Journal articles on the topic 'Pit-to-crack transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 journal articles for your research on the topic 'Pit-to-crack transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Goswami,, Tarun, and David W. Hoeppner,. "Transition Criteria - From a Pit to a Crack." Journal of the Mechanical Behavior of Materials 10, no. 5-6 (December 1999): 261–78. http://dx.doi.org/10.1515/jmbm.1999.10.5-6.261.
Full textHuang, Xuejun, Lun Yu, and Ronald Ballinger. "Alternating Current Potential Drop Technique to Detect Pit-to-Crack Transition." MRS Advances 1, no. 17 (2016): 1241–46. http://dx.doi.org/10.1557/adv.2016.262.
Full textMantha, Divakar, and Scott A. Fawaz. "Standardized Test Method for Corrosion Pit-to-Fatigue Crack Transition for AA7075-T651 Aluminum Alloy." Advanced Materials Research 891-892 (March 2014): 205–10. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.205.
Full textHuang, Xiao-guang, and Jin-quan Xu. "3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue." Journal of Zhejiang University SCIENCE A 14, no. 4 (April 2013): 292–99. http://dx.doi.org/10.1631/jzus.a1200273.
Full textJakubowski, Marek. "Influence of Pitting Corrosion on Fatigue and Corrosion Fatigue of Ship and Offshore Structures, Part II: Load - Pit - Crack Interaction." Polish Maritime Research 22, no. 3 (September 1, 2015): 57–66. http://dx.doi.org/10.1515/pomr-2015-0057.
Full textTurnbull, Alan. "Corrosion pitting and environmentally assisted small crack growth." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2169 (September 8, 2014): 20140254. http://dx.doi.org/10.1098/rspa.2014.0254.
Full textAmiri, M., A. Arcari, L. Airoldi, M. Naderi, and N. Iyyer. "A continuum damage mechanics model for pit-to-crack transition in AA2024-T3." Corrosion Science 98 (September 2015): 678–87. http://dx.doi.org/10.1016/j.corsci.2015.06.009.
Full textJones, K., DW Hoeppner, and SW Dean. "Effect of Microstructure on Pit-to-Crack Transition of 7075-T6 Aluminum Alloy." Journal of ASTM International 3, no. 7 (2006): 100485. http://dx.doi.org/10.1520/jai100485.
Full textSabelkin, V., S. Mall, and H. Misak. "Investigation into Corrosion Pit-to-Fatigue Crack Transition in 7075-T6 Aluminum Alloy." Journal of Materials Engineering and Performance 26, no. 6 (May 1, 2017): 2535–41. http://dx.doi.org/10.1007/s11665-017-2697-4.
Full textBalbín, J. A., V. Chaves, and N. O. Larrosa. "Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural model." Corrosion Science 180 (March 2021): 109171. http://dx.doi.org/10.1016/j.corsci.2020.109171.
Full textSchönbauer, Bernd M., Andrea Perlega, Ulrike P. Karr, David Gandy, and Stefanie E. Stanzl-Tschegg. "Pit-to-crack transition under cyclic loading in 12% Cr steam turbine blade steel." International Journal of Fatigue 76 (July 2015): 19–32. http://dx.doi.org/10.1016/j.ijfatigue.2014.10.010.
Full textTurnbull, A., and S. Zhou. "Pit to crack transition in stress corrosion cracking of a steam turbine disc steel." Corrosion Science 46, no. 5 (May 2004): 1239–64. http://dx.doi.org/10.1016/j.corsci.2003.09.017.
Full textJones, Kimberli, and David W. Hoeppner. "Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading." Corrosion Science 47, no. 9 (September 2005): 2185–98. http://dx.doi.org/10.1016/j.corsci.2004.10.004.
Full textVerma, B. B., M. Mallik, J. D. Atkinson, and P. K. Ray. "Fatigue Crack Initiation and Growth Behavior of 7475 Aluminium Alloy in Air and Aggressive Environment." Advanced Materials Research 428 (January 2012): 133–36. http://dx.doi.org/10.4028/www.scientific.net/amr.428.133.
Full textTrueba, Monica, and Stefano P. Trasatti. "Electrochemical approach to repassivation kinetics of Al alloys: gaining insight into environmentally assisted cracking." Corrosion Reviews 33, no. 6 (November 1, 2015): 373–93. http://dx.doi.org/10.1515/corrrev-2015-0054.
Full textChen, Ziguang, Siavash Jafarzadeh, Jiangming Zhao, and Florin Bobaru. "A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking." Journal of the Mechanics and Physics of Solids 146 (January 2021): 104203. http://dx.doi.org/10.1016/j.jmps.2020.104203.
Full textTurnbull, A., L. Wright, and L. Crocker. "New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit." Corrosion Science 52, no. 4 (April 2010): 1492–98. http://dx.doi.org/10.1016/j.corsci.2009.12.004.
Full textHuang, Yuhui, Shan-Tung Tu, and Fu-Zhen Xuan. "Pit to crack transition behavior in proportional and non-proportional multiaxial corrosion fatigue of 304 stainless steel." Engineering Fracture Mechanics 184 (October 2017): 259–72. http://dx.doi.org/10.1016/j.engfracmech.2017.08.019.
Full textTurnbull, A., L. N. McCartney, and S. Zhou. "A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters." Corrosion Science 48, no. 8 (August 2006): 2084–105. http://dx.doi.org/10.1016/j.corsci.2005.08.010.
Full textArunachalam, Saravanan, and Scott Fawaz. "Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy." International Journal of Fatigue 91 (October 2016): 50–58. http://dx.doi.org/10.1016/j.ijfatigue.2016.05.021.
Full textSadananda, K., and A. K. Vasudevan. "Analysis of pit to crack transition under corrosion fatigue & the safe-life approach using the modified Kitagawa-Takahashi diagram." International Journal of Fatigue 134 (May 2020): 105471. http://dx.doi.org/10.1016/j.ijfatigue.2020.105471.
Full textCheng, Chang Gui, Wen Cheng Wan, Zhong Tian Liu, and Yong Rui Zheng. "Causes and Countermeasures of Cracking in Cogging Process of 40Cr Bloom." Advanced Materials Research 402 (November 2011): 111–15. http://dx.doi.org/10.4028/www.scientific.net/amr.402.111.
Full textSun, Xin, Rong Li Nan, Bo Zhao Shu, Hang Wang, Li Juan Zhu, and Li Hong Han. "Corrosion Behavior for Casing in Producing Well with Water Injection Technology during Long-Term Service." Materials Science Forum 993 (May 2020): 1168–73. http://dx.doi.org/10.4028/www.scientific.net/msf.993.1168.
Full textFang, B. Y., R. L. Eadie, W. X. Chen, and M. Elboujdaini. "Pit to crack transition in X-52 pipeline steel in near neutral pH environment Part 1 – formation of blunt cracks from pits under cyclic loading." Corrosion Engineering, Science and Technology 45, no. 4 (August 2010): 302–12. http://dx.doi.org/10.1179/147842208x386304.
Full textGalyon Dorman, Sarah E., Justin W. Rausch, Saravanan Arunachalam, and Scott A. Fawaz. "Examination and prediction of corrosion fatigue damage and inhibition." Corrosion Reviews 35, no. 4-5 (October 26, 2017): 355–63. http://dx.doi.org/10.1515/corrrev-2017-0057.
Full textBen Seghier, Mohamed El Amine, Behrooz Keshtegar, and Hussam Mahmoud. "Time-Dependent Reliability Analysis of Reinforced Concrete Beams Subjected to Uniform and Pitting Corrosion and Brittle Fracture." Materials 14, no. 8 (April 7, 2021): 1820. http://dx.doi.org/10.3390/ma14081820.
Full textDe Meo, Dennj, Luigi Russo, and Erkan Oterkus. "Modeling of the Onset, Propagation, and Interaction of Multiple Cracks Generated From Corrosion Pits by Using Peridynamics." Journal of Engineering Materials and Technology 139, no. 4 (May 12, 2017). http://dx.doi.org/10.1115/1.4036443.
Full text"The brittle-ductile transition in silicon. II. Interpretation." Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 421, no. 1860 (January 9, 1989): 25–53. http://dx.doi.org/10.1098/rspa.1989.0002.
Full textChan, K. S., J. T. Burns, M. P. Enright, J. Moody, and W. Goodrum. "Validation of Hot Corrosion and Fatigue Models in HOTPITS." Journal of Engineering Materials and Technology 142, no. 3 (February 6, 2020). http://dx.doi.org/10.1115/1.4045710.
Full textChan, Kwai S., Michael P. Enright, and Jonathan P. Moody. "Development of a Probabilistic Methodology for Predicting Hot Corrosion Fatigue Crack Growth Life of Gas Turbine Engine Disks." Journal of Engineering for Gas Turbines and Power 136, no. 2 (November 1, 2013). http://dx.doi.org/10.1115/1.4025555.
Full textShirband, Zeynab, Jing-Li Luo, Reginald Eadie, and Weixing Chen. "Studying Stress Corrosion Cracking Crack Initiation in Pipeline Steels in a Near-Neutral pH Environment: The Role of Hydrotesting." Corrosion 76, no. 11 (August 4, 2020). http://dx.doi.org/10.5006/3492.
Full textXie, Chaoyang, Pingfeng Wang, Zequn Wang, and Hongzhong Huang. "Corrosion Reliability Analysis Considering the Coupled Effect of Mechanical Stresses." ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg 2, no. 3 (July 1, 2016). http://dx.doi.org/10.1115/1.4032003.
Full text"Insights Into Pit to Crack Transitions Utilizing High Resolution X-ray Tomography." ECS Meeting Abstracts, 2007. http://dx.doi.org/10.1149/ma2007-02/14/870.
Full text