Academic literature on the topic 'Planar vector field'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Planar vector field.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Planar vector field"
Roussarie, Robert. "A topological study of planar vector field singularities." Discrete & Continuous Dynamical Systems - A 40, no. 9 (2020): 5217–45. http://dx.doi.org/10.3934/dcds.2020226.
Full textAlgaba, Antonio, Cristóbal García, and Jaume Giné. "Orbital Reversibility of Planar Vector Fields." Mathematics 9, no. 1 (December 23, 2020): 14. http://dx.doi.org/10.3390/math9010014.
Full textYoldas, Halil. "Some Results on Cosymplectic Manifolds Admitting Certain Vector Fields." Journal of Geometry and Symmetry in Physics 60 (2021): 83–94. http://dx.doi.org/10.7546/jgsp-60-2021-83-94.
Full textNagloo, Joel, Alexey Ovchinnikov, and Peter Thompson. "Commuting planar polynomial vector fields for conservative Newton systems." Communications in Contemporary Mathematics 22, no. 04 (April 3, 2019): 1950025. http://dx.doi.org/10.1142/s0219199719500251.
Full textLI, JIBIN, MINGJI ZHANG, and SHUMIN LI. "BIFURCATIONS OF LIMIT CYCLES IN A Z2-EQUIVARIANT PLANAR POLYNOMIAL VECTOR FIELD OF DEGREE 7." International Journal of Bifurcation and Chaos 16, no. 04 (April 2006): 925–43. http://dx.doi.org/10.1142/s0218127406015210.
Full textWU, YUHAI, and MAOAN HAN. "ON THE NUMBER AND DISTRIBUTIONS OF LIMIT CYCLES OF A PLANAR QUARTIC VECTOR FIELD." International Journal of Bifurcation and Chaos 23, no. 04 (April 2013): 1350069. http://dx.doi.org/10.1142/s0218127413500697.
Full textGutierrez, C., and F. Sánchez-Bringas. "Planar vector field versions of Carathéodory's and Loewner's conjectures." Publicacions Matemàtiques 41 (January 1, 1997): 169–79. http://dx.doi.org/10.5565/publmat_41197_10.
Full textBakhtin, Yuri, and Liying Li. "Weakly mixing smooth planar vector field without asymptotic directions." Proceedings of the American Mathematical Society 148, no. 11 (August 11, 2020): 4733–44. http://dx.doi.org/10.1090/proc/15147.
Full textRoitenberg, V. Sh. "Local Bifurcations of Reversible Piecewise Smooth Planar Dynamical Systems." Mathematics and Mathematical Modeling, no. 1 (June 9, 2020): 1–15. http://dx.doi.org/10.24108/mathm.0120.0000213.
Full textde Carvalho, Tiago, and Durval José Tonon. "Normal Forms for Codimension One Planar Piecewise Smooth Vector Fields." International Journal of Bifurcation and Chaos 24, no. 07 (July 2014): 1450090. http://dx.doi.org/10.1142/s0218127414500904.
Full textDissertations / Theses on the topic "Planar vector field"
Moretti, Junior Adimar [UNESP]. "Estudo de ciclos limites em sistemas diferenciais lineares por partes." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/92943.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Neste trabalho temos como objetivo estudar o número e a distribuição de ciclos limites em sistemas diferenciais lineares por partes. Em particular estudamos o número de ciclos limites do sistema diferencial linear por partes planar ˙x = −y − ε φ ( x) , ˙y = x, onde ε 6= 0 é um parâmetro pequeno e φ é uma função periódica linear por partes ímpar de período 4 . Provamos que dado um inteiro arbitário positivo n, o sistema acima possui exatamente n ciclos limites na faixa |x| ≤ 2 (n + 1 ). Consequentemente, existem sistemas diferenciais lineares por partes contendo uma infinidade de ciclos limites no plano real. Inicialmente obtemos uma quota inferior par a o número destes ciclos limites na faixa | x| ≤ 2 (n + 1 ) via Teoria do Averaging . Em seguida , utilizando a Teoria de Campos de Vetores Rodados, verificamos que o sistema acima tem exatamente n ciclos limites na faixa | x| ≤ 2 (n + 1 )
The main goal of this work aim to study the number and distribution of limit cycles in piecewise linear differential systems. In particular we consider the planar piecewise linear differential system ˙x = −y − ε φ ( x) , ˙y = x, where ε 6= 0 is a small parameter and φ is an odd piecewise linear periodic function of period 4 . We prove that given an arbitrary positive integer n, the system above has exactly n limit cycles in the strip | x| ≤ 2 (n + 1 ) . Consequently, there are piecewise differential systems containing an infinite number of limit cycles in the real plane. First we get a lower bound on the number of limit cycles in the strip |x| ≤ 2 (n + 1 ) via Averaging Theory. In the following , using the Theory of Rotated Vector Fields, we see that above system has exactly n limit cycles in the strip | x| ≤ 2 (n + 1 )
Moraes, Jaime Rezende de [UNESP]. "Ciclos limites de sistemas lineares por partes." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/92942.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Consideramos dois casos principais de bifurcação de órbitas periódicas não hiperbólicas que dão origem a ciclos limite. Nosso estudo é feito para sistemas lineares por partes com três zonas em sua fórmula mais geral, que inclui situações sem simetria. Obtemos estimativas tanto para a amplitude como para o período do ciclo limite e apresentamos uma aplicação de interesse em engenharia: sistemas de controle.
We consider two main cases of bifurcation of non hyperbolic periodic orbits that give rise to limit cycles. Our study is done concerning piecewise linear systems with three zones in the more general formula that includes situations without symmetry. We obtain estimates for both the amplitude and the period of limit cycles and we present a applications of interest in engineering: control systems.
Moraes, Jaime Rezende de. "Ciclos limites de sistemas lineares por partes /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/92942.
Full textBanca: Weber Flavio Pereira
Banca: Marcelo Messias
Resumo: Consideramos dois casos principais de bifurcação de órbitas periódicas não hiperbólicas que dão origem a ciclos limite. Nosso estudo é feito para sistemas lineares por partes com três zonas em sua fórmula mais geral, que inclui situações sem simetria. Obtemos estimativas tanto para a amplitude como para o período do ciclo limite e apresentamos uma aplicação de interesse em engenharia: sistemas de controle.
Abstract: We consider two main cases of bifurcation of non hyperbolic periodic orbits that give rise to limit cycles. Our study is done concerning piecewise linear systems with three zones in the more general formula that includes situations without symmetry. We obtain estimates for both the amplitude and the period of limit cycles and we present a applications of interest in engineering: control systems.
Mestre
Maza, Sabido Susana. "Discrete and continuous symetries in planar vector fields." Doctoral thesis, Universitat de Lleida, 2008. http://hdl.handle.net/10803/81314.
Full textMaza, Sabido Susanna. "Discrete and continuous symetries in planar vector fields." Doctoral thesis, Universitat de Lleida, 2008. http://hdl.handle.net/10803/81314.
Full textCardoso, Filho João Lopes. "A qualitative study of planar piecewise smooth vector fields." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8577.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-06-15T10:25:16Z (GMT) No. of bitstreams: 2 Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-06-15T10:25:16Z (GMT). No. of bitstreams: 2 Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-05-18
Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG
In this work we exhibit canonical forms for 2D codimension one piecewise smooth vector Fields (PSVF). All possible orientations and codimension one scenarios were covered. Also the intrinsic objects that characterize each one of the canonical forms were presented. Also we present topological distinct canonical forms for a larger class for symmetric PSVF where the set of fixed points is contained in the variety os discontinuity. Finally we analyze the simultaneous occurrence of sliding and crossing limit cycle in the case where the piecewise linear vector fields presents a continuum of periodic orbits.
Neste trabalho exibiremos inicialmente as formas canônicas para campos vetoriais suaves por partes (PSVF) no plano. Todas os possíveis cenários de codimensão um são abordados. Também apresentamos formas canônicas topologicamente distintas para uma classe de PSVF com simetria onde o conjunto de pontos fixos está contido na variedade de descontinuidade. Finalmente, analisaremos a ocorrência simultânea de ciclos limite costurantes e deslizantes no caso linear por partes que apresentam um contínuo de órbitas periódicas.
Brigitzer, Björn Tim. "Semi-local linearization for flat saddles of planar vector fields." Thesis, Uppsala University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121363.
Full textGuo, Shaoming [Verfasser]. "Hilbert transforms and maximal operators along planar vector fields / Shaoming Guo." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077290233/34.
Full textSantallusia, Esvert Xavier. "Contribution to the center and integrability problems in planar vector fields." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/402941.
Full textEsta tesis consta de un primer capítulo introductorio, siete capítulos con diferentes resultados y una bibliografía. El primer capítulo contiene la definición y los resultados previos necesarios para abordar el resto de la memoria. Los capítulos 2 y 3 están muy relacionados. En el primero se describe un método alternativo para el cómputo de las constantes de Poincaré--Liapunov. A diferencia de métodos anteriores, el método presentado no requiere el cálculo de integrales y da de forma explícita las constantes de Poincaré--Liapunov. En el tercer capítulo se describe cómo se ha implementado este nuevo método y los resultados que da para sistemas cuadráticos y sistemas con términos no lineales cíbicos homogéneos. El cuarto capítulo se centra en ecuaciones de Abel y su integrabilidad. Se describe la forma de una integral primera que sea algebraica en función de las variables dependientes y se dan múltiples ejemplos de ecuaciones de Abel integrables en este sentido. En el quinto capítulo también se aborda el problema de la integrabilidad pero para ecuaciones diferenciales en el plano definidas por funciones analíticas. Se hace un reescalado de las variables dependientes y de la variable independiente con un parámetro "epsilon" que está elevado a poténcias enteras (blow-up paramétrico) de forma que el sistema resultante sea analítico en "epsilon". Se da un método que aprovecha que una integral primera, si existe, debe ser analítica en el parámetro con el fin de encontrar condiciones para la existéncia de esta integral primera. De esta manera se define lo que se llaman variables esenciales del sistema. Los últimos tres capítulos versan sobre las ecuaciones de Abel y el problema del centro. En general se consideran ecuaciones de Abel trigonométricas. En el sexto capítulo se dan algunas condiciones necesarias y suficientes para que una ecuación de Abel definida por polinomios trigonométricos de grado hasta 3 tenga un centro. Todos los ejemplos dados en este capítulo tienen un centro universal. En la capítulo séptimo se da un ejemplo de una ecuación de Abel definida por polinomios trigonométricos de grado 3 que tiene un centro que no es universal. De esta manera se resuelve un problema abierto: determinar el grado mas pequeño por el que una ecuación de Abel trigonométrica con centro no es de composición. El último capítulo trata ecuaciones de Abel trigonométricas y polinomiales y da un compendio de los últimos resultados conocidos y conjeturas sobre el problema del centro en estas ecuaciones. También se dan ejemplos nuevos de ecuaciones de Abel con centro.
This thesis consists of a first introductory chapter, seven chapters with different results and a bibliography. The first chapter contains the definition and the previous results necessary to address the rest of the memory. Chapters 2 and 3 are closely related. In the first one, an alternative method is described for the computation of the Poincaré--Liapunov constants. Unlike previous methods, the presented method does not require the computation of primitives and gives an explicit expression of the Poincaré--Liapunov constants. The third chapter describes how this new method has been implemented and the results that it gives for quadratic systems and systems with homogeneous, cubic, non-linear terms. The fourth chapter focuses on Abel equations and their integrability. We describe the form of a first integral that is algebraic in function of the dependent variables and give more examples of equations of Abel integrable from this point of view. The fifth chapter also discusses the integrability problem but for differential equations in the plane defined by analytical functions. A rescaling of the dependent and the independent variables with a parameter "epsilon" which is elevated to integer powers (parametrical blow up) so that the resulting system is analytical in "epsilon". A method is given that takes advantage that a first integral, if it exists, it must be analytical in the parameter in order to find conditions for the existence of this first integral. In this way we define what are called essential variables of the system. The last three chapters deal with Abel equations and the center problem. In general, we consider Abel trigonometric equations. In the sixth chapter some necessary and sufficient conditions for an Abel equation defined by trigonometric polynomials of degree up to 3 have a center are given. All the examples given in this chapter have a universal center. In the seventh chapter it is given an example of an Abel equation defined by trigonometric polynomials of degree 3 with a center which is not universal. In this way an open problem is solved: to determine the lowest degree such that a trigonometric Abel equation has a center which is not a composition center. The last chapter deals with trigonometric and polynomial Abel equations and gives a survey of the last known results and conjectures about the center problem for these equations. Besides some new examples of Abel differential equations with a center are given.
Cardin, Pedro Toniol [UNESP]. "Ciclos limites e a equação de van der Pol." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94213.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Nesta dissertação estudamos critérios para determinar a existência, a não existência e a unicidade de ciclos limites de campos de vetores planares. Mais especificamente, estudamos equações de Lienard Äx + f(x; _ x) _ x + g(x) = 0; onde f e g satisfazem determinadas hip¶oteses. Em particular estudamos a equa»c~ao de van der Pol Äx + (x2 ¡ 1) _ x + x = 0; a qual é conhecida da teoria dos circuitos elétricos. Provamos a existência e a unicidade de ciclos limites para estas equações. Por fim estudamos a equação de van der Pol com o parâmetro 1 e o fenômeno canard que ocorre ao considerarmos um parâmetro adicional ®: As técnicas utilizadas s~ao as usuais de Análise Assintótica.
In this work we study the existence, the non existence and the uniqueness of limit cycles of planar vector felds. More specifically, we study Lienard equations Äx+f(x; _ x) _ x+g(x) = 0; where f and g satisfy some hypothesis. In particular we study the van der Pol equation Äx + (x2 ¡ 1) _ x + x = 0; which is knew of the circuit theory. We prove the existence and the uniqueness of limit cycles for these equations. In the last part we study the van der Pol equation with the parameter 1 and the canard phenomenon which appears when we consider an additional parameter ®: The techniques employed are the usual in the Asymptotic Analysis.
Books on the topic "Planar vector field"
Françoise, Jean-Pierre, and Robert Roussarie, eds. Bifurcations of Planar Vector Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0085387.
Full textDumortier, Freddy, Robert Roussarie, Jorge Sotomayor, and Henryk Żaładek. Bifurcations of Planar Vector Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0098353.
Full textChow, Shui-Nee. Normal forms and bifurcation of planar vector fields. Cambridge: Cambridge University Press, 1994.
Find full textChow, Shui-Nee. Normal forms and bifurcation of planar vector fields. Cambridge: Cambridge University Press, 2008.
Find full textRoussarie, Robert H. Bifurcation of planar vector fields and Hilbert's sixteenth problem. Basel: Birkhäuser, 1998.
Find full textBifurcations of planar vector fields and Hilbert's sixteenth problem. Basel: Birkhäuser, 1998.
Find full textRoussarie, Robert. Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8798-4.
Full textRoussarie, Robert. Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem. Basel: Springer Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-0718-0.
Full textDesingularization of Nilpotent Singularities in Families of Planar Vector Fields. American Mathematical Society, 2002.
Find full textBifurcations Of Planar Vector Fields And Hilberts Sixteenth Problem. Springer Basel, 2013.
Find full textBook chapters on the topic "Planar vector field"
Ilyashenko, Yulij, and Sergei Yakovenko. "Singular points of planar analytic vector fields." In Graduate Studies in Mathematics, 143–254. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/gsm/086/02.
Full textArtés, Joan C., Jaume Llibre, Dana Schlomiuk, and Nicolae Vulpe. "Invariant theory of planar polynomial vector fields." In Geometric Configurations of Singularities of Planar Polynomial Differential Systems, 99–132. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50570-7_5.
Full textJarque, Xavier, and Jaume Llibre. "Global Structural Stability of Planar Hamiltonian Vector Fields." In Hamiltonian Dynamical Systems, 171–80. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4613-8448-9_12.
Full textRoussarie, Robert. "Families of Two-dimensional Vector Fields." In Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, 1–15. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8798-4_1.
Full textRoussarie, Robert. "Families of Two-dimensional Vector Fields." In Bifurcations of Planar Vector Fields and Hilbert's Sixteenth Problem, 1–15. Basel: Springer Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-0718-0_1.
Full textLam, Wai Yeung, and Ulrich Pinkall. "Holomorphic Vector Fields and Quadratic Differentials on Planar Triangular Meshes." In Advances in Discrete Differential Geometry, 241–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50447-5_7.
Full textGasull, A., and J. Sotomayor. "On the basin of attraction of dissipative planar vector fields." In Lecture Notes in Mathematics, 187–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0085393.
Full textDumortier, Freddy, Robert Roussarie, Jorge Sotomayor, and Henryk Żaładek. "Abelian integrals in unfoldings of codimension 3 singular planar vector fields." In Lecture Notes in Mathematics, 165–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0098361.
Full textRoussarie, Robert. "Limit Periodic Sets." In Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, 17–31. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8798-4_2.
Full textRoussarie, Robert. "The 0-Parameter Case." In Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, 33–49. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8798-4_3.
Full textConference papers on the topic "Planar vector field"
ROUSSARIE, ROBERT. "BIFURCATIONS OF PLANAR VECTOR FIELD UNFOLDINGS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0010.
Full textPereira, Fernando Lobo, Teresa Grilo, and SIlvio Gama. "Optimal Control Framework for AUV’s Motion Planning in Planar Vortices Vector Field." In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). IEEE, 2018. http://dx.doi.org/10.1109/auv.2018.8729782.
Full textRuan, Hengxin, Libo Wang, and Lianlin Li. "Theoretical study of vector-vortex field generated by quasi-periodic planar structure." In 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). IEEE, 2014. http://dx.doi.org/10.1109/ursigass.2014.6929100.
Full textLiang, Yueqian, Yingmin Jia, Zhuo Wang, and Fumitoshi Matsuno. "Combined vector field approach for planar curved path following with fixed-wing UAVs." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7172278.
Full textHarutyunyan, S., D. J. Hasanyan, and R. B. Davis. "Magnetoelastic Interactions at the Planar Interface of Two Ferromagnetic Solids: A Theoretical Study." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39444.
Full textMolaee-Ardekani, Behnam, Mohammad-Bagher Shamsollahi, Lotfi Senhadji, Bijan Vosoughi-Vahdat, and Eric Wodey. "Designing a planar vector field to investigate the role of a slow variable in an enhanced mean-field model during general anesthesia." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260801.
Full textMolaee-Ardekani, Behnam, Mohammad-Bagher Shamsollahi, Lotfi Senhadji, Bijan Vosoughi-Vahdat, and Eric Wodey. "Designing a planar vector field to investigate the role of a slow variable in an enhanced mean-field model during general anesthesia." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398880.
Full textRockwell, R. D., P. E. Allaire, and M. E. F. Kasarda. "Radial Planar Magnetic Bearing Analysis With Finite Elements Including Rotor Motion and Power Losses." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-503.
Full textCarvalho, Tiago De, Claudio A. Buzzi, and Rodrigo D. Euzébio. "On Poincaré-Bendixson Theorem in Planar Nonsmooth Vector Fields." In XXXV CNMAC - Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.01.0023.
Full textLyko, Christoph, Dirk Michaelis, Dieter Peitsch, and Mirko Dittmar. "Investigation of Bypass Transition in the Presence of a Separation Bubble With Tomographic PIV." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57884.
Full textReports on the topic "Planar vector field"
Guckenheimer, John. Investigation of Global Bifurcations in Planar Vector Fields. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada204159.
Full textBaggenstoss, Paul M. A Baum-Welch Algorithm for Noisy Vector Fields for Classification and Synthesis of Textures Using Non-Symmetric Half-Plane. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada494616.
Full text