Academic literature on the topic 'Planarität'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Planarität.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Planarität"
Schubert, Ulrich, Siegfried Hünig, and Alexander Aumüller. "Zur Frage der Planarität von 9,10-Anthrachinonderivaten." Liebigs Annalen der Chemie 1985, no. 6 (June 12, 1985): 1216–22. http://dx.doi.org/10.1002/jlac.198519850612.
Full textAraneda, Juan F., Benedikt Neue, and Warren E. Piers. "Erzwungene Planarität: eine Strategie für stabile, borhaltige π-konjugierte Materialien." Angewandte Chemie 124, no. 40 (August 29, 2012): 10117–19. http://dx.doi.org/10.1002/ange.201205265.
Full textGerson, Fabian, Javier Lopez, Adolf Krebs, and Wolfgang Rüger. "Radikal-Kationen von sterisch gehinderten Bicycloalkylidenen, ein experimenteller Beitrag zur Frage der Planarität des Ethylen-Radikalkations." Angewandte Chemie 93, no. 1 (January 20, 2006): 106–7. http://dx.doi.org/10.1002/ange.19810930122.
Full text王, 丹. "G+--的平面性." Advances in Applied Mathematics 07, no. 03 (2018): 237–42. http://dx.doi.org/10.12677/aam.2018.73029.
Full textHughes, David W. "Planetary planarity." Nature 337, no. 6203 (January 1989): 113. http://dx.doi.org/10.1038/337113a0.
Full textAngelini, Patrizio, Giordano Da Lozzo, Giuseppe Di Battista, Valentino Di Donato, Philipp Kindermann, Günter Rote, and Ignaz Rutter. "Windrose Planarity." ACM Transactions on Algorithms 14, no. 4 (October 13, 2018): 1–24. http://dx.doi.org/10.1145/3239561.
Full textGuha, S., W. Graupner, R. Resel, M. Chandrasekhar, H. R. Chandrasekhar, R. Glaser, and G. Leising. "Planarity ofparaHexaphenyl." Physical Review Letters 82, no. 18 (May 3, 1999): 3625–28. http://dx.doi.org/10.1103/physrevlett.82.3625.
Full textBarth, Lukas, Guido Brückner, Paul Jungeblut, and Marcel Radermacher. "Multilevel Planarity." Journal of Graph Algorithms and Applications 25, no. 1 (2021): 151–70. http://dx.doi.org/10.7155/jgaa.00554.
Full textAngelini, Patrizio, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter. "Beyond level planarity: Cyclic, torus, and simultaneous level planarity." Theoretical Computer Science 804 (January 2020): 161–70. http://dx.doi.org/10.1016/j.tcs.2019.11.024.
Full textKlemz, Boris, and Günter Rote. "Ordered Level Planarity and Its Relationship to Geodesic Planarity, Bi-Monotonicity, and Variations of Level Planarity." ACM Transactions on Algorithms 15, no. 4 (October 12, 2019): 1–25. http://dx.doi.org/10.1145/3359587.
Full textDissertations / Theses on the topic "Planarität"
Zschalig, Christian. "Characterizations of Planar Lattices by Left-relations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1240834941828-67021.
Full textDie Formale Begriffsanalyse hat sich in den letzten Jahren als effizientes Werkzeug zur Datenanalyse und -repräsentation bewährt. Die Möglichkeit der visuellen Darstellung von Begriffshierarchien wird allerdings durch die Schwierigkeit, ansprechende Diagramme automatisch generieren zu können, beeinträchtigt. Offenbar sind Diagramme mit möglichst wenig Kantenkreuzungen für den menschlichen Anwender leichter lesbar. Diese Arbeit beschäftigt sich mit mit einer diesem Kriterium zugrunde liegenden Vorleistung, nämlich der Charakterisierung und Darstellung planarer Verbände. Die schon existierenden vielfältigen Ansätze und Methoden werden dabei unter einem neuen Gesichtspunkt betrachtet. Bekannterweise besitzen genau die planaren Verbände (bzw. planare geordnete Mengen) eine zusätzliche Ordnung "von links nach rechts". Unser Ziel in dieser Arbeit ist es, solche Links-Relationen bzw. Links-Ordnungen genauer zu definieren und verschiedene Aspekte planarer Verbände mit ihrer Hilfe zu beschreiben. Die insgesamt drei auftretenden Sichtweisen gliedern die Arbeit in ebensoviele Teile: Links-Relationen auf Verbänden erlauben eine effizientere Behandlung konjugierter Ordnungen, da sie durch die Anordnung der Schnitt-Irreduziblen schon eindeutig festgelegt sind. Außerdem erlaubt die Beschränkung auf die Schnitt-Irreduziblen eine anschauliche Beschreibung von Standardkontexten planarer Verbände ähnlich der consecutive-one property. Mit Hilfe der Links-Relationen auf Diagrammen können planare Verbände tatsächlich eben gezeichnet werden. Dabei lassen sich verbandstheoretisch ermittelte Links-Ordnungen in der graphischen Darstellung wieder finden. Weiterhin geben wir in eine Modifikation des left-right-numbering an, mit der planare Verbände merkmaladditiv und eben gezeichnet werden können. Schließlich werden wir Links-Relationen auf Kontexten betrachten. Diese stellen sich als sehr ähnlich zu Ferrers-Graphen heraus. Planare Verbände lassen sich durch eine Eigenschaft dieser Graphen, nämlich die Bipartitheit, charakterisieren. Wir werden dieses Ergebnis konstruktiv beweisen und darauf aufbauend einen effizienten Algorithmus angeben, mit dem alle nicht-ähnlichen ebenen Diagramme eines Verbandes bestimmt werden können
Zschalig, Christian. "Characterizations of Planar Lattices by Left-relations." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23687.
Full textDie Formale Begriffsanalyse hat sich in den letzten Jahren als effizientes Werkzeug zur Datenanalyse und -repräsentation bewährt. Die Möglichkeit der visuellen Darstellung von Begriffshierarchien wird allerdings durch die Schwierigkeit, ansprechende Diagramme automatisch generieren zu können, beeinträchtigt. Offenbar sind Diagramme mit möglichst wenig Kantenkreuzungen für den menschlichen Anwender leichter lesbar. Diese Arbeit beschäftigt sich mit mit einer diesem Kriterium zugrunde liegenden Vorleistung, nämlich der Charakterisierung und Darstellung planarer Verbände. Die schon existierenden vielfältigen Ansätze und Methoden werden dabei unter einem neuen Gesichtspunkt betrachtet. Bekannterweise besitzen genau die planaren Verbände (bzw. planare geordnete Mengen) eine zusätzliche Ordnung "von links nach rechts". Unser Ziel in dieser Arbeit ist es, solche Links-Relationen bzw. Links-Ordnungen genauer zu definieren und verschiedene Aspekte planarer Verbände mit ihrer Hilfe zu beschreiben. Die insgesamt drei auftretenden Sichtweisen gliedern die Arbeit in ebensoviele Teile: Links-Relationen auf Verbänden erlauben eine effizientere Behandlung konjugierter Ordnungen, da sie durch die Anordnung der Schnitt-Irreduziblen schon eindeutig festgelegt sind. Außerdem erlaubt die Beschränkung auf die Schnitt-Irreduziblen eine anschauliche Beschreibung von Standardkontexten planarer Verbände ähnlich der consecutive-one property. Mit Hilfe der Links-Relationen auf Diagrammen können planare Verbände tatsächlich eben gezeichnet werden. Dabei lassen sich verbandstheoretisch ermittelte Links-Ordnungen in der graphischen Darstellung wieder finden. Weiterhin geben wir in eine Modifikation des left-right-numbering an, mit der planare Verbände merkmaladditiv und eben gezeichnet werden können. Schließlich werden wir Links-Relationen auf Kontexten betrachten. Diese stellen sich als sehr ähnlich zu Ferrers-Graphen heraus. Planare Verbände lassen sich durch eine Eigenschaft dieser Graphen, nämlich die Bipartitheit, charakterisieren. Wir werden dieses Ergebnis konstruktiv beweisen und darauf aufbauend einen effizienten Algorithmus angeben, mit dem alle nicht-ähnlichen ebenen Diagramme eines Verbandes bestimmt werden können.
Fowler, Joe. "Unlabled Level Planarity." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195812.
Full textHayer, Matthias. "Testing planarity in linear time." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/30483.
Full textBachmaier, Christian. "Circle planarity of level graphs." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973953985.
Full textEstrella, Balderrama Alejandro. "Simultaneous Embedding and Level Planarity." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195738.
Full textTaylor, Martyn G. "Planarity testing by path addition." Thesis, University of Kent, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580367.
Full textTassion, Vincent. "Planarité et Localité en Percolation." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01061007.
Full textKlein, Philip N. (Philip Nathan). "An efficient parallel algorithm for planarity." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/34303.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 56-57.
by Philip Nathan Klein.
M.S.
Heinz, Adrian. "Planarity testing and drawing in Jedit 4.0." Virtual Press, 2001. http://liblink.bsu.edu/uhtbin/catkey/1204201.
Full textDepartment of Computer Science
Books on the topic "Planarität"
Cai, Jiazhen. An interative version of Hopcroft and Tarjan's planarity testing algorithm. New York: Courant Institute of Mathematical Sciences, New York University, 1987.
Find full textCai, Jiazhen. An interative version of Hopcroft and Tarjan's planarity testing algorithm. New York: Courant Institute of Mathematical Sciences, New York University, 1987.
Find full textGraphs: Block 3: Graphs 3 - Planarity and Colouring (Mathematics and Computing/technology: a Third Level Course). Open University Worldwide, 1995.
Find full textBook chapters on the topic "Planarität"
Läuchli, Peter. "Planarität." In Algorithmische Graphentheorie, 83–98. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-5635-5_11.
Full textBüsing, Christina. "Planarität." In Graphen- und Netzwerkoptimierung, 91–109. Heidelberg: Spektrum Akademischer Verlag, 2010. http://dx.doi.org/10.1007/978-3-8274-2423-5_6.
Full textWallis, W. D. "Planarity." In A Beginner’s Guide to Graph Theory, 113–22. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4580-9_8.
Full textFoulds, L. R. "Planarity." In Universitext, 53–73. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-0933-1_5.
Full textBalakrishnan, R., and K. Ranganathan. "Planarity." In A Textbook of Graph Theory, 175–205. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4529-6_8.
Full textMelnikov, O., V. Sarvanov, R. Tyshkevich, V. Yemelichev, and I. Zverovich. "Planarity." In Kluwer Texts in the Mathematical Sciences, 93–110. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1514-0_7.
Full textBalakrishnan, R., and K. Ranganathan. "Planarity." In A Textbook of Graph Theory, 152–84. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4419-8505-7_8.
Full textWallis, W. D. "Planarity." In A Beginner’s Guide to Graph Theory, 105–14. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4757-3134-7_8.
Full textAldous, Joan M., and Robin J. Wilson. "Planarity." In Graphs and Applications, 242–76. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0467-4_11.
Full textSaoub, Karin R. "Planarity." In Graph Theory, 339–72. Boca Raton: CRC Press, 2021. | Series: Textbooks in mathematics: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781138361416-7.
Full textConference papers on the topic "Planarität"
Cortese, Pier Francesco, and Giuseppe Di Battista. "Clustered planarity." In the twenty-first annual symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1064092.1064093.
Full textDidimo, W., F. Giordano, and G. Liotta. "Overlapping cluster planarity." In Asia-Pacific Symposium on Visualisation 2007. IEEE, 2007. http://dx.doi.org/10.1109/apvis.2007.329278.
Full textDi Battista, G., and R. Tamassia. "Incremental planarity testing." In 30th Annual Symposium on Foundations of Computer Science. IEEE, 1989. http://dx.doi.org/10.1109/sfcs.1989.63515.
Full textBrückner, Guido, and Ignaz Rutter. "Partial and Constrained Level Planarity." In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974782.130.
Full textVannoni, M., and G. Molesini. "Calibration of horizontally-placed planarity standards." In 2008 Conference on Precision Electromagnetic Measurements (CPEM 2008). IEEE, 2008. http://dx.doi.org/10.1109/cpem.2008.4574718.
Full textGalil, Zvi, Giuseppe F. Italiano, and Neil Sarnak. "Fully dynamic planarity testing (extended abstract)." In the twenty-fourth annual ACM symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/129712.129761.
Full textKlein, Philip N., and John H. Reif. "An efficient parallel algorithm for planarity." In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 1986. http://dx.doi.org/10.1109/sfcs.1986.6.
Full textWeibel, Thomas, Christian Daul, Didier Wolf, and Ronald Rosch. "Planarity-enforcing higher-order graph cut." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6116539.
Full textAngelini, Patrizio, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. "Testing Planarity of Partially Embedded Graphs." In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010. http://dx.doi.org/10.1137/1.9781611973075.19.
Full textVannoni, Maurizio, and Giuseppe Molesini. "Paired interferometric measurement of planarity and parallelism." In Optical Metrology, edited by Wolfgang Osten, Malgorzata Kujawinska, and Katherine Creath. SPIE, 2003. http://dx.doi.org/10.1117/12.501263.
Full text