Academic literature on the topic 'Plant stem cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant stem cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plant stem cells"
Voronina, A. S., and E. S. Pshennikova. "Plant Stem Cells." Molecular Biology 54, no. 2 (March 2020): 163–77. http://dx.doi.org/10.1134/s002689332002017x.
Full textGreb, Thomas, and Jan U. Lohmann. "Plant Stem Cells." Current Biology 26, no. 17 (September 2016): R816—R821. http://dx.doi.org/10.1016/j.cub.2016.07.070.
Full textPerez-Garcia, Pablo, and Miguel A. Moreno-Risueno. "Stem cells and plant regeneration." Developmental Biology 442, no. 1 (October 2018): 3–12. http://dx.doi.org/10.1016/j.ydbio.2018.06.021.
Full textSang, Ya Lin, Zhi Juan Cheng, and Xian Sheng Zhang. "Plant stem cells andde novoorganogenesis." New Phytologist 218, no. 4 (March 25, 2018): 1334–39. http://dx.doi.org/10.1111/nph.15106.
Full textDodueva, I. E., V. E. Tvorogova, M. Azarakhsh, M. A. Lebedeva, and L. A. Lutova. "Plant stem cells: unity and diversity." Vavilov Journal of Genetics and Breeding 20, no. 4 (January 1, 2016): 441–58. http://dx.doi.org/10.18699/vj16.172.
Full textDodueva, I. E., V. E. Tvorogova, M. Azarakhsh, M. A. Lebedeva, and L. A. Lutova. "Plant stem cells: Unity and diversity." Russian Journal of Genetics: Applied Research 7, no. 4 (June 2017): 385–403. http://dx.doi.org/10.1134/s2079059717040025.
Full textScheres, Ben. "Stem Cells: A Plant Biology Perspective." Cell 122, no. 4 (August 2005): 499–504. http://dx.doi.org/10.1016/j.cell.2005.08.006.
Full textWu, Haijun, Xiaoya Qu, Zhicheng Dong, Linjie Luo, Chen Shao, Joachim Forner, Jan U. Lohmann, et al. "WUSCHEL triggers innate antiviral immunity in plant stem cells." Science 370, no. 6513 (October 8, 2020): 227–31. http://dx.doi.org/10.1126/science.abb7360.
Full textG, Subramanyam, Himakar Reddy K, and Mahaboob V. Shaik. "Mobilization of Stem Cells Using Plant Extracts." Stem Cell & Regenerative Medicine 2, no. 2 (December 30, 2018): 1–4. http://dx.doi.org/10.33425/2639-9512.1030.
Full textSingh, Mohan B., and Prem L. Bhalla. "Plant stem cells carve their own niche." Trends in Plant Science 11, no. 5 (May 2006): 241–46. http://dx.doi.org/10.1016/j.tplants.2006.03.004.
Full textDissertations / Theses on the topic "Plant stem cells"
Haleux, Pauline. "DNA damage responses in plant stem cells." Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/52055/.
Full textBosch, Nadja. "Brassinosteroid regulation of plant stem cells: the bravo pathway." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671664.
Full textLa presente tesis doctoral describe la configuración del complejo proteico de BRAVO en el nicho de células madre de Arabidopsis. También demuestra que BRAVO-WOX5-BES1 forman parte de una red organizadora que comprende heterodímeros de BRAVO-WOX5, y que juntos mantienen la quiescencia en los nichos de células madre de la raíz. Y todo esto está controlado por los BRs. Estos datos proporcionan nuevos conocimientos sobre la organización de la división del centro quiescente en las raíces vegetales. Se investigó la composición del complejo proteico BRAVO de la raíz primaria de Arabidopsis in vivo mediante técnicas de Inmuno-precipitación y cromatografía líquida/masas. Pero debido a la baja expresión nativa de BRAVO, nos vimos obligados a realizar un examen exhaustivo de los posibles interactores de BRAVO en levadura, para conseguir aumentar la sensibilidad de nuestro enfoque. Los análisis revelaron que BRAVO, un miembro de la familia R2R3 MYB, interactúa con una proteína de la superfamilia homeobox. Este trabajo demuestra que BRAVO, además de interaccionar con WOX5, también lo hace con BES1 y TPL. El resultado fue confirmado mediante técnicas moleculares in vitro por ensayos de Y2H y también in vivo utilizando FRET-FLIM y BiFC en hojas de Nicotiana benthamiana. Nuestros datos proporcionan evidencias de interacción directa de BRAVO con WOX5, y al mismo tiempo, proponemos que ambos podrían formar parte del complejo transcripcional BES1/TPL en el SCN, y todo esto regulado mediante BRs. Mostramos que la interacción de BES1-TPL es esencial para la división del QC en el nicho de células madre de la raíz. El aumento de los niveles de BR induce la división del QC mediante un mecanismo controlado con precisión por BRAVO. Los resultados establecen que TPL regula la división de células del QC a través de la supresión mediada por BES1 de BRAVO, y en respuesta a los BRs. Además, mediante un análisis genético y matemático revelamos que la interacción de BRAVO y WOX5 es esencial para determinar el destino de las células madre. De particular interés es el hecho de que BRAVO y WOX5 se refuerzan mutuamente en el nicho de células madre de raíz. Esto es sorprendente, ya que los niveles de WOX5 están regulados por BRs de forma opuesta que lo son en BRAVO. Un análisis exhaustivo del patrón de expresión de ambos genes en los mutantes KO simples y dobles, apoya que BRAVO es necesario para mantener los niveles normales de WOX5 en el QC. Además, nuestros datos son coherentes con el hecho de que WOX5 puede inducir la expresión de BRAVO, pero sólo en su dominio nativo. De acuerdo con nuestra hipótesis, nuestro modelo matemático predice que WOX5 se reprime transcripcionalmente y a su vez activa la expresión BRAVO, teniendo en cuenta la formación de heterodímeros y del complejo. En este escenario, las interacciones del modelo indican que BRAVO no puede activar la expresión WOX5 fuera de su dominio, de acuerdo con los resultados. Mostramos una red reguladora de nuestras interacciones predicha por el modelo matemático. Además, al aumentar la concentración de BR observamos una mayor correlación entre las concentraciones de proteínas BRAVO y WOX5 cuando uno de ellos está ausente. Pero no cuando faltan ambos. Este mecanismo podría ser un mecanismo de compensación. Y finalmente, en el último capítulo, profundizamos en la evolución de BRAVO y de WOX5 con el objetivo de comprender la organización primitiva y la función de nuestro SCN actual en la raíz.
The present PhD thesis dissertation describes the configuration of BRAVO protein complex in Arabidopsis stem cell niche, while demonstrates that BRAVO-WOX5-BES1 are part of a main regulator network that comprises BRAVO-WOX5 heterodimers, and together contribute to cell specific regulation of BR-controlled quiescence in root stem cell niches. The current data provide new insights into the QC division organization in plant roots. It was investigated the composition of BRAVO protein complex from Arabidopsis primary root in vivo by IP and LC-MS/MS techniques. Giving the low expression of native BRAVO, we conducted an exhaustive screening for BRAVO interactors in Yeast to increase the sensitivity of our approach. The analyses revealed that BRAVO, a member of the R2R3 MYB family, interact with a homeobox superfamily protein. The work further demonstrate that BRAVO interacts with WOX5, BES1 and TPL. This result was confirmed by molecular techniques in vitro by Y2H assays and in vivo using FRET-FLIM and BiFC in Nicotiana benthamiana leaves. Our data provides evidences of BRAVO directly interaction with WOX5, and at the same time both could be part of the BES1/TPL transcriptional complex at the SCN trough the BR signalling cascade. We display that the interaction of BES1-TPL is essential for the QC division in root SCN. Increasing BR levels induce QC division through a fine mechanism which is accurately controlled by BRAVO. The results establish that TPL regulates QC cell division through BES1-mediated suppression of BRAVO, and in response to BRs, the last step seems to be the promotion of the QC division. By a genetical and a mathematical analysis, we revealed that BRAVO and WOX5 interaction is essential for stem cell fate. Of particular interest is the fact that BRAVO and WOX5 reinforce each other at the root stem cell niche. This was surprising, since WOX5 levels are oppositely regulated by BRs than in BRAVO. The exhaustive analysis of the expression pattern of both genes in all the simple and double KO mutants, support that BRAVO is required to maintain normal WOX5 levels in the QC. In addition our data are coherent with the fact that WOX5 can induce BRAVO expression but only in the BRAVO native domain. Consistent with our hypothesis, a mathematical model predicted that WOX5 transcriptionally represses itself and activates BRAVO expression, taking in account the heterodimers and complex formation. In this scenario, the model interactions indicate that BRAVO is unable to activate WOX5 expression outside of its domain, in agreement with the results of the BRAVO overexpression line. We show a regulatory network of our interactions predicted by the mathematical model. We added the protein fold changes predicted by this model when changing the BR concentrations due to the BR signalling cascade in different situations and we observed better correlation of BRAVO and WOX5 protein concentrations when one of them are absent. But not when both are out. The exact reasons for these differences are not clear. This mechanism could be a compensation mechanism. And finally, in the last chapter, we delve into evolution with the aim to comprehend the primitive organisation and function of our present root SCN.
Murison, Alexander James. "Regulatory networks in plant stem cells : an integrated bioinformatic and developmental biology analysis." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/57320/.
Full textGreenhowe, Jennifer. "Stem and progenitor cells in wound healing." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:87a9a7a1-b595-458a-913f-64497174f988.
Full textAbraham, Samuel D. M. "Activation of multiple hemopoietic growth factor genes in Abelson virus transformed myeloid cells." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27786.
Full textMedicine, Faculty of
Medical Genetics, Department of
Graduate
Betegón, Putze Isabel. "Spatiotemporal analysis of brassinosteroid signaling in the vascular stem cells." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671933.
Full textEsta tesis doctoral reporta avances conceptuales en la respuesta molecular mediada por la ruta de señalización de los brasinoesteroides en el nicho de células madre de Arabidopsis thaliana. Los brasinoesteroides son las hormonas esteroideas de las plantas y juegan un papel importante en el crecimiento y desarrollo vegetal. En la raíz primaria de Arabidopsis, los brasinoesteroides están involucrados en el desarrollo del meristemo y mantenimiento de las células madre. En el nicho de células madre, las células madre son las células más indiferenciadas que se van dividiendo y diferenciando para generar los distintos tipos celulares de la raíz. Estos procesos están estrechamente controlados por factores internos y externos. El bajo número de cada población de células madre hace complicado su estudio individualmente, por lo tanto, el desarrollo de métodos con resolución para estudiar tipos celulares e incluso células individualmente representa una oportunidad única para investigar esta población celular tan escasa. En esta tesis doctoral, utilizamos una estrategia multidisciplinar, que incluye genética, análisis transcriptómicos y modelos matemáticos, para identificar las características moleculares de las células madre de la raíz y enfocándonos al papel de los brasinoesteroides en esas células. Defectos en procesos de crecimiento y desarrollo vegetal se reflejan generalmente en defectos en el crecimiento de la raíz principal. Como la cuantificación precisa de la longitud de la raíz requiere mucho tiempo, en esta tesis doctoral se describe el desarrollo de la herramienta MyROOT para la medida de raíces de Arabidopsis de una forma semiautomática (Capítulo 2). Además, los resultados presentados en esta tesis revelan el papel de los brasinoesteroides en el nicho de células madre. Una estrategia de biología de sistemas revela el papel del factor de transcripción BRAVO, regulado por brasinoesteroides, junto con WOX5 en el crecimiento y desarrollo de la raíz (Capítulo 3). Igualmente, una aproximación específica para tipos celulares revela la respuesta transcripcional mediada por BRAVO en el centro quiescente y en las células madre vasculares adyacentes (Capítulo 4). Por último, el uso de RNAseqs con resolución celular ha sido implementado para generar el que creemos es el primer atlas transcriptómico del nicho de células madre de la raíz. Esta aproximación ha permitido identificar las características moleculares de las células madre y la presencia de diferentes poblaciones de estas células en el dominio de expresión de BRAVO (Capítulo 5). Esta tesis doctoral avanza en el conocimiento de las células madre de las plantas y pone de manifiesto la necesidad de estrategias multidisciplinares para descubrir procesos fundamentales del desarrollo vegetal.
This PhD thesis dissertation reports a number conceptual advances for the molecular understanding of brassinosteroid signaling in the root stem cell niche of Arabidopsis thaliana. Brassisnosteroids are the plant steroid hormones that play important roles in plant growth and development. In the Arabidopsis primary root, brassinosteroids are involved in meristem development and stem cell maintenance. At the root stem cell niche, stem cells are the more undifferentiated cells that divide and differentiate to give rise to the distinct cell types of the root. These processes are tightly controlled by internal and external factors. The low number each stem cell population makes it difficult to study them individually, therefore, the advent of cell-type and single-cell specific approaches represents a unique opportunity to investigate this rare cell population. In this PhD thesis, we used an interdisciplinary approach, including genetics, transcriptomics analysis and mathematical modelling, to identify the molecular signatures of the root stem cells with a focus on the role of brassinosteroid hormones in those cells. Defects in growth and development processes is often reflected in abnormal primary root growth. As the accurate quantification of plant primary root length is time consuming, in this PhD dissertation, we describe the development of MyROOT software for the semi-automatic measurement of Arabidopsis primary roots (Chapter 2). In addition, the results presented in this thesis uncover the role of brassinosteroids in the stem cell niche. A systems biology approach revealed a role of the brassinosteroid-mediated BRAVO transcription factor together with WOX5 in overall root growth and development (Chapter 3). Moreover, cell-type specific transcriptomic analysis uncover the transcriptional response mediated by BRAVO in the QC and adjacent vascular stem cells (Chapter 4). Finally, the use of single-cell RNAseq has been implemented to generate to our knowledge the first transcriptomic atlas of the root stem cell niche. This approach allowed to characterize the molecular signatures of the stem cells and to find novel stem cell populations within the BRAVO expression domain (Chapter 5). Overall, the present PhD thesis advances in the understanding of stem cells in plants and expose the necessity of multidisciplinary approaches to uncover fundamental biological questions in plant development.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Mandegar, Mohammad Ali. "Analysis of artificial chromosomes in human embryonic stem cells." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:81d118c3-dd01-40e4-9fea-2c335d9f3101.
Full textGuo, Yanping. "The mechanism of Nov (CCN3) function in haematopoiesis." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:5785f3b9-3206-4bb4-b486-d90cded680f8.
Full textBuglass, Surahanil Katrin. "Regulating stem cell fate within microenvironmental niches." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:75f9498c-30f0-4983-84b2-dd58f2ccf52b.
Full textGrijzenhout, Anne Elizabeth. "Characterisation of AEBP2 : a polycomb repressive complex 2 component." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:159716a1-a03c-44f3-9fd1-0e88328caef6.
Full textBooks on the topic "Plant stem cells"
Naseem, Muhammad, and Thomas Dandekar, eds. Plant Stem Cells. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0183-9.
Full textPavlović, Mirjana, and Ksenija Radotić. Animal and Plant Stem Cells. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47763-3.
Full textGemmotherapy: The science of healing with plant stem cells. Rochester, Vt: Healing Arts Press, 2010.
Find full textPavlović, Mirjana, and Ksenija Radotić. Animal and Plant Stem Cells: Concepts, Propagation and Engineering. Springer, 2018.
Find full textHüttermann, Aloys, Ulrich Storz, and Andreas Hübel. Limits of Patentability: Plant Sciences, Stem Cells and Nucleic Acids. Springer, 2012.
Find full textHüttermann, Aloys, Ulrich Storz, and Andreas Hübel. Limits of Patentability: Plant Sciences, Stem Cells and Nucleic Acids. Springer, 2012.
Find full textNackid, Thomas A. An analysis of the gravitropic response in Kalenchoë stems. 1991.
Find full textSalinas-Rodríguez, Sergio G., Juan Arévalo, Juan Manuel Ortiz, Eduard Borràs-Camps, Victor Monsalvo-Garcia, Maria D. Kennedy, and Abraham Esteve-Núñez, eds. Microbial Desalination Cells for Low Energy Drinking Water. IWA Publishing, 2021. http://dx.doi.org/10.2166/9781789062120.
Full textEvans, Gregory, ed. Operative Plastic Surgery. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190499075.001.0001.
Full textKarmali, Mohamed A., and Jan M. Sargeant. Verocytotoxin-producing Escherichia coli (VTEC) infections. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0008.
Full textBook chapters on the topic "Plant stem cells"
Chowdhury, Suchandra, and Shyamasree Ghosh. "Plant Stem Cell Biology." In Stem Cells, 253–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1638-9_11.
Full textLohmann, Jan U. "Plant Stem Cells: Divide et Impera." In Stem Cells, 1–15. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8274-0_1.
Full textSyed, Aqib, Anwar Hussain, Waheed Murad, and Badshah Islam. "Regulatory Role of Phytohormones in Maintaining Stem Cells and Boundaries of Stem Cell Niches." In Plant Stem Cells, 1–16. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_1.
Full textSapala, Aleksandra, and Richard S. Smith. "Osmotic Treatment for Quantifying Cell Wall Elasticity in the Sepal of Arabidopsis thaliana." In Plant Stem Cells, 101–12. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_11.
Full textNaseem, Muhammad, Ozge Osmanoglu, Jibran Iqbal, Fares M. Howari, Fatima A. AlRemeithi, Martin Kaltdorf, and Thomas Dandekar. "Mapping a Transcriptome-Guided Arabidopsis SAM Interactome." In Plant Stem Cells, 113–18. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_12.
Full textLavrekha, Viktoriya V., Taras Pasternak, Klaus Palme, and Victoria V. Mironova. "3D Analysis of Mitosis Distribution Pattern in the Plant Root Tip with iRoCS Toolbox." In Plant Stem Cells, 119–25. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_13.
Full textKaya, Ergun, Selin Galatali, Sevinc Guldag, and Onur Celik. "A New Perspective on Cryotherapy: Pathogen Elimination Using Plant Shoot Apical Meristem via Cryogenic Techniques." In Plant Stem Cells, 137–48. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_15.
Full textNaseem, Muhammad, Gökhan Gun, Ozge Osmanoglu, Fatima A. AlRemeithi, Jibran Iqbal, and Thomas Dandekar. "Bacterial Shoot Apical Meristem Inoculation Assay." In Plant Stem Cells, 17–22. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_2.
Full textForner, Joachim. "Germline-Transmitted Genome Editing Methodology in Arabidopsis thaliana Using TAL Effector Nucleases." In Plant Stem Cells, 23–30. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_3.
Full textYu, Jie, Ning Zhai, Lin Xu, and Wu Liu. "Method to Study Gene Expression Patterns During De Novo Root Regeneration from Arabidopsis Leaf Explants." In Plant Stem Cells, 31–38. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0183-9_4.
Full textConference papers on the topic "Plant stem cells"
Sasanuma, I., N. Suzuki, and K. Saito. "Rose essential oils stimulate neural differentiation and autophagy in stem cells." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3400081.
Full textLitkouhi, Behrang. "Relationship Between Stress, Height, and Methods of Reproduction for Opuntia Covillea and Opuntia Parryi." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23000.
Full textYang, Junhong, Qianqian Di, Jun Zhao, and Liqiu Wang. "Mechanism on Mass Transfer in Micro-Scale During the Microwave Drying of Plant Porous Materials." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88389.
Full textValeriu Iancu, Valeriu, Laura Adriana Bucur, Verginica Schröder, and Manuela Rossemary Apetroaei. "PRELIMINARY STUDIES RELATED TO MICROSCOPY AND THE SEDEM EXPERT SYSTEM PROFILE ON FREEZED-DRIED EXTRACT OF LYTHRI HERBA." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/16.
Full textJawaharlal, Mariappan, Gustavo Vargas, and Lorenzo Gutierrez. "The Plant Kingdom in Engineering Design: Learning to Design From Trees." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72497.
Full textYang, Junhong, Qianqian Di, Jun Zhao, and Liqiu Wang. "Fractal Dimension of Pore Size Distribution Inside Matrix of Plant Materials and Drying Behavior." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22999.
Full textYang, Junhong, Qianqian Di, Jun Zhao, and Liqiu Wang. "Effect of Biological Macro-Molecular Flow on the Hot Air Drying of Astragalus Slices." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88385.
Full textPakhomova, V. M., A. I. Daminova, A. Yu Kozhevnikov, and I. V. Galiyakhmetov. "Yield of spring wheat due to lipid peroxidation under the influence of Bacillus oligonitrophilus bacterization." In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.18.
Full textBove, Roberto, and Piero Lunghi. "Comparison Between MCFC/Gas Turbine and MCFC/Steam Turbine Combined Power Plants." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41708.
Full textJames, Sean R. "(CS-20-5) The Haunting Mystery of Stem Cell Development: Understanding POLTERGEIST Regulation via Phosphorylation." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.989683.
Full textReports on the topic "Plant stem cells"
Moran, Nava, Richard Crain, and Wolf-Dieter Reiter. Regulation by Light of Plant Potassium Uptake through K Channels: Biochemical, Physiological and Biophysical Study. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571356.bard.
Full textWeil, Clifford F., Anne B. Britt, and Avraham Levy. Nonhomologous DNA End-Joining in Plants: Genes and Mechanisms. United States Department of Agriculture, July 2001. http://dx.doi.org/10.32747/2001.7585194.bard.
Full textEshed-Williams, Leor, and Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Full textGranot, David, and Richard Amasino. Regulation of Senescence by Sugar Metabolism. United States Department of Agriculture, January 2003. http://dx.doi.org/10.32747/2003.7585189.bard.
Full textCoplin, David L., Shulamit Manulis, and Isaac Barash. roles Hrp-dependent effector proteins and hrp gene regulation as determinants of virulence and host-specificity in Erwinia stewartii and E. herbicola pvs. gypsophilae and betae. United States Department of Agriculture, June 2005. http://dx.doi.org/10.32747/2005.7587216.bard.
Full textWolf, Shmuel, and William J. Lucas. Involvement of the TMV-MP in the Control of Carbon Metabolism and Partitioning in Transgenic Plants. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7570560.bard.
Full textGranot, David, and Noel Michelle Holbrook. Role of Fructokinases in the Development and Function of the Vascular System. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7592125.bard.
Full textMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Full textPhilosoph-Hadas, Sonia, Peter B. Kaufman, Shimon Meir, and Abraham H. Halevy. Inhibition of the Gravitropic Shoot Bending in Stored Cut Flowers Through Control of Their Graviperception: Involvement of the Cytoskeleton and Cytosolic Calcium. United States Department of Agriculture, December 2005. http://dx.doi.org/10.32747/2005.7586533.bard.
Full textElbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Full text