Journal articles on the topic 'Plankton image classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 journal articles for your research on the topic 'Plankton image classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tang, Xiaoou, Feng Lin, Scott Samson, and Andrew Remsen. "Binary Plankton Image Classification." IEEE Journal of Oceanic Engineering 31, no. 3 (2006): 728–35. http://dx.doi.org/10.1109/joe.2004.836995.
Full textBarazanchi, Hussein Al, Abhishek Verma, and Shawn X. Wang. "Intelligent plankton image classification with deep learning." International Journal of Computational Vision and Robotics 8, no. 6 (2018): 561. http://dx.doi.org/10.1504/ijcvr.2018.095584.
Full textWang, Shawn X., Abhishek Verma, and Hussein Al Barazanchi. "Intelligent plankton image classification with deep learning." International Journal of Computational Vision and Robotics 8, no. 6 (2018): 561. http://dx.doi.org/10.1504/ijcvr.2018.10016426.
Full textGonzález, Pablo, Eva Álvarez, Jorge Díez, Ángel López-Urrutia, and Juan José del Coz. "Validation methods for plankton image classification systems." Limnology and Oceanography: Methods 15, no. 3 (2016): 221–37. http://dx.doi.org/10.1002/lom3.10151.
Full textEllen, Jeffrey S., Casey A. Graff, and Mark D. Ohman. "Improving plankton image classification using context metadata." Limnology and Oceanography: Methods 17, no. 8 (2019): 439–61. http://dx.doi.org/10.1002/lom3.10324.
Full textCheng, Xuemin, Yong Ren, Kaichang Cheng, Jie Cao, and Qun Hao. "Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye." Sensors 20, no. 9 (2020): 2592. http://dx.doi.org/10.3390/s20092592.
Full textZhao, Feng, Feng Lin, and Hock Soon Seah. "Binary SIPPER plankton image classification using random subspace." Neurocomputing 73, no. 10-12 (2010): 1853–60. http://dx.doi.org/10.1016/j.neucom.2009.12.033.
Full textFaillettaz, Robin, Marc Picheral, Jessica Y. Luo, Cédric Guigand, Robert K. Cowen, and Jean-Olivier Irisson. "Imperfect automatic image classification successfully describes plankton distribution patterns." Methods in Oceanography 15-16 (April 2016): 60–77. http://dx.doi.org/10.1016/j.mio.2016.04.003.
Full textLi, Xiu, Rujiao Long, Jiangpeng Yan, Kun Jin, and Jihae Lee. "TANet: A Tiny Plankton Classification Network for Mobile Devices." Mobile Information Systems 2019 (April 3, 2019): 1–8. http://dx.doi.org/10.1155/2019/6536925.
Full textSchröder, Simon-Martin, Rainer Kiko, and Reinhard Koch. "MorphoCluster: Efficient Annotation of Plankton Images by Clustering." Sensors 20, no. 11 (2020): 3060. http://dx.doi.org/10.3390/s20113060.
Full textPlonus, Rene‐Marcel, Jan Conradt, André Harmer, Silke Janßen, and Jens Floeter. "Automatic plankton image classification—Can capsules and filters help cope with data set shift?" Limnology and Oceanography: Methods 19, no. 3 (2021): 176–95. http://dx.doi.org/10.1002/lom3.10413.
Full textGonzález, Pablo, Alberto Castaño, Emily E. Peacock, Jorge Díez, Juan José Del Coz, and Heidi M. Sosik. "Automatic plankton quantification using deep features." Journal of Plankton Research 41, no. 4 (2019): 449–63. http://dx.doi.org/10.1093/plankt/fbz023.
Full textAxler, KE, S. Sponaugle, C. Briseño-Avena, et al. "Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem." Marine Ecology Progress Series 650 (September 17, 2020): 37–61. http://dx.doi.org/10.3354/meps13397.
Full textCampbell, R. W., P. L. Roberts, and J. Jaffe. "The Prince William Sound Plankton Camera: a profiling in situ observatory of plankton and particulates." ICES Journal of Marine Science 77, no. 4 (2020): 1440–55. http://dx.doi.org/10.1093/icesjms/fsaa029.
Full textMarchant, Ross, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron. "Automated analysis of foraminifera fossil records by image classification using a convolutional neural network." Journal of Micropalaeontology 39, no. 2 (2020): 183–202. http://dx.doi.org/10.5194/jm-39-183-2020.
Full textPereira, G. C., A. R. Figueiredo, and N. F. F. Ebecken. "Using in situ flow cytometry images of ciliates and dinoflagellates for aquatic system monitoring." Brazilian Journal of Biology 78, no. 2 (2017): 240–47. http://dx.doi.org/10.1590/1519-6984.05016.
Full textAlbertano, Patrizia, Daniela Di Somma, and Enrico Capucci. "Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy." Journal of Plankton Research 19, no. 10 (1997): 1405–16. http://dx.doi.org/10.1093/plankt/19.10.1405.
Full textJohansen, Thomas Haugland, and Steffen Aagaard Sørensen. "Towards detection and classification of microscopic foraminifera using transfer learning." Proceedings of the Northern Lights Deep Learning Workshop 1 (February 6, 2020): 6. http://dx.doi.org/10.7557/18.5144.
Full textTapics, Tara, Irene Gregory-Eaves, and Yannick Huot. "The private life of Cystodinium: in situ observation of its attachments and population dynamics." Journal of Plankton Research 43, no. 3 (2021): 492–96. http://dx.doi.org/10.1093/plankt/fbab025.
Full textHrycik, Allison R., Angela Shambaugh, and Jason D. Stockwell. "Comparison of FlowCAM and microscope biovolume measurements for a diverse freshwater phytoplankton community." Journal of Plankton Research 41, no. 6 (2019): 849–64. http://dx.doi.org/10.1093/plankt/fbz056.
Full textMacNeil, Liam, Sergey Missan, Junliang Luo, Thomas Trappenberg, and Julie LaRoche. "Plankton classification with high-throughput submersible holographic microscopy and transfer learning." BMC Ecology and Evolution 21, no. 1 (2021). http://dx.doi.org/10.1186/s12862-021-01839-0.
Full textZheng, Haiyong, Ruchen Wang, Zhibin Yu, Nan Wang, Zhaorui Gu, and Bing Zheng. "Automatic plankton image classification combining multiple view features via multiple kernel learning." BMC Bioinformatics 18, S16 (2017). http://dx.doi.org/10.1186/s12859-017-1954-8.
Full textIrisson, Jean-Olivier, Sakina-Dorothée Ayata, Dhugal J. Lindsay, Lee Karp-Boss, and Lars Stemmann. "Machine Learning for the Study of Plankton and Marine Snow from Images." Annual Review of Marine Science 14, no. 1 (2021). http://dx.doi.org/10.1146/annurev-marine-041921-013023.
Full textYunandar, Dini, HEFNI EFFENDI, WIDIATMAKA, and YUDI SETIAWAN. "Plankton biodiversity in various typologies of inundation in Paminggir peatland, South Kalimantan, Indonesia on dry season." Biodiversitas Journal of Biological Diversity 21, no. 3 (2020). http://dx.doi.org/10.13057/biodiv/d210322.
Full textMartin-Cabrera, Patricia, Fabien Lombard, Jean-Olivier Irisson, et al. "Coordinating Efforts to Define Marine Plankton Imagery Data and Metadata Best Practices and Standards." Biodiversity Information Science and Standards 4 (September 29, 2020). http://dx.doi.org/10.3897/biss.4.58932.
Full textNayak, Aditya R., Ed Malkiel, Malcolm N. McFarland, Michael S. Twardowski, and James M. Sullivan. "A Review of Holography in the Aquatic Sciences: In situ Characterization of Particles, Plankton, and Small Scale Biophysical Interactions." Frontiers in Marine Science 7 (January 22, 2021). http://dx.doi.org/10.3389/fmars.2020.572147.
Full textKaskes, Pim, Sietze J. de Graaff, Jean-Guillaume Feignon, et al. "Formation of the crater suevite sequence from the Chicxulub peak ring: A petrographic, geochemical, and sedimentological characterization." GSA Bulletin, July 9, 2021. http://dx.doi.org/10.1130/b36020.1.
Full text