Academic literature on the topic 'Plant adaptation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant adaptation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plant adaptation"
Rieseberg, Loren H., and Lexuan Gao. "Plant Evolutionary Adaptation." Plant Communications 1, no. 6 (November 2020): 100118. http://dx.doi.org/10.1016/j.xplc.2020.100118.
Full textMcKendry, Anne L. "Adaptation in Plant Breeding." Crop Science 38, no. 2 (March 1998): 530–31. http://dx.doi.org/10.2135/cropsci1998.0011183x003800020043x.
Full textPandey, Renu, Krishnapriya Vengavasi, and Malcolm J. Hawkesford. "Plant adaptation to nutrient stress." Plant Physiology Reports 26, no. 4 (November 19, 2021): 583–86. http://dx.doi.org/10.1007/s40502-021-00636-7.
Full textChupakhina, G. N., and P. V. Maslennikov. "Plant Adaptation to Oil Stress." Russian Journal of Ecology 35, no. 5 (September 2004): 290–95. http://dx.doi.org/10.1023/b:ruse.0000040681.75339.59.
Full textBasu, Supratim, Venkategowda Ramegowda, Anuj Kumar, and Andy Pereira. "Plant adaptation to drought stress." F1000Research 5 (June 30, 2016): 1554. http://dx.doi.org/10.12688/f1000research.7678.1.
Full textKörner, Christian. "Plant adaptation to cold climates." F1000Research 5 (November 25, 2016): 2769. http://dx.doi.org/10.12688/f1000research.9107.1.
Full textSULTAN, S. E. "Phenotypic plasticity and plant adaptation*." Acta Botanica Neerlandica 44, no. 4 (December 1995): 363–83. http://dx.doi.org/10.1111/j.1438-8677.1995.tb00793.x.
Full textMelnyk, Ryan A., and Cara H. Haney. "Bacterial genomics of plant adaptation." Nature Genetics 50, no. 1 (December 22, 2017): 2–4. http://dx.doi.org/10.1038/s41588-017-0019-2.
Full textAnderson, Jill T., John H. Willis, and Thomas Mitchell-Olds. "Evolutionary genetics of plant adaptation." Trends in Genetics 27, no. 7 (July 2011): 258–66. http://dx.doi.org/10.1016/j.tig.2011.04.001.
Full textBertrand, Annick, and Yves Castonguay. "Plant adaptations to overwintering stresses and implications of climate change." Canadian Journal of Botany 81, no. 12 (December 1, 2003): 1145–52. http://dx.doi.org/10.1139/b03-129.
Full textDissertations / Theses on the topic "Plant adaptation"
Tsuji, Kaoru. "Sexual difference in plant defenses and herbivore adaptation." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157819.
Full textBolmgren, Kjell. "Adaptation and Constraint in the Plant Reproductive Phase." Doctoral thesis, Stockholm : Botaniska institutionen, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-99.
Full textBourne, Elizabeth Charlotte. "Plant local adaptation and environmental change : patterns, processes and impacts." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=166030.
Full textWatson-Lazowski, Alexander. "Evidence for plant adaptation to a future high CO2 world." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/381161/.
Full textMaher, Keri Renee. "A geographically constrained molecular phylogeny of Panamanian Aechmea species (Bromeliaceae, subfamily bromelioideae)." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3280.
Full textNapier, James Alexander. "Variation and adaptation in Allium ursinum L." Thesis, University of Ulster, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242062.
Full textPescott, Oliver. "The genetics of host adaptation in the parasitic plant Striga hermonthica." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/3979/.
Full textVisioni, Andrea. "Barley adaptation to stress prone environments." Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/121581.
Full textEls assajos en localitats múltiplas de poblacions de mapeo s'utilitzen freqüentment per a testar genotips en un conjunt d'ambients representatius de la condicions climàtiques on es volen introduir aquests genotips. La primera part d'això treball ha estat l'avaluació de la població de mapeo ‘Nure x Tremois’ constituïda de 118 de doble haploides d'ordi, juntament amb panell d'associació que comprèn 185 varietats d'ordi representatives del germoplasma conreat en la conca Mediterrània. El material vegetal ha estat assajat en una combinació de divuit camps per any desllorigats en sis països de la conca mediterrània. Els assajos s'han portat a terme en camps amb diferent disponibilitat d'aigua, classificats sobre la base de les dades relatives a les freqüència i quantitat de les precipitacions o en el mateix lloc amb un camp en secà i altre regat. Els assajos es van portar a terme per dos anys en cada localitat i això va permetre la recollida d'un gran volum de dades que comprenen caràcters agronómicos relacionats amb rendiment i components del rendiment, dades fenológicos i ambientals. Aquestes dades es van utilitzar després per a la identificació de regions genomicas involucrades en l'adaptació de l'ordi a l'ambient. Els 118 dobles haploides de la població ‘Nure x Tremois’ es genotiparon amb marcadors DaRT (Diversity Array Technology), després un set de 15 marcadors CAPS I SCCP per a gens candidats involucrats en la regulació de les fases fenológicas van ser afegits al mapa de lligament construït amb els marcadors DaRT. Les dades van ser utilitzats per a fer una anàlisi de QTL amb procediment ‘Composite Interval Mapping’ para cada combinació ambienti/ caràcter. Es van trobar diversos QTLs per rendiment i data d'espigolat i components del rendiment. Els QTL mes freqüents trobats per rendiment i data de floració i components del rendiment estan localitzats en els cromosomes 1H (3 camps), 2H (8 camps) i 5H (5 camps) coincidents respectivament amb HvFT3 locus, eam6/Eps-‐2 (earliness per se) locus i amb el locus de vernalización Vrn-‐H1. Una ulterior anàlisi de QTL feta amb el mètode “Multi Environment Trial” ha revelat que els QTL localitzats en el locus eam6/Eps-‐2 (cromosoma 2H) i Vrn-‐H1 (cromosoma 5H) són comunes per rendiment i data de floració en els 18 camps d'assaig. Per això utilitzem tots el dades ambientals col·leccionades durant tot el cicle del cultiu per a investigar la sensibilitat de dites QTL a les co-‐variables ambientals. La majoria de les associacions oposades estan relacionades amb temperatures i variables relacionades amb aquestes. Eam6/Eps-‐2 mostra una interacció de tipus quantitatiu amb aquestes variables mentre Vrn-‐H1 mostra una interacció de tipus qualitatiu amb aquestes variables. Les 185 varietats assajades van ser genotipadas amb 185 SNPs i fenotipadas per resistència a fred en dos assajos uneixo a Espanya i altre a Itàlia. El primer assaig va ser caracteritzat per un hivern excepcionalment fred, mentre el d'Itàlia ha estat utilitzat en passat per testar resistència a fred a causa de els hiverns rígids que solen registrar-‐se en aquesta localitat. Les dades van ser utilitzats per a portar a terme la analisis GWAS “Genome Wide Association Analysis” . Els resultats van permetre identificar 13 regions genomicas involucrades en la resistència a frio. Entre elles tres regions coincideixen amb loci ja mapeados i coneguts per ser involucrats en la resposta a frio en los cromosomes 2HL, 4HL i 5HL.
Los ensayos en localidades múltiplas de poblaciones de mapeo se utilizan frecuentemente para testar genotipos en un conjunto de ambientes representativos de la condiciones climáticas donde se quieren introducir dichos genotipos. La primera parte de esto trabajo ha sido la evaluación de la población de mapeo ‘Nure x Tremois’ constituida de 118 de doble haploides de cebada, junto con panel de asociación que comprende 185 variedades de cebada representativas del germoplasma cultivado en la cuenca Mediterránea. El material vegetal ha sido ensayado en una combinación de dieciocho campos por año dislocados en seis países de la cuenca mediterránea. Los ensayos se han llevado a cabo en campos con diferente disponibilidad de agua, clasificados en base a los datos relativos a las frecuencia y cantidad de las precipitaciones o en el mismo sitio con un campo en secano y otro regado. Los ensayos se llevaron a cabo por dos años en cada localidad y esto permitió la recogida de un gran volumen de datos que comprenden caracteres agronómicos relacionados con rendimiento y componentes del rendimiento, datos fenológicos y ambientales. Dichos datos se utilizaron después para la identificación de regiones genomicas involucradas en la adaptación de la cebada al ambiente. Los 118 dobles haploides de la población ‘Nure x Tremois’ se genotiparon con marcadores DaRT (Diversity Array Technology), después un set de 15 marcadores CAPS Y SCCP para genes candidatos involucrados en la regulación de las fases fenológicas fueron añadidos al mapa de ligamento construido con los marcadores DaRT. Los datos fueron utilizados para hacer una análisis de QTL con procedimiento ‘Composite Interval Mapping’ para cada combinación ambiente/ carácter. Se encontraron varios QTLs por rendimiento y fecha de espigado y componentes del rendimiento. Los QTL mas frecuentes encontrados por rendimiento y fecha de floración y componentes del rendimiento están localizados en los cromosomas 1H (3 campos), 2H (8 campos) y 5H(5 campos) coincidentes respectivamente con HvFT3 locus, eam6/Eps-‐2 (earliness per se) locus y con el locus de vernalización Vrn-‐H1. Una ulterior análisis de QTL hecha con el método “Multi Environment Trial” ha revelado que los QTL localizados en el locus eam6/Eps-‐2 (cromosoma 2H) y Vrn-‐H1 (cromosoma 5H) son comunes por rendimiento y fecha de floración en los 18 campos de ensayo. Por esto utilizamos todos lo datos ambientales coleccionadas durante todo el ciclo del cultivo para investigar la sensibilidad de dichos QTL a las co-‐variables ambientales. La mayoría de las asociaciones encontradas están relacionadas con temperaturas y variables relacionadas con estas. Eam6/Eps-‐2 muestra una interacción de tipo cuantitativo con dichas variables mientras Vrn-‐H1 muestra una interacción de tipo cualitativo con dichas variables. Las 185 variedades ensayadas fueron genotipadas con 185 SNPs y fenotipadas por resistencia a frío en dos ensayos uno en España y otro en Italia. El primer ensayo fue caracterizado por un invierno excepcionalmente frío, mientras el de Italia ha sido utilizado en pasado por testar resistencia a frío debido a los inviernos rígidos que suelen registrarse en dicha localidad. Los datos fueron utilizados para llevar a cabo la analisis GWAS “Genome Wide Association Analysis”. Los resultados permitieron identificar 13 regiones genomicas involucradas en la resistencia a frio. Entre ellas tres regiones coinciden con loci ya mapeados y conocidos por ser involucrados en la respuesta a frio en los cromosomas 2HL, 4HL y 5HL.
Perera, Nicola Krystyna. "An investigation of local adaptation in the model plant species Arabidopsis thaliana." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/30212.
Full textBernau, Vivian Marie. "Exploring Local Adaptation and Drought Tolerance in Chile Peppers (Capsicum spp.) of southern Mexico." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1546519028733692.
Full textBooks on the topic "Plant adaptation"
Tigerstedt, Peter M. A., ed. Adaptation in Plant Breeding. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8806-5.
Full textAshraf, M., M. Ozturk, and M. S. A. Ahmad, eds. Plant Adaptation and Phytoremediation. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7.
Full textM, Cooper, Hammer G. L, C. A. B. International, International Rice Research Institute, International Crops Research Institute for the Semi-arid Tropics., and International Workshop on the Analysis and Exploitation of Plant Adaptation in Agricultural Crop Improvement Programs (1994 : ICRISAT Asia Centre), eds. Plant adaptation and crop improvement. Wallingford, Oxon, UK: CAB International in association with the International Rice Institute and the International Crops Research Institute for the Semi-arid Crops, 1996.
Find full textLaitinen, Roosa A. E., ed. Molecular Mechanisms in Plant Adaptation. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118860526.
Full textNinja plants: Survival and adaptation in the plant world. Minneapolis: Twenty-First Century Books, 2016.
Find full textShukla, Vertika, Sanjeev Kumar, and Narendra Kumar, eds. Plant Adaptation Strategies in Changing Environment. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6744-0.
Full textJ, Hawkesford Malcolm, and Buchner Peter, eds. Molecular analysis of plant adaptation to the environment. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.
Find full textBrasch, Nicolas. Animal and plant survival. Mankato, Minn: Smart Apple Media, 2011.
Find full textStudies in plant survival: Ecological case histories of plant adaptation to adversity. Oxford: Blackwell Scientific Publications, 1989.
Find full textBook chapters on the topic "Plant adaptation"
Lack, Andrew, and David Evans. "Stress avoidance and adaptation." In Plant Biology, 158–62. 2nd ed. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-49.
Full textOsawaru, Moses Edwin, and Matthew Chidozie Ogwu. "Plants and Plant Products in Local Markets Within Benin City and Environs." In African Handbook of Climate Change Adaptation, 315–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_159.
Full textRomagosa, I., and P. N. Fox. "Genotype × environment interaction and adaptation." In Plant Breeding, 373–90. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1524-7_23.
Full textBell, E. A. "Plant-Plant Interactions." In Ciba Foundation Symposium 102 - Origins and Development of Adaptation, 40–51. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720837.ch4.
Full textSopory, Sudhir, and Charanpreet Kaur. "Plant Diversity and Adaptation." In Sensory Biology of Plants, 1–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8922-1_1.
Full textAshraf, Muhammad, Munir Ozturk, and Muhammad Sajid Aqeel Ahmad. "Toxins and Their Phytoremediation." In Plant Adaptation and Phytoremediation, 1–32. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7_1.
Full textDe Filippis, L. F. "Biochemical and Molecular Aspects in Phytoremediation of Selenium." In Plant Adaptation and Phytoremediation, 193–226. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7_10.
Full textShao, Hong-Bo, Li-Ye Chu, Fu-Tai Ni, Dong-Gang Guo, Hua Li, and Wei-Xiang Li. "Perspective on Phytoremediation for Improving Heavy Metal-Contaminated Soils." In Plant Adaptation and Phytoremediation, 227–44. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7_11.
Full textToderich, K. N., E. V. Shuyskaya, T. M. Khujanazarov, Shoaib Ismail, and Yoshiko Kawabata. "The Structural and Functional Characteristics of Asiatic Desert Halophytes for Phytostabilization of Polluted Sites." In Plant Adaptation and Phytoremediation, 245–74. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7_12.
Full textOzturk, Munir, Serdal Sakcali, Salih Gucel, and Huseyin Tombuloglu. "Boron and Plants." In Plant Adaptation and Phytoremediation, 275–311. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9370-7_13.
Full textConference papers on the topic "Plant adaptation"
Nakayasu, Akira, and Kiyoshi Tomimatsu. "Himawari plant robot." In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies: Adaptation. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665137.1665191.
Full textMoshkov, I. E. "Adaptation of cold-resistant plants to hypothermia." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future. Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-295.
Full textAzarkovich, M. I. "Orthodox and recalcitrant seeds - two adaptation strategies." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-36.
Full textMaximov, T. H., and A. P. Maximov. "Production process and adaptation of cryolithozone ecosystems inchanging climate." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-274.
Full textDemetri, Kathyrn J., Terry L. Schulz, and Bryan N. Friedman. "AP1000® Plant Adaptation To European Markets." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-31057.
Full textBelimov, A. A., M. A. Vishnyakova, A. I. Shaposhnikov, T. S. Azarova, N. M. Makarova, E. A. Sexte, E. V. Semenova, I. A. Kosareva, and V. I. Safronova. "The relationship of plant adaptation mechanisms to toxic metals and integration withsymbiotic microorganisms." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-63.
Full textStinziano, Joseph. "The Sphagnum magellanicum complex exhibits minimal local adaptation of photosynthesis across a 3,000 km transect." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053046.
Full text"Differential gene expression in Lavandula angustifolia Mill. under adaptation ex vitro." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-207.
Full text"Determining Adaptability Factor in Modern Controlled Plant Production Systems." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152108109.
Full text"Epigenetic mechanism of wheat adaptation on a response to the abiotic stress." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-134.
Full textReports on the topic "Plant adaptation"
Christopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Full textSamach, Alon, Douglas Cook, and Jaime Kigel. Molecular mechanisms of plant reproductive adaptation to aridity gradients. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7696513.bard.
Full textOrebaugh, E. Adaptation of U(IV) reductant to Savannah River Plant Purex processes. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5620962.
Full textSavaldi-Goldstein, Sigal, and Siobhan M. Brady. Mechanisms underlying root system architecture adaptation to low phosphate environment. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600024.bard.
Full textMaston, V. A. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/670180.
Full textAbbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg, and George J. Vandemark. Winter chickpea; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7597909.bard.
Full textБєлик, Юлія Вільєвна, Василь Миколайович Савосько, and Юрій Вікторович Лихолат. Taxonomic Composition and Synanthropic Characteristic of Woody Plant Community on Petrovsky Waste Rock Dumps (Kryvorizhzhya). КДПУ, 2019. http://dx.doi.org/10.31812/123456789/3640.
Full textChen, Junping, Zach Adam, and Arie Admon. The Role of FtsH11 Protease in Chloroplast Biogenesis and Maintenance at Elevated Temperatures in Model and Crop Plants. United States Department of Agriculture, May 2013. http://dx.doi.org/10.32747/2013.7699845.bard.
Full textFreeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra, and Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Full textUS ARMY CORPS OF ENGINEERS. Climate Change Adaptation Plan. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada617444.
Full text