To see the other types of publications on this topic, follow the link: Plant molecular genetics.

Journal articles on the topic 'Plant molecular genetics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Plant molecular genetics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pánková, K. "Stephen H. Howell – Molecular Genetics of Plant Development." Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (August 1, 2012): 135–36. http://dx.doi.org/10.17221/6250-cjgpb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gold, Scott. "Plant molecular genetics." Crop Protection 16, no. 5 (August 1997): 491. http://dx.doi.org/10.1016/s0261-2194(97)84559-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meinke, D. W. "Molecular Genetics of Plant Embryogenesis." Annual Review of Plant Physiology and Plant Molecular Biology 46, no. 1 (June 1995): 369–94. http://dx.doi.org/10.1146/annurev.pp.46.060195.002101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cortés, Andrés J., and Hai Du. "Molecular Genetics Enhances Plant Breeding." International Journal of Molecular Sciences 24, no. 12 (June 9, 2023): 9977. http://dx.doi.org/10.3390/ijms24129977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watanabe, K. N., and J. A. Watanabe. "Genetic Diversity and Molecular Genetics of Ornamental Plant Species." Biotechnology & Biotechnological Equipment 14, no. 2 (January 2000): 19–21. http://dx.doi.org/10.1080/13102818.2000.10819081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Staskawicz, B., F. Ausubel, B. Baker, J. Ellis, and J. Jones. "Molecular genetics of plant disease resistance." Science 268, no. 5211 (May 5, 1995): 661–67. http://dx.doi.org/10.1126/science.7732374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meyerowitz, E. M., and R. E. Pruitt. "Arabidopsis thaliana and Plant Molecular Genetics." Science 229, no. 4719 (September 20, 1985): 1214–18. http://dx.doi.org/10.1126/science.229.4719.1214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hightower, Robin C., and Richard B. Meagher. "THE MOLECULAR EVOLUTION OF ACTIN." Genetics 114, no. 1 (September 1, 1986): 315–32. http://dx.doi.org/10.1093/genetics/114.1.315.

Full text
Abstract:
ABSTRACT We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3-7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11-15% replacem
APA, Harvard, Vancouver, ISO, and other styles
9

Paolis, Angelo, Giovanna Frugis, Donato Giannino, Maria Iannelli, Giovanni Mele, Eddo Rugini, Cristian Silvestri, et al. "Plant Cellular and Molecular Biotechnology: Following Mariotti’s Steps." Plants 8, no. 1 (January 10, 2019): 18. http://dx.doi.org/10.3390/plants8010018.

Full text
Abstract:
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gai
APA, Harvard, Vancouver, ISO, and other styles
10

Motley, Timothy J. "Molecular Markers in Plant Genetics and Biotechnology." Brittonia 56, no. 3 (August 2004): 294. http://dx.doi.org/10.1663/0007-196x(2004)056[0294:br]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Raikhel, Natasha V., and Robert L. Last. "The Wide World of Plant Molecular Genetics." Plant Cell 5, no. 8 (August 1993): 823. http://dx.doi.org/10.2307/3869651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lexer, Christian, and Dominique de Veinne. "Molecular Markers in Plant Genetics and Biotechnology." Kew Bulletin 59, no. 2 (2004): 334. http://dx.doi.org/10.2307/4115880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Raikhel, N. V., and R. L. Last. "The Wide World of Plant Molecular Genetics." Plant Cell 5, no. 8 (August 1, 1993): 823–30. http://dx.doi.org/10.1105/tpc.5.8.823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Oh, Jung-Kyun, Je-Chang Woo, and Nam-Soo Kim. "Meeting report: plant genetics and molecular biology." Genes & Genomics 36, no. 2 (February 28, 2014): 125–27. http://dx.doi.org/10.1007/s13258-014-0179-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Suzuki, Masashi, and Toshiya Muranaka. "Molecular Genetics of Plant Sterol Backbone Synthesis." Lipids 42, no. 1 (December 19, 2006): 47–54. http://dx.doi.org/10.1007/s11745-006-1000-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

WANG, Yun-Sheng. "Recent progress in plant molecular population genetics." HEREDITAS 29, no. 10 (2007): 1191. http://dx.doi.org/10.1360/yc-007-1191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Purugganan, M. D., and S. R. Wessler. "Molecular evolution of the plant R regulatory gene family." Genetics 138, no. 3 (November 1, 1994): 849–54. http://dx.doi.org/10.1093/genetics/138.3.849.

Full text
Abstract:
Abstract Anthocyanin pigmentation patterns in different plant species are controlled in part by members of the myc-like R regulatory gene family. We have examined the molecular evolution of this gene family in seven plant species. Three regions of the R protein show sequence conservation between monocot and dicot R genes. These regions encode the basic helix-loop-helix domain, as well as conserved N-terminal and C-terminal domains; mean replacement rates for these conserved regions are 1.02 x 10(-9) nonsynonymous nucleotide substitutions per site per year. More than one-half of the protein, ho
APA, Harvard, Vancouver, ISO, and other styles
18

Bennett, J. W. "From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics." Canadian Journal of Botany 73, S1 (December 31, 1995): 917–24. http://dx.doi.org/10.1139/b95-339.

Full text
Abstract:
Secondary metabolites constitute a huge array of low molecular weight natural products that cannot be easily defined. Largely produced by bacteria, fungi, and green plants, they tend to be synthesized after active growth has ceased, in families of similar compounds, often at the same time as species-specific morphological characters become apparent. Although, in many cases, the function that the secondary metabolite performs in the producing organism is unknown, the bioactivity of these compounds has been exploited since prehistoric times as drugs, poisons, food flavoring agents, and so forth.
APA, Harvard, Vancouver, ISO, and other styles
19

Koornneef, Maarten. "A Central Role for Genetics in Plant Biology." Annual Review of Plant Biology 72, no. 1 (June 17, 2021): 1–16. http://dx.doi.org/10.1146/annurev-arplant-071720-111039.

Full text
Abstract:
This article describes my involvement in the development of genetics as an essential tool in the integrated study of plant biology. My research comes from a strong background in plant genetics based on my education as a plant breeder at Wageningen University and collaborations with plant physiologists and molecular geneticists in Wageningen and the wider scientific community. It initially involved the isolation and physiological characterization of mutants defective in biosynthesis or mode of action of plant hormones, photoreceptors and traits such as flowering time in both Arabidopsis and tom
APA, Harvard, Vancouver, ISO, and other styles
20

Xuan, Zhou, Zheng Hong Li, Cheng Zhang, Hong Dao Zhang, Ji Lin Li, and Yan Ming Zhang. "An Application of Molecular Tools in Plant Genetic Diversity Conservation." Advanced Materials Research 955-959 (June 2014): 830–33. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.830.

Full text
Abstract:
The conservation and use of plant genetic diversity are essential to the continued maintenance and improvement of agricultural and forestry production and thus, to sustainable development and poverty alleviation. The dramatic advances in molecular genetics over the last decade years have provided workers involved in the conservation of plant genetic diversity with a range of new techniques. Molecular tools, such as molecular markers and other genomic applications, have been highly successful in characterizing existing genetic variation within species, which generates new genetic diversity that
APA, Harvard, Vancouver, ISO, and other styles
21

Trapp, Susan C., and Rodney B. Croteau. "Genomic Organization of Plant Terpene Synthases and Molecular Evolutionary Implications." Genetics 158, no. 2 (June 1, 2001): 811–32. http://dx.doi.org/10.1093/genetics/158.2.811.

Full text
Abstract:
Abstract Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C10), sesquiterpene (C15), and diterpene synthases (C20). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and seco
APA, Harvard, Vancouver, ISO, and other styles
22

Reski, Ralf. "Molecular genetics of Physcomitrella." Planta 208, no. 3 (May 17, 1999): 301–9. http://dx.doi.org/10.1007/s004250050563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dey, T., and P. D. Ghosh. "Application of molecular markers in plant genome study." NBU Journal of Plant Sciences 4, no. 1 (2010): 1–9. http://dx.doi.org/10.55734/nbujps.2010.v04i01.001.

Full text
Abstract:
The development of molecular techniques for genetic analysis has led to a great increase in our knowledge of plant genetics and our understanding of the structure and behaviour of plant genome. During last three decades, several powerful DNA based marker technologies have been developed for the assessment of genetic diversities and molecular marker assisted breeding technology. In plant systems, the prospects of DNA profiling and fingerprinting is becoming indispensable in the context of establishment of molecular phylogeny, assessment of somaclonal variants, characterization of plant genomics
APA, Harvard, Vancouver, ISO, and other styles
24

Dey, T., and P. D. Ghosh. "Application of molecular markers in plant genome study." NBU Journal of Plant Sciences 4, no. 1 (2010): 1–9. http://dx.doi.org/10.55734/nbujps.2010.v04i01.001.

Full text
Abstract:
The development of molecular techniques for genetic analysis has led to a great increase in our knowledge of plant genetics and our understanding of the structure and behaviour of plant genome. During last three decades, several powerful DNA based marker technologies have been developed for the assessment of genetic diversities and molecular marker assisted breeding technology. In plant systems, the prospects of DNA profiling and fingerprinting is becoming indispensable in the context of establishment of molecular phylogeny, assessment of somaclonal variants, characterization of plant genomics
APA, Harvard, Vancouver, ISO, and other styles
25

Zambelli, A. "THE IMPACT OF MOLECULAR GENETICS IN PLANT BREEDING: REALITIES AND PERSPECTIVES." Journal of Basic and Applied Genetics 30, no. 1 (July 2019): 11–15. http://dx.doi.org/10.35407/bag.2019.xxx.01.02.

Full text
Abstract:
Even when conventional breeding was effective in achieving a continuous improvement in yield, Molecular Genetics tools applied in plant breeding contributed to maximize genetic gain. Thus, the use of DNA technology applied in agronomic improvement gave rise to Molecular Breeding, discipline which groups the different breeding strategies where genotypic selection, based on DNA markers, are used in combination with or in replacement of phenotypic selection. These strategies can be listed as: marker-assisted selection; marker-assisted backcrossing; marker assisted recurrent selection; and genomic
APA, Harvard, Vancouver, ISO, and other styles
26

Smith, Alison G. "Plant molecular biology (2nd edn)." Trends in Genetics 5 (1989): 316. http://dx.doi.org/10.1016/0168-9525(89)90115-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sivolap, Yu M. "Molecular markers and plant breeding." Cytology and Genetics 47, no. 3 (May 2013): 188–95. http://dx.doi.org/10.3103/s0095452713030080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ecker, Joseph R., and Doug Cook. "Genome studies and molecular genetics." Current Opinion in Plant Biology 7, no. 2 (April 2004): 99–101. http://dx.doi.org/10.1016/j.pbi.2004.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wessler, Susan R. "Genome studies and molecular genetics." Current Opinion in Plant Biology 9, no. 2 (April 2006): 147–48. http://dx.doi.org/10.1016/j.pbi.2006.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sasaki, Takuji, and Ronald R. Sederoff. "Genome studies and molecular genetics." Current Opinion in Plant Biology 6, no. 2 (April 2003): 97–100. http://dx.doi.org/10.1016/s1369-5266(03)00018-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ruggiero, Alessandra, Paola Punzo, Simone Landi, Antonello Costa, Michael Van Oosten, and Stefania Grillo. "Improving Plant Water Use Efficiency through Molecular Genetics." Horticulturae 3, no. 2 (May 3, 2017): 31. http://dx.doi.org/10.3390/horticulturae3020031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Young, J. P. W. "Book review: Molecular Genetics of Plant-Microbe Interactions." Outlook on Agriculture 16, no. 3 (September 1987): 148–49. http://dx.doi.org/10.1177/003072708701600325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pogson, Barry. "Molecular Genetics of Plant Development. Stephen H. Howell." Quarterly Review of Biology 74, no. 4 (December 1999): 476. http://dx.doi.org/10.1086/394163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kerr, A. "The Impact of Molecular Genetics on Plant Pathology." Annual Review of Phytopathology 25, no. 1 (September 1987): 87–110. http://dx.doi.org/10.1146/annurev.py.25.090187.000511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Otten, L. "Regional Meeting on Plant Molecular Genetics at Freiburg." Plant Molecular Biology Reporter 7, no. 4 (November 1989): 303. http://dx.doi.org/10.1007/bf02668641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pourmohammad, Alireza. "Application of molecular markers in medicinal plant studies." Acta Universitatis Sapientiae, Agriculture and Environment 5, no. 1 (December 1, 2013): 80–90. http://dx.doi.org/10.2478/ausae-2014-0006.

Full text
Abstract:
Abstract The World Health Organization has estimated that more than 80% of the world’s population in developing countries depends primarily on herbal medicine for basic healthcare needs. Approximately two thirds of the 50 000 different medicinal plant species in use are collected from the wild and only 10% of medicinal species used commercially are cultivated. DNA-based molecular markers have utility in the fields like taxonomy, physiology, embryology, genetics, etc. DNA-based techniques have been widely used for authentication of plant species of medicinal importance. The geographical conditi
APA, Harvard, Vancouver, ISO, and other styles
37

Sharma, Suman, Anil Khar, Jiffinvir S. Khosa, Subhankar Mandal, and Subas Malla. "Recent Advances in Molecular Genetics of Onion." Horticulturae 10, no. 3 (March 7, 2024): 256. http://dx.doi.org/10.3390/horticulturae10030256.

Full text
Abstract:
Onion is an important vegetable crop because it adds nutritional value and diversity to food preparation. Understanding recent advancements in onion molecular genetics is essential to improve production, quality, and disease resistance. Cutting-edge genomic technologies like genetic mapping and RNA sequencing reveal important genes and pathways. The review examines the progress in utilizing various molecular markers to study genetic divergence. The exploration extends to understanding the genes and pathways responsible for bulb color and chemical composition and the genetic factors influencing
APA, Harvard, Vancouver, ISO, and other styles
38

Xuan, Zhou, Hong Dao Zhang, Zheng Hong Li, Cheng Zhang, Ji Lin Li, and Yan Ming Zhang. "The Role of Molecular Marker in Development of Plant Genetic Resources." Advanced Materials Research 955-959 (June 2014): 855–58. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.855.

Full text
Abstract:
Plants are fundamental to life, being the basis of our food production and an essential part of the global ecosystem on which life on earth depends. Plant genetic resources include primitive forms of cultivated plant species and landraces, modern cultivars, breeding lines and genetic stocks, weedy types and related wild species, which provide the building blocks that, allow classical plant breeders and biotechnologists to develop new commercial varieties and other biological products. Detection and analysis of genetic variation can help us to understand the molecular basis of various biologica
APA, Harvard, Vancouver, ISO, and other styles
39

Curnow, R. N., A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir. "Plant Population Genetics, Breeding, and Genetic Resources." Biometrics 46, no. 4 (December 1990): 1241. http://dx.doi.org/10.2307/2532478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chappell, Joe. "The genetics and molecular genetics of terpene and sterol origami." Current Opinion in Plant Biology 5, no. 2 (April 2002): 151–57. http://dx.doi.org/10.1016/s1369-5266(02)00241-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rasmussen, Søren K. "Molecular Genetics, Genomics, and Biotechnology in Crop Plant Breeding." Agronomy 10, no. 3 (March 23, 2020): 439. http://dx.doi.org/10.3390/agronomy10030439.

Full text
Abstract:
A diverse set of molecular markers techniques have been developed over the last almost 40 years and used with success for breeding a number of major crops. These have been narrowed down to a few preferred DNA based marker types, and emphasis is now on adapting the technologies to a wide range of crop plants and trees. In this Special Issue, the strength of molecular breeding is revealed through research and review papers that use a combination of molecular markers with other classic breeding techniques to obtain quality improvement of the crop. The constant improvement and maintenance of quali
APA, Harvard, Vancouver, ISO, and other styles
42

Altmann, Thomas. "Recent advances in brassinosteroid molecular genetics." Current Opinion in Plant Biology 1, no. 5 (October 1998): 378–83. http://dx.doi.org/10.1016/s1369-5266(98)80259-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lemieux, Bertrand. "Molecular genetics of epicuticular wax biosynthesis." Trends in Plant Science 1, no. 9 (September 1996): 312–18. http://dx.doi.org/10.1016/s1360-1385(96)88178-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Flavell, Richard B., and John W. Snape. "Michael Denis Gale. 25 August 1943—18 July 2009." Biographical Memoirs of Fellows of the Royal Society 69 (August 26, 2020): 203–23. http://dx.doi.org/10.1098/rsbm.2020.0011.

Full text
Abstract:
Michael (Mike) Gale was an internationally well-known crop geneticist with a career devoted mostly to wheat genetics. However, he also studied rice, maize, pearl millet and fox millet for the benefit of agriculture in developing countries. He brought new knowledge and techniques into plant breeding that made a difference to crop improvement worldwide. Noteworthy is his team's leadership in (i) defining the genetic basis of dwarfism in wheat, the major genetic innovation underlying the previously achieved ‘green revolution’ in wheat production; (ii) expanding knowledge of ‘pre-harvest sprouting
APA, Harvard, Vancouver, ISO, and other styles
45

Klee, Harry J. "Plant molecular biology, a practical approach." Trends in Genetics 5 (1989): 351. http://dx.doi.org/10.1016/0168-9525(89)90145-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Alfenito, M. R., and J. A. Birchler. "Molecular characterization of a maize B chromosome centric sequence." Genetics 135, no. 2 (October 1, 1993): 589–97. http://dx.doi.org/10.1093/genetics/135.2.589.

Full text
Abstract:
Abstract Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analy
APA, Harvard, Vancouver, ISO, and other styles
47

Kang, Kwon-Kyoo, and Yong-Gu Cho. "Genetic Research and Plant Breeding." Genes 14, no. 1 (December 23, 2022): 51. http://dx.doi.org/10.3390/genes14010051.

Full text
Abstract:
In the past 20 years, plant genetics and breeding research using molecular biology has been greatly improved via the functional analysis of genes, species identification and transformation techniques [...]
APA, Harvard, Vancouver, ISO, and other styles
48

Debener, T. "MOLECULAR MARKERS FOR ORNAMENTAL PLANT GENETICS, GENOMICS AND BREEDING." Acta Horticulturae, no. 953 (September 2012): 193–200. http://dx.doi.org/10.17660/actahortic.2012.953.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dixon, David, and Tony Fordham-Skelton. "Genome studies and molecular genetics plant biotechnology web alert." Current Opinion in Plant Biology 1, no. 2 (April 1998): 99–100. http://dx.doi.org/10.1016/s1369-5266(98)80008-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Perrin, R. "Genome studies and molecular genetics/Plant biotechnology web alert." Current Opinion in Plant Biology 4, no. 2 (April 1, 2001): 101–2. http://dx.doi.org/10.1016/s1369-5266(00)00142-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!