Academic literature on the topic 'Planet geology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Planet geology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Planet geology"
Klimczak, Christian, Paul K. Byrne, A. M. Celâl Şengör, and Sean C. Solomon. "Principles of structural geology on rocky planets." Canadian Journal of Earth Sciences 56, no. 12 (December 2019): 1437–57. http://dx.doi.org/10.1139/cjes-2019-0065.
Full textSearle, R. C. "Marine geology — A planet earth perspective." Marine and Petroleum Geology 5, no. 3 (August 1988): 300. http://dx.doi.org/10.1016/0264-8172(88)90011-6.
Full textYusoff, Kathryn. "Geosocial Strata." Theory, Culture & Society 34, no. 2-3 (January 18, 2017): 105–27. http://dx.doi.org/10.1177/0263276416688543.
Full textGoldblatt, C., K. J. Zahnle, N. H. Sleep, and E. G. Nisbet. "The Eons of Chaos and Hades." Solid Earth 1, no. 1 (February 2, 2010): 1–3. http://dx.doi.org/10.5194/se-1-1-2010.
Full textSanloup, Chrystele. "High-pressure experimental geosciences: state of the art and prospects." Bulletin de la Société Géologique de France 183, no. 3 (May 1, 2012): 175–87. http://dx.doi.org/10.2113/gssgfbull.183.3.175.
Full textSUWA, K. "The Planet Earth Viewed from Africa." Gondwana Research 6, no. 4 (October 2003): 961. http://dx.doi.org/10.1016/s1342-937x(05)71050-9.
Full textBridges, N. T., M. C. Bourke, P. E. Geissler, M. E. Banks, C. Colon, S. Diniega, M. P. Golombek, et al. "Planet-wide sand motion on Mars." Geology 40, no. 1 (November 14, 2011): 31–34. http://dx.doi.org/10.1130/g32373.1.
Full textMangel, Adam, and Steve Sloan. "Introduction to this special section: Near-surface geophysics." Leading Edge 38, no. 6 (June 2019): 434. http://dx.doi.org/10.1190/tle38060434.1.
Full textKwok, Sun, Edwin Bergin, and Pascale Ehrenfreund. "Search for water and life's building blocks in the Universe." Proceedings of the International Astronomical Union 11, A29B (August 2015): 375. http://dx.doi.org/10.1017/s1743921316005573.
Full textPaschoale, Conrado, and Silvia de Mendonca Figueiroa. "Geologic Time: A Semiotic Probing." Earth Sciences History 8, no. 2 (January 1, 1989): 116–22. http://dx.doi.org/10.17704/eshi.8.2.9w10334423243554.
Full textDissertations / Theses on the topic "Planet geology"
BARLOW, NADINE GAIL. "RELATIVE AGES AND THE GEOLOGIC EVOLUTION OF MARTIAN TERRAIN UNITS (MARS, CRATERS)." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184013.
Full textFan, Chaojun. "Revealing the hydrological history of Mars." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Dissertations/Spring2008/Chaojun_Fan_032808.pdf.
Full textPolit, Anjani T. "Influence of mechanical stratigraphy and strain on the displacement-length scaling of normal faults on Mars." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433375.
Full textSoare, Richard J. "The restructuring of analogical reasoning in planetary science /." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82428.
Full textGilligan, Amy Rebecca. "Imaging the structure of the crust and upper mantle in central Asia." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708358.
Full textNunn, Ceri. "Tomographic images of the crust and upper mantle beneath the Tibetan Plateau : using body waves, surface waves and a joint inversion." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708398.
Full textSmith, Amy Renee. "Subsurface Igneous Mineral Microbiology: Iron-Oxidizing Organotrophs on Olivine Surfaces and the Significance of Mineral Heterogeneity in Basalts." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/294.
Full textYang, Jiaming. "Melting in the Mantle Wedge: Quantifying the Effects of Crustal Morphology and Viscous Decoupling on Melt Production with Application to the Cascadia Subduction Zone." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3880.
Full textKarakas, Ozge. "Modulation of crustal magmatic systems by external tectonic forcing." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45964.
Full textLaurie, Angelique. "The formation of Earth’s early felsic continental crust by water-present eclogite melting." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80214.
Full textENGLISH ABSTRACT: The sodic and leucocratic Tonalite, Trondhjemite and Granodiorite (TTG) granitoid series of rocks characterise Paleo- to Meso- Archaean felsic continental crust, yet are uncommon in the post-Archaean rock record. Consequently, petrogenetic studies on these rocks provide valuable insight into the creation and evolution of Earth’s early continental crust. The highpressure (HP)-type of Archaean TTG magmas are particularly important in this regard as their geochemistry requires that they are formed by high-pressure melting of a garnet-rich eclogitic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. In general, TTG magmas have been assumed to arise through fluid-absent partial melting of metamafic source rocks. Therefore, very little experimental data on fluid-present eclogite melting to produce Archaean TTG exist, despite the fact that water drives magmatism in modern arcs. Consequently, this study experimentally investigates the role of fluid-present partial melting of eclogite-facies metabasaltic rock in the production of Paleo- to Meso-Archaean HP-type TTG melts. Experiments are conducted between 1.6 GPa and 3.0 GPa and 700 ºC and 900 ºC using natural and synthetic eclogite, and gel starting materials of low-K2O basaltic composition. Partial melting of the natural and synthetic eclogite occurred between 850 ºC and 870 ºC at pressures above 1.8 GPa, and the melting reaction is characterised by the breakdown of sodic clinopyroxene, quartz and water: Qtz + Cpx1 + H2O ± Grt1 = Melt + Cpx2 ± Grt2. The experimental melts have the compositions of sodic peraluminous trondhjemites and have compositions that are similar to the major, trace and rare earth element composition of HPtype Archaean TTG. This study suggests that fluid-present eclogite melting is a viable petrogenetic model for this component of Paleo- to Meso-Archaean TTG crust. The nature of the wet low-K2O eclogite-facies metamafic rock solidus has been experimentally defined and inflects towards higher temperatures at the position of the plagioclase-out reaction. Therefore, the results indicate that a crystalline starting material is necessary to define this solidus to avoid metastable melting beyond temperatures of the Pl + H2O + Qtz solidus at pressures above plagioclase stability. Furthermore, this study uses numerical and metamorphic models to demonstrate that for reasonable Archaean mantle wedge temperatures within a potential Archaean subduction zone, the bulk of the water produced by metamorphic reactions within the slabs is captured by an anatectic zone near the slab surface. Therefore, this geodynamic model may account for HP-type Archaean TTG production and additionally provides constraints for likely Archaean subduction. The shape of the relevant fluid-present solidus is similar to the shape of the pressure-temperature paths followed by upper levels of the proposed Archaean subducting slab, which makes water-fluxed slab anatexis is very dependant on the temperature in the mantle wedge. I propose that cooling of the upper mantle by only a small amount during the late Archaean ended fluid-present melting of the slab. This allowed slab water to migrate into the wedge and produce intermediate composition magmatism which has since been associated with subduction zones.
AFRIKAANSE OPSOMMING: Die reeks natruimhoudende en leukokraties Tonaliet, Trondhjemiet en Granodioriet (TTG) felsiese stollingsgesteentes is kenmerkend in die Paleo- tot Meso-Argeïkum felsiese kontinentale kors, maar is ongewoon in die post-Argeïese rots rekord. Gevolglik, petrogenetiese studies op hierdie rotse verskaf waardevolle insig in die skepping en evolusie van die aarde se vroeë kontinentale kors. Die hoë-druk (HD)-tipe van die Argeïkum TTG magmas is veral belangrik in hierdie verband as hulle geochemie vereis dat hulle gevorm word deur hoë druk smelting van 'n granaat-ryk eklogitiese bron. Dit word interpreteer as bewys vir die vorming van hierdie magmas deur smelting van die boonste gedeeltes van die blaaie in Argeïese subduksie sones. TTG magmas in die algemeen, is veronderstel om op te staan deur middel van water-afwesig gedeeltelike smelting van metamafiese bron rotse. Daarom bestaan baie min eksperimentele data op water-teenwoordig eklogiet smelting om Argeïkum TTG te produseer, ten spyte van die feit dat water magmatisme dryf in moderne boë. Gevolglik is hierdie studie ‘n eksperimentele ondersoek in die rol van water-teenwoordig gedeeltelike smelting van eklogiet-fasies metamafiese rots in die produksie van Paleo- tot Meso-Argeïkum HD-tipe TTG smelte. Eksperimente word uitgevoer tussen 1.6 GPa en 3.0 GPa en 700 ºC en 900 ºC met behulp van natuurlike en sintetiese eklogiet, en gel begin materiaal van lae-K2O basaltiese samestelling. Gedeeltelike smelting van die natuurlike en sintetiese eklogiet het plaasgevind tussen 850 ºC en 870 ºC te druk bo 1.8 GPa, en die smeltings reaksie is gekenmerk deur die afbreek van natruimhoudende klinopirokseen, kwarts en water: Qtz + Cpx1 + H2O ± Grt1 = Smelt + Cpx2 ± Grt2. Die eksperimentele smelte het die komposisies van natruimhoudende trondhjemites en is soortgelyk aan die hoof-, spoor- en seldsame aard element samestelling van HD-tipe Argeïkum TTG. Hierdie studie dui daarop dat water-teenwoordig eklogiet smelting 'n lewensvatbare petrogenetiese model is vir hierdie komponent van Paleo- tot Meso-Argeïkum TTG kors. Die aard van die nat lae-K2O eklogietfasies metamafiese rock solidus is eksperimenteel gedefinieër en beweeg na hoër temperature by die posisie van die plagioklaas-out reaksie. Daarom dui die resultate daarop dat 'n kristallyne materiaal nodig is om hierdie solidus te definieër en metastabiele smelting buite temperature van die Pl + H2O + Qtz solidus druk bo plagioklaas stabiliteit te vermy. Verder maak hierdie studie gebruik van numeriese en metamorfiese modelle om aan te dui dat die grootste deel van die water geproduseer deur metamorfiese reaksies binne die blaaie bestaan vir redelike Argeïkum mantel wig temperature binne 'n potensiële Argeïkum subduksie sone, en word opgevang deur 'n smelting sone naby die blad oppervlak. Daarom kan hierdie geodinamies model rekenskap gee vir HD-tipe Argeïkum TTG produksie en dit bied ook die beperkinge vir waarskynlik Argeïese subduksie. Die vorm van die betrokke waterteenwoordig solidus is soortgelyk aan die vorm van die druk-temperatuur paaie gevolg deur die boonste vlakke van die voorgestelde Argeïkum subderende blad, wat water-vloeiing blad smeltingbaie afhanklik maak van die temperatuur in die mantel wig. Ons stel voor dat afkoeling van die boonste mantel met slegs 'n klein hoeveelheid gedurende die laat Argeïese, die water-vloeiing smelting van die blad beëindig. Dit het toegelaat dat die blad water in die wig migreer en intermediêre samestelling magmatisme produseer wat sedert geassosieer word met subduksie sones.
Books on the topic "Planet geology"
1928-, Skinner Brian J., ed. Geology today: Understanding our planet. New York: J. Wiley, 2003.
Find full textMurck, Barbara Winifred. Geology today: Understanding our planet. New York: John Wiley, 1999.
Find full textCattermole, Peter John. Building planet Earth. Cambridge, U.K: Cambridge University Press, 2000.
Find full textMarshak, Stephen. Earth: Portrait of a planet. 3rd ed. New York: W.W. Norton, 2008.
Find full textRichard, Lawrence, ed. Our planet Earth. 3rd ed. Petersburg, Ky: Answers in Genesis, 2008.
Find full textBook chapters on the topic "Planet geology"
Jain, Sreepat. "Earth as a Planet." In Fundamentals of Physical Geology, 57–75. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1539-4_4.
Full textRossi, Angelo Pio, Stephan van Gasselt, and Harald Hiesinger. "The Terrestrial Planets." In Planetary Geology, 249–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65179-8_11.
Full textSchmedemann, Nico, Matteo Massironi, Roland Wagner, and Katrin Stephan. "Small Bodies and Dwarf Planets." In Planetary Geology, 311–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65179-8_13.
Full textHay, William W. "Geologic Time." In Experimenting on a Small Planet, 62–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28560-8_3.
Full textHay, William W. "Geologic Time." In Experimenting on a Small Planet, 76–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27404-1_4.
Full textHay, William W. "Geologic Time." In Experimenting on a Small Planet, 89–115. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76339-8_5.
Full textJain, Sreepat. "The Solar System: Sun and Planets." In Fundamentals of Physical Geology, 13–35. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1539-4_2.
Full textGreeley, Ronald. "Geology of Terrestrial Planets with Dynamic Atmospheres." In Comparative Planetology with an Earth Perspective, 13–27. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-1092-3_2.
Full textSarma, Hemen, and M. N. V. Prasad. "Plant-Microbe Association-Assisted Removal of Heavy Metals and Degradation of Polycyclic Aromatic Hydrocarbons." In Springer Geology, 219–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03119-4_10.
Full textHay, William W. "Putting Numbers on Geologic Ages." In Experimenting on a Small Planet, 96–139. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28560-8_4.
Full textConference papers on the topic "Planet geology"
Simmons, M., and R. Davies. "Arabian Plate Sequence Stratigraphy Revisited: Mega-Sequences AP9 and AP10." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602385.
Full textH. Youssef, A. "Sequence Stratigraphy of Radhuma Section; Onshore Kuwait." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602386.
Full textAl-Bloushi, A. "Depositional History of the Lower to Middle Eocene Dammam Formation in Kuwait." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602387.
Full textFarraday, J., and W. Tan. "Pre-Aruma Unconformity and Lower Aruma Channels in Eastern Saudi Arabia." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602388.
Full textBernecker, M., A. Al Jabri, and S. Al Shaqsi. "The Ras Al Hamra Limestone: An Outcrop Analogue to the Shallow Cores of Umm Er Radhuma Formation?" In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602389.
Full textDernaika, M., S. Koronfol, O. Al Jallad, J. Walls, and G. Sinclair. "Variations of Shale Rock Properties from Different Formations in the Middle East." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602390.
Full textAlmasinia, B., S. Ali Moallemi, F. Fürsich, and M. Ahmad Hosseini. "Strontium Isotope Stratigraphy at Middle Eocene from the Zagros Mountains of Iran." In Sixth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602391.
Full textFred Read, J. "Keynote Speech: Prof. J. Fred Read (Virginia Tech, USA)." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142772.
Full textKoopman, A. "The Relation between Regional (Palaeo-)stress Engines, Sand Machines, and Carbonate Factories in the Middle East Region." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142773.
Full textDavies, R. B., and M. D. Simmons. "Sequence Stratigraphy and Depositional Systems in the Late Jurassic to Early Cretaceous (Oxfordian to Valanginian) of the Arabian Plate: Implications for Regional Exploration and Reservoir Description." In Fourth Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20142774.
Full textReports on the topic "Planet geology"
Karlstrom, Karl, Laura Crossey, Allyson Matthis, and Carl Bowman. Telling time at Grand Canyon National Park: 2020 update. National Park Service, April 2021. http://dx.doi.org/10.36967/nrr-2285173.
Full textRichard, S. H. Surficial Geology, Carleton Place, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/130940.
Full textBarnett, D. BRENT, Bruce N. Bjornstad, Karl R. Fecht, David C. Lanigan, Steve Reidel, and Colleen F. Rust. Geology of the Waste Treatment Plant Seismic Boreholes. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/900923.
Full textBarnett, D. Brent, Karl R. Fecht, Stephen P. Reidel, Bruce N. Bjornstad, David C. Lanigan, and Colleen F. Rust. Geology of the Waste Treatment Plant Seismic Boreholes. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/912724.
Full textMortensen, J. K. Geology, Geochronology, and Placer Gold Sources, Klondike. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/131222.
Full textBélanger, J. R., A. Moore, and A. Prégent. Surficial geology, digital map, Carleton Place, Ontario (31F/1). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/209123.
Full textTweet, Justin S., Vincent L. Santucci, Kenneth Convery, Jonathan Hoffman, and Laura Kirn. Channel Islands National Park: Paleontological resource inventory (public version). National Park Service, September 2020. http://dx.doi.org/10.36967/nrr-2278664.
Full textBundtzen, T. K. Placer geology of the Porcupine Mining District, Skagway B-4 Quadrangle, Alaska. Alaska Division of Geological & Geophysical Surveys, 1986. http://dx.doi.org/10.14509/1201.
Full textFallaw, W. C., and K. A. Sargent. Subsurface geology of the A and M areas at the Savannah River Plant, Aiken, South Carolina. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/481491.
Full textAldridge, David F. Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1367459.
Full text