To see the other types of publications on this topic, follow the link: Planing of an energy production.

Journal articles on the topic 'Planing of an energy production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Planing of an energy production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Burggräf, P., M. Dannapfel, J, Utsch, J. Uelpenich, and M. Kasalo. "Integrierte Produktions- und Energiesystemplanung*/Integrated production and energy system planning." wt Werkstattstechnik online 107, no. 04 (2017): 207–12. http://dx.doi.org/10.37544/1436-4980-2017-04-11.

Full text
Abstract:
In der Produktionstechnik bestehen hohe Potenziale, um den Energieverbrauch zu senken und die Energieeffizienz zu steigern. Eine integrierte Planung von Produktions- und Energiesystem verspricht die Erreichung dieser Optimierungspotenziale. Der Beitrag beschreibt eine Methodik, welche eine Einteilung der Beziehungsintensitäten zwischen den beiden Planungsbereichen ermöglicht. Daraus ergibt sich die Grundlage für die Schnittstellenanalyse zwischen der Planung auf Informations- und Parameterebene.   At present, there is still high potential to reduce energy consumption and to increase e
APA, Harvard, Vancouver, ISO, and other styles
2

Johannes, Christoph, Matthias G. Wichmann, and Thomas S. Spengler. "Energy-oriented production planning with time-dependent energy prices." Procedia CIRP 80 (2019): 245–50. http://dx.doi.org/10.1016/j.procir.2019.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keller, F., and G. Reinhart. "Produktionsplanung unter Berücksichtigung des Energiebezugs*/Production planning with energy supply restrictions." wt Werkstattstechnik online 105, no. 03 (2015): 141–47. http://dx.doi.org/10.37544/1436-4980-2015-03-65.

Full text
Abstract:
Der Energiebedarf einer Fabrik wird – neben den Energieverbräuchen der eingesetzten Produktionsressourcen – wesentlich von der zeitlich vorauslaufenden Planung beeinflusst. Mithilfe eines Energiebezugsplans sowie einer energieorientierten Produktionsplanung kann die kostengünstige Abstimmung von Energieangebot und -nachfrage einer Fabrik umgesetzt werden. Dabei gilt es, die Planungssysteme einer Fabrik zu befähigen, sich an die Bedingungen des Energiemarktes beziehungsweise der Erzeugung flexibel anzupassen.   The energy demand of a factory is determined by the specific energy consump
APA, Harvard, Vancouver, ISO, and other styles
4

Keller, Fabian, and Gunther Reinhart. "Energy Supply Orientation in Production Planning Systems." Procedia CIRP 40 (2016): 244–49. http://dx.doi.org/10.1016/j.procir.2016.01.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van der Linde, Andries. "Bio-energy resources: Planning production and utilisation." Renewable Energy 7, no. 2 (1996): 215. http://dx.doi.org/10.1016/s0960-1481(96)90005-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stetter, Ralf, Andreas Paczynski, Piotr Witczak, and Benjamir Staiger. "Advanced Trajectory Planning for Production Energy Estimation." Pomiary Automatyka Robotyka 18, no. 2 (2014): 70–77. http://dx.doi.org/10.14313/par_204/70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poltroniere, Sônia Cristina, Angelo Aliano Filho, Amanda Suellen Caversan, Antonio Roberto Balbo, and Helenice de Oliveira Florentino. "Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy." Computers and Electronics in Agriculture 184 (May 2021): 105956. http://dx.doi.org/10.1016/j.compag.2020.105956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bohlayer, Markus, Markus Fleschutz, Marco Braun, and Gregor Zöttl. "Energy-intense production-inventory planning with participation in sequential energy markets." Applied Energy 258 (January 2020): 113954. http://dx.doi.org/10.1016/j.apenergy.2019.113954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jessica, Sarah Palmer, and David Pimentel. "Energy production from corn." Environment, Development and Sustainability 14, no. 2 (2011): 221–31. http://dx.doi.org/10.1007/s10668-011-9318-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fiorese, G., E. Cozzolino, G. Guariso, and G. Paris. "Planning biomass energy production in a farming area." Renewable Energy and Power Quality Journal 1, no. 08 (2010): 1345–50. http://dx.doi.org/10.24084/repqj08.664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chiarandini, Marco, Niels H. Kjeldsen, and Napoleao Nepomuceno. "Integrated Planning of Biomass Inventory and Energy Production." IEEE Transactions on Computers 63, no. 1 (2014): 102–14. http://dx.doi.org/10.1109/tc.2013.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sun, Bo, Pavlo Krokhmal, and Yong Chen. "Risk-averse capacity planning for renewable energy production." Energy Systems 9, no. 2 (2017): 223–56. http://dx.doi.org/10.1007/s12667-017-0244-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dumont, Laurence B., Philippe Marier, Nadia Lehoux, Louis Gosselin, and Hugues Fortin. "Integrating Electric Energy Cost in Lumber Production Planning." IFAC-PapersOnLine 52, no. 13 (2019): 2249–54. http://dx.doi.org/10.1016/j.ifacol.2019.11.540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schultz, C., S. Braunreuther, and G. Prof Reinhart. "Energieorientierte Produktionssteuerung*/Energy-oriented production control." wt Werkstattstechnik online 106, no. 03 (2016): 152–56. http://dx.doi.org/10.37544/1436-4980-2016-03-56.

Full text
Abstract:
Angesichts steigender Energiekosten sowie eines zunehmenden Bewusstseins für nachhaltige Produktion ist es heute erforderlich, Zielvorgaben für den Energieverbrauch in der Produktionsplanung und -steuerung zu verankern sowie umzusetzen. Aus diesem Grund präsentiert dieser Artikel ein Verfahren für eine energieorientierte Produktionssteuerung, die auf der Basis von Energieflexibilität und Lastmanagement den Energiebedarf der Produktion mit einem begrenzten Energieangebot synchronisiert.   Due to rising energy costs and a growing awareness for sustainable production, it is now necessary
APA, Harvard, Vancouver, ISO, and other styles
15

Sucic, Boris, Fouad Al-Mansour, Matevz Pusnik, and Tomaz Vuk. "Context sensitive production planning and energy management approach in energy intensive industries." Energy 108 (August 2016): 63–73. http://dx.doi.org/10.1016/j.energy.2015.10.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bougain, S., D. Gerhard, C. Nigischer, and S. Uĝurlu. "Towards Energy Management in Production Planning Software Based on Energy Consumption as a Planning Resource." Procedia CIRP 26 (2015): 139–44. http://dx.doi.org/10.1016/j.procir.2014.07.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chaturvedi, Nitin Dutt, and Santanu Bandyopadhyay. "Targeting Aggregate Production Planning for an Energy Supply Chain." Industrial & Engineering Chemistry Research 54, no. 27 (2015): 6941–49. http://dx.doi.org/10.1021/acs.iecr.5b00587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Özdamar, Linet, and Şevket İlker Birbil. "A hierarchical planning system for energy intensive production environments." International Journal of Production Economics 58, no. 2 (1999): 115–29. http://dx.doi.org/10.1016/s0925-5273(98)00076-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chaturvedi, Nitin Dutt. "Minimizing energy consumption via multiple installations aggregate production planning." Clean Technologies and Environmental Policy 19, no. 7 (2017): 1977–84. http://dx.doi.org/10.1007/s10098-017-1376-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Weinert, Nils, Stylianos Chiotellis, and Günther Seliger. "Methodology for planning and operating energy-efficient production systems." CIRP Annals 60, no. 1 (2011): 41–44. http://dx.doi.org/10.1016/j.cirp.2011.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Salahi, Niloofar, and Mohsen A. Jafari. "Energy-Performance as a driver for optimal production planning." Applied Energy 174 (July 2016): 88–100. http://dx.doi.org/10.1016/j.apenergy.2016.04.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chaturvedi, Nitin Dutt, Piyush Kumar Kumawat, and Aditya Kumar Keshari. "Energy and Carbon-Constrained Production Planning with Parametric Uncertainties." IFAC-PapersOnLine 54, no. 3 (2021): 560–65. http://dx.doi.org/10.1016/j.ifacol.2021.08.301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Beaudry, Jean-Paul, and André P. Langlois. "Multiparametric sensitivity analysis of energy production projects." Canadian Journal of Civil Engineering 13, no. 2 (1986): 121–29. http://dx.doi.org/10.1139/l86-020.

Full text
Abstract:
Optimization studies of an energy production project or complex consist in determining the economic general dimensioning of the works during the prefeasibility or the feasibility stage of the studies. As these first studies are part of the iterative system planning process, they should include very exhaustive sensitivity analyses on the accuracy of all technical and economic parameters, although (and even because) so much data is uncertain during this phase.After a review of the mathematics of discounting and of the decision-making economic criteria, a nomographic approach is presented that al
APA, Harvard, Vancouver, ISO, and other styles
24

Romanelli, Thiago L., Marcos Milan, and Rafael Cesar Tieppo. "Energy-Based Evaluations on Eucalyptus Biomass Production." International Journal of Forestry Research 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/340865.

Full text
Abstract:
Dependence on finite resources brings economic, social, and environmental concerns. Planted forests are a biomass alternative to the exploitation of natural forests. In the exploitation of the planted forests, planning and management are key to achieve success, so in forestry operations, both economic and noneconomic factors must be considered. This study aimed to compare eucalyptus biomass production through energy embodiment of anthropogenic inputs and resource embodiment including environmental contribution (emergy) for the commercial forest in the Sao Paulo, Brazil. Energy analyses and eme
APA, Harvard, Vancouver, ISO, and other styles
25

Casula, Laura, Guglielmo D’Amico, Giovanni Masala, and Filippo Petroni. "Performance estimation of photovoltaic energy production." Letters in Spatial and Resource Sciences 13, no. 3 (2020): 267–85. http://dx.doi.org/10.1007/s12076-020-00258-x.

Full text
Abstract:
AbstractThis article deals with the production of energy through photovoltaic (PV) panels. The efficiency and quantity of energy produced by a PV panel depend on both deterministic factors, mainly related to the technical characteristics of the panels, and stochastic factors, essentially the amount of incident solar radiation and some climatic variables that modify the efficiency of solar panels such as temperature and wind speed. The main objective of this work is to estimate the energy production of a PV system with fixed technical characteristics through the modeling of the stochastic facto
APA, Harvard, Vancouver, ISO, and other styles
26

SAKUMA, Toru, Hironori HIBINO, Makoto YAMAGUCHI, and Yuki SHINZO. "S142015 Manufacturing System Simulation to Evaluate Energy Productivity : 2nd Report, Production planning using energy consumption per unit of production throughput." Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _S142015–1—_S142015–4. http://dx.doi.org/10.1299/jsmemecj.2012._s142015-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhdanova, O. H., V. M. Klymenko, and M. O. Sperkach. "Planning Energy Efficient Schedules for the Functioning of Production Systems." Visnyk of Vinnytsia Politechnical Institute 147, no. 6 (2019): 54–61. http://dx.doi.org/10.31649/1997-9266-2019-147-6-54-61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Keller, Fabian, Stefan Braunreuther, and Gunther Reinhart. "Integration of On-site Energy Generation into Production Planning Systems." Procedia CIRP 48 (2016): 254–58. http://dx.doi.org/10.1016/j.procir.2016.03.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Abele, Michael, Eric Unterberger, Thomas Friedl, et al. "Simulation-based evaluation of an energy oriented production planning system." Procedia CIRP 88 (2020): 246–51. http://dx.doi.org/10.1016/j.procir.2020.05.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kalioropoulou, Anna, Basil Manos, Thomas Bournaris, and Stefanos A. Nastis. "Planning of agricultural production in agro-energy districts of Greece." International Journal of Sustainable Agricultural Management and Informatics 3, no. 3 (2017): 181. http://dx.doi.org/10.1504/ijsami.2017.090294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bournaris, Thomas, Stefanos A. Nastis, Basil Manos, and Anna Kalioropoulou. "Planning of agricultural production in agro-energy districts of Greece." International Journal of Sustainable Agricultural Management and Informatics 3, no. 3 (2017): 181. http://dx.doi.org/10.1504/ijsami.2017.10011403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Safarov, D. T., A. G. Kondrashov, L. R. Safarova, and G. F. Glinina. "Energy planning in production shops with numerically controlled machine tools." Russian Engineering Research 37, no. 9 (2017): 827–34. http://dx.doi.org/10.3103/s1068798x17090209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Frombo, Francesco, Riccardo Minciardi, Michela Robba, and Roberto Sacile. "A decision support system for planning biomass-based energy production." Energy 34, no. 3 (2009): 362–69. http://dx.doi.org/10.1016/j.energy.2008.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Delina, Laurence L. "A rural energy collaboratory: co-production in Thailand’s community energy experiments." Journal of Environmental Studies and Sciences 10, no. 1 (2019): 83–90. http://dx.doi.org/10.1007/s13412-019-00572-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Trehub, M., V. Demeshchuk, and O. Vasylenko. "Low energy technologies for energy plants growing and using." Agrobìologìâ, no. 2(153) (December 18, 2019): 75–81. http://dx.doi.org/10.33245/2310-9270-2019-153-2-75-81.

Full text
Abstract:
The technological and energy costs for the cultivation, collection and processing of crop fuels are analyzed and the low-cost technologies of their use for energy needs are substantiated in the article. The technology for growing miscanthus in a production area of Bila Tserkva National Agrarian University training and production center sized 12 hectares during 2013–2019 is described. The prospect of growing giant miscanthus in the conditions of Bila Tserkva district in terms of reproduction technology simplicity, rhizomes planting mechanization with the modernized seedling machine SKN-6, low e
APA, Harvard, Vancouver, ISO, and other styles
36

Laasasenaho, Kari, Anssi Lensu, and Jukka Rintala. "Planning land use for biogas energy crop production: The potential of cutaway peat production lands." Biomass and Bioenergy 85 (February 2016): 355–62. http://dx.doi.org/10.1016/j.biombioe.2015.12.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

ALAWI, H. "DESIGNING RELIABLY FOR WIND ENERGY." Transactions of the Canadian Society for Mechanical Engineering 12, no. 3 (1988): 173–78. http://dx.doi.org/10.1139/tcsme-1988-0025.

Full text
Abstract:
In this study the methodology for probabilistic modeling of wind speed using computer oriented techniques is presented. This approach makes it possible to simulate the wind speed on a computer thereby allowing for proper planning and reliably designing matters involving wind. The computer program developed is used to simulate power production and to determine probability density function of wind power produced for reliability purposes and idle times of a wind power production plant for determining the back-up storage system needed. An example is given on wind energy production and standby stor
APA, Harvard, Vancouver, ISO, and other styles
38

Bornschlegl, Martin, Paryanto, Michael Spahr, Sven Kreitlein, Markus Bregulla, and Jörg Franke. "Energy Planning of Manufacturing Systems with Methods-Energy Measurement (MEM) and Multi-Domain Simulation Approach." Applied Mechanics and Materials 655 (October 2014): 53–59. http://dx.doi.org/10.4028/www.scientific.net/amm.655.53.

Full text
Abstract:
Energy costs play a decisive role in the operation costs of automotive production companies. Therefore, energy planning in an early conception and planning stage becomes an important topic. This is because the early conception and planning stage has the greatest potential to influence the energy consumption of manufacturing technologies since about 70-80 % of the energy costs are committed during this stage. However, lifetime cost and specifically energy consumption are currently not a determining factor at this stage. The reason is that the prediction of energy costs for complex manufacturing
APA, Harvard, Vancouver, ISO, and other styles
39

Vines, Michael J. "LNG production revenue enhancement." APPEA Journal 59, no. 1 (2019): 302. http://dx.doi.org/10.1071/aj18089.

Full text
Abstract:
Liquefied natural gas (LNG) production involves complex processes that differ from conventional oil and gas production. That complexity, however, can be harnessed to drive improved business performance. Parameters for optimisation include plant reliability, capacity and yield. In combination, these parameters may deliver a non-linear upside to production operations at minimal cost. This paper shall therefore review a method for assessing the existing and potential performance of a hypothetical LNG facility with a focus on maximisation of gross revenue. Drawing on various case studies, several
APA, Harvard, Vancouver, ISO, and other styles
40

Rösch, M., C. Schultz, S. Braunreuther, and G. Prof Reinhart. "Energieautarke Produktion/Energy self-sufficient production - Challenges for an electricity self-supply in production planning and control." wt Werkstattstechnik online 107, no. 03 (2017): 148–53. http://dx.doi.org/10.37544/1436-4980-2017-03-44.

Full text
Abstract:
Mit der Umstrukturierung des Stromnetzes im Zuge der Energiewende sind die Strompreise für Industriekunden zuletzt deutlich gestiegen. Gleichzeitig ist eine Kostendegression für Kleinkraftwerke sowie Stromspeicher zu beobachten, die zu einer wachsenden Attraktivität von Stromeigenversorgungen führt. Der Fachbeitrag beleuchtet das Umdenken, das dabei für Produktionsstandorte bei der Energieversorgung und der informationstechnischen Vernetzung aller Erzeuger und Verbraucher erforderlich ist.   Due to the steady increase of renewable and volatile energy sources, industrial customers are
APA, Harvard, Vancouver, ISO, and other styles
41

Andrews-Speed, Philip, and Xin Ma. "Energy Production and Social Marginalisation in China." Journal of Contemporary China 17, no. 55 (2008): 247–72. http://dx.doi.org/10.1080/10670560701809494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Amenumey, Felix, Melissa Pawlisch, and Okechukwu Ukaga. "Energy Production and Consumption Patterns and Planning: A Case of Northeast Minnesota." Energy & Environment 18, no. 3-4 (2007): 373–92. http://dx.doi.org/10.1260/095830507781076185.

Full text
Abstract:
The Clean Energy Resource Teams (CERTs) is a project designed to give local citizens and other stakeholders a voice in planning and determining their energy future. In total, there are seven CERTs operating in seven regions across Minnesota, USA. CERTs connect citizens with technical expertise to facilitate planning and implementation of energy conservation and renewable energy projects. These technical resources are helping the teams identify and prioritize the most appropriate and cost-effective opportunities within their regions. This paper will describe one of these energy teams (the North
APA, Harvard, Vancouver, ISO, and other styles
43

Proto, Andrea R., Giuseppe Zimbalatti, Lorenzo Abenavoli, Bruno Bernardi, and Soraya Benalia. "Biomass Production in Agroforestry Systems: V.E.Ri.For Project." Advanced Engineering Forum 11 (June 2014): 58–63. http://dx.doi.org/10.4028/www.scientific.net/aef.11.58.

Full text
Abstract:
The biomass for energy purposes, coming from agroforestry systems and timber industry, can provide various environmental and socio-economic benefits. Among all renewable energy sources, agroforestry biomass represents both an important alternative source to fossil fuels and an opportunity for the socio-economic development of various marginal areas in Italy. In particular, agroforestry is a collective name of land use systems in which woody perennials are grown in association with herbaceous plants and/or livestock in a spatial arrangements, a rotation, or both in which there are both ecologic
APA, Harvard, Vancouver, ISO, and other styles
44

Kalashnikov, Viktor. "Planning of Territorial-Production Structure of Russia’s Fuel-and-Energy Complex." Spatial Economics 3 (2005): 85–105. http://dx.doi.org/10.14530/se.2005.3.085-105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bank, Lukas, Martin Rösch, Eric Unterberger, et al. "Comparison of Simulation-based and Optimization-based Energy Flexible Production Planning." Procedia CIRP 81 (2019): 294–99. http://dx.doi.org/10.1016/j.procir.2019.03.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Heinzl, Bernhard, and Wolfgang Kastner. "Metaheuristic Simulation-based Production Planning for Energy Efficiency: A Case Study." SNE Simulation Notes Europe 30, no. 3 (2020): 105–16. http://dx.doi.org/10.11128/sne.30.tn.10523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Makatun, Dzmitry, Jérôme Lauret, and Hana Rudová. "Planning of distributed data production for High Energy and Nuclear Physics." Cluster Computing 21, no. 4 (2018): 1949–65. http://dx.doi.org/10.1007/s10586-018-2834-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Golari, Mehdi, Neng Fan, and Tongdan Jin. "Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy." Production and Operations Management 26, no. 3 (2016): 409–25. http://dx.doi.org/10.1111/poms.12657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dellnitz, Andreas, Damian Braschczok, Jonas Ostmeyer, Markus Hilbert, and Andreas Kleine. "Energy costs vs. carbon dioxide emissions in short-term production planning." Journal of Business Economics 90, no. 9 (2020): 1383–407. http://dx.doi.org/10.1007/s11573-020-01000-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bruglieri, Maurizio, and Leo Liberti. "Optimal running and planning of a biomass-based energy production process." Energy Policy 36, no. 7 (2008): 2430–38. http://dx.doi.org/10.1016/j.enpol.2008.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!