Full textStory, Benjamin, Xing Ma, Kazue Ishihara, et al. "Defining the expression of piRNA and transposable elements in Drosophila ovarian germline stem cells and somatic support cells." Life Science Alliance 2, no. 5 (2019): e201800211. http://dx.doi.org/10.26508/lsa.201800211.
Full textIyer, Shantanu S., Yidan Sun, Janine Seyfferth, et al. "The NSL complex is required for piRNA production from telomeric clusters." Life Science Alliance 6, no. 9 (2023): e202302194. http://dx.doi.org/10.26508/lsa.202302194.
Full textWang, Sheng, Xiaohua Lu, Ding Qiu, and Yang Yu. "To export, or not to export: how nuclear export factor variants resolve Piwi's dilemma." Biochemical Society Transactions 49, no. 5 (2021): 2073–79. http://dx.doi.org/10.1042/bst20201171.
Full textWang, Jiajia, Yirong Shi, Honghong Zhou, et al. "piRBase: integrating piRNA annotation in all aspects." Nucleic Acids Research 50, no. D1 (2021): D265—D272. http://dx.doi.org/10.1093/nar/gkab1012.
Full textKofler, Robert. "piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions." Genome Biology and Evolution 12, no. 5 (2020): 736–49. http://dx.doi.org/10.1093/gbe/evaa064.
Full textHuang, Xinya, Peng Cheng, Chenchun Weng, et al. "A chromodomain protein mediates heterochromatin-directed piRNA expression." Proceedings of the National Academy of Sciences 118, no. 27 (2021): e2103723118. http://dx.doi.org/10.1073/pnas.2103723118.
Full textJi, Qun, Zhengli Xie, Wu Gan, Lumin Wang, and Wei Song. "Identification and Characterization of PIWI-Interacting RNAs in Spinyhead Croakers (Collichthys lucidus) by Small RNA Sequencing." Fishes 7, no. 5 (2022): 297. http://dx.doi.org/10.3390/fishes7050297.
Full textShoji, Keisuke, Yusuke Umemura, Susumu Katsuma, and Yukihide Tomari. "The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells." PLOS Genetics 19, no. 2 (2023): e1010632. http://dx.doi.org/10.1371/journal.pgen.1010632.
Full textGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, et al. "WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data." F1000Research 10 (May 14, 2021): 1. http://dx.doi.org/10.12688/f1000research.27868.2.
Full textGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, et al. "WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data." F1000Research 10 (July 12, 2021): 1. http://dx.doi.org/10.12688/f1000research.27868.3.
Full textGeles, Konstantinos, Domenico Palumbo, Assunta Sellitto, et al. "WIND (Workflow for pIRNAs aNd beyonD): a strategy for in-depth analysis of small RNA-seq data." F1000Research 10 (January 4, 2021): 1. http://dx.doi.org/10.12688/f1000research.27868.1.
Full textHuang, Ying, and Bowen Yu. "Structural studies of Rhino protein in piRNA biogenesis." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1589. http://dx.doi.org/10.1107/s2053273314084101.
Full textTsai, Shih-Ying, and Fu Huang. "Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription." PLOS Genetics 17, no. 2 (2021): e1009349. http://dx.doi.org/10.1371/journal.pgen.1009349.
Full textKamenova, Saltanat, Aksholpan Sharapkhanova, Aigul Akimniyazova, et al. "piRNA and miRNA can Suppress the Expression of Multiple Sclerosis Candidate Genes." Nanomaterials 13, no. 1 (2022): 22. http://dx.doi.org/10.3390/nano13010022.
Full textFromm, Bastian, Juan Pablo Tosar, Felipe Aguilera, Marc R. Friedländer, Lutz Bachmann, and Andreas Hejnol. "Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha)." Non-Coding RNA 5, no. 1 (2019): 19. http://dx.doi.org/10.3390/ncrna5010019.
Full textMilyaeva, P. A., A. R. Lavrenov, I. V. Kuzmin, A. I. Kim, and L. N. Nefedova. "Regulation of Uni-Strand and Dual-Strand piRNA Clusters in Germ and Somatic Tissues in <i>Drosophila melanogaster</i> under Control of <i>rhino</i>." Генетика 59, no. 12 (2023): 1372–81. http://dx.doi.org/10.31857/s0016675823120056.
Full textAltshuller, Yelena, Qun Gao, and Michael A. Frohman. "A C-Terminal Transmembrane Anchor Targets the Nuage-Localized Spermatogenic Protein Gasz to the Mitochondrial Surface." ISRN Cell Biology 2013 (July 15, 2013): 1–7. http://dx.doi.org/10.1155/2013/707930.
Full textLe Thomas, Adrien, Evelyn Stuwe, Sisi Li, et al. "Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing." Genes & Development 28, no. 15 (2014): 1667–80. http://dx.doi.org/10.1101/gad.245514.114.
Full textLee, SePil, Satomi Kuramochi-Miyagawa, Ippei Nagamori, and Toru Nakano. "Effects of transgene insertion loci and copy number on Dnmt3L gene silencing through antisense transgene-derived PIWI-interacting RNAs." RNA 28, no. 5 (2022): 683–96. http://dx.doi.org/10.1261/rna.078905.121.
Full textYamanaka, Soichiro, Mikiko C. Siomi, and Haruhiko Siomi. "piRNA clusters and open chromatin structure." Mobile DNA 5, no. 1 (2014): 22. http://dx.doi.org/10.1186/1759-8753-5-22.
Full textYu, Bowen, and Ying Huang. "Rhino defines H3K9me3-marked piRNA clusters." Oncotarget 6, no. 25 (2015): 20740–41. http://dx.doi.org/10.18632/oncotarget.5178.
Full textKawaoka, Shinpei, Kahori Hara, Keisuke Shoji, et al. "The comprehensive epigenome map of piRNA clusters." Nucleic Acids Research 41, no. 3 (2012): 1581–90. http://dx.doi.org/10.1093/nar/gks1275.
Full textRakhmetullina, Aizhan, Aigul Akimniyazova, Togzhan Niyazova, et al. "Interactions of piRNAs with the mRNA of Candidate Genes in Esophageal Squamous Cell Carcinoma." Current Issues in Molecular Biology 45, no. 7 (2023): 6140–53. http://dx.doi.org/10.3390/cimb45070387.
Full textFirsov, Sergei Yu, Karina A. Kosherova, and Dmitry V. Mukha. "Identification and functional characterization of the German cockroach, Blattella germanica, short interspersed nuclear elements." PLOS ONE 17, no. 6 (2022): e0266699. http://dx.doi.org/10.1371/journal.pone.0266699.
Full textKofler, Robert. "Dynamics of Transposable Element Invasions with piRNA Clusters." Molecular Biology and Evolution 36, no. 7 (2019): 1457–72. http://dx.doi.org/10.1093/molbev/msz079.
Full textLipps, Northe, Figueiredo, et al. "Non-Invasive Approach for Evaluation of Pulmonary Hypertension Using Extracellular Vesicle-Associated Small Non-Coding RNA." Biomolecules 9, no. 11 (2019): 666. http://dx.doi.org/10.3390/biom9110666.
Full textAravin, A. A., R. Sachidanandam, A. Girard, K. Fejes-Toth, and G. J. Hannon. "Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control." Science 316, no. 5825 (2007): 744–47. http://dx.doi.org/10.1126/science.1142612.
Full textZhang, Fan, Jie Wang, Jia Xu, et al. "UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery." Cell 151, no. 4 (2012): 871–84. http://dx.doi.org/10.1016/j.cell.2012.09.040.
Full textLillestøl, Reidun, Peter Redder, Roger A. Garrett, and Kim Brügger. "A putative viral defence mechanism in archaeal cells." Archaea 2, no. 1 (2006): 59–72. http://dx.doi.org/10.1155/2006/542818.
Full textBabenko, Vladimir, Anton Bogomolov, Roman Babenko, Elvira Galieva, and Yuriy Orlov. "CpG islands’ clustering uncovers early development genes in the human genome." Computer Science and Information Systems 15, no. 2 (2018): 473–85. http://dx.doi.org/10.2298/csis170523004b.
Full textMohamed, Mourdas, Nguyet Thi-Minh Dang, Yuki Ogyama, et al. "A Transposon Story: From TE Content to TE Dynamic Invasion of Drosophila Genomes Using the Single-Molecule Sequencing Technology from Oxford Nanopore." Cells 9, no. 8 (2020): 1776. http://dx.doi.org/10.3390/cells9081776.
Full textZhou, Hao, Jiajia Liu, Wei Sun, et al. "Differences in small noncoding RNAs profile between bull X and Y sperm." PeerJ 8 (September 18, 2020): e9822. http://dx.doi.org/10.7717/peerj.9822.
Full textAsif-Laidin, Amna, Valérie Delmarre, Jeanne Laurentie, Wolfgang J. Miller, Stéphane Ronsseray, and Laure Teysset. "Short and long-term evolutionary dynamics of subtelomeric piRNA clusters in Drosophila." DNA Research 24, no. 5 (2017): 459–72. http://dx.doi.org/10.1093/dnares/dsx017.
Full textAkulenko, Natalia, Sergei Ryazansky, Valeriya Morgunova, et al. "Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters." RNA 24, no. 4 (2018): 574–84. http://dx.doi.org/10.1261/rna.062851.117.
Full textOlovnikov, I. A., and A. I. Kalmykova. "piRNA clusters as a main source of small RNAs in the animal germline." Biochemistry (Moscow) 78, no. 6 (2013): 572–84. http://dx.doi.org/10.1134/s0006297913060035.
Full textChang, Timothy H., Eugenio Mattei, Ildar Gainetdinov, Cansu Colpan, Zhiping Weng, and Phillip D. Zamore. "Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster." Molecular Cell 73, no. 2 (2019): 291–303. http://dx.doi.org/10.1016/j.molcel.2018.10.038.
Full textKotnova, A. P., and Yu V. Ilyin. "Comparative Analysis of the Structure of Three piRNA Clusters in the Drosophila melanogaster Genome." Molecular Biology 54, no. 3 (2020): 374–81. http://dx.doi.org/10.1134/s0026893320030085.
Full textAkimniyazova, Aigul, Oxana Yurikova, Anna Pyrkova, et al. "In Silico Study of piRNA Interactions with the SARS-CoV-2 Genome." International Journal of Molecular Sciences 23, no. 17 (2022): 9919. http://dx.doi.org/10.3390/ijms23179919.
Full textMohn, Fabio, Grzegorz Sienski, Dominik Handler, and Julius Brennecke. "The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila." Cell 157, no. 6 (2014): 1364–79. http://dx.doi.org/10.1016/j.cell.2014.04.031.
Full textDevor, Eric J., Lingyan Huang, and Paul B. Samollow. "piRNA-like RNAs in the marsupial Monodelphis domestica identify transcription clusters and likely marsupial transposon targets." Mammalian Genome 19, no. 7-8 (2008): 581–86. http://dx.doi.org/10.1007/s00335-008-9109-x.
Full textZanni, V., A. Eymery, M. Coiffet, et al. "Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters." Proceedings of the National Academy of Sciences 110, no. 49 (2013): 19842–47. http://dx.doi.org/10.1073/pnas.1313677110.
Full textKlattenhoff, Carla, Hualin Xi, Chengjian Li, et al. "The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters." Cell 138, no. 6 (2009): 1137–49. http://dx.doi.org/10.1016/j.cell.2009.07.014.
Full textMilyaeva, Polina A., Inna V. Kukushkina, Alexander I. Kim, and Lidia N. Nefedova. "Stress Induced Activation of LTR Retrotransposons in the Drosophila melanogaster Genome." Life 13, no. 12 (2023): 2272. http://dx.doi.org/10.3390/life13122272.
Full textAkkouche, Abdou, Bruno Mugat, Bridlin Barckmann, et al. "Piwi Is Required during Drosophila Embryogenesis to License Dual-Strand piRNA Clusters for Transposon Repression in Adult Ovaries." Molecular Cell 66, no. 3 (2017): 411–19. http://dx.doi.org/10.1016/j.molcel.2017.03.017.
Full textChoi, Heejin, Zhengpin Wang, and Jurrien Dean. "Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA." PLOS Genetics 17, no. 4 (2021): e1009485. http://dx.doi.org/10.1371/journal.pgen.1009485.
Full textFey, Rosalyn M., Eileen S. Chow, Barbara O. Gvakharia, Jadwiga M. Giebultowicz, and David A. Hendrix. "Diurnal small RNA expression and post-transcriptional regulation in young and old Drosophila melanogaster heads." F1000Research 11 (December 21, 2022): 1543. http://dx.doi.org/10.12688/f1000research.124724.1.
Full text