Journal articles on the topic 'Plants Arabidopsis thaliana Phosphorus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plants Arabidopsis thaliana Phosphorus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Clark, Gregory T., James Dunlop, and H. Thai Phung. "Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate." Functional Plant Biology 27, no. 10 (2000): 959. http://dx.doi.org/10.1071/pp99108.
Full textRobbins, Chanz, Thorsten Thiergart, Stéphane Hacquard, et al. "Root-Associated Bacterial and Fungal Community Profiles of Arabidopsis thaliana Are Robust Across Contrasting Soil P Levels." Phytobiomes Journal 2, no. 1 (2018): 24–34. http://dx.doi.org/10.1094/pbiomes-09-17-0042-r.
Full textTRULL, M. C., M. J. GUILTINAN, J. P. LYNCH, and J. DEIKMAN. "The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation." Plant, Cell and Environment 20, no. 1 (1997): 85–92. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-4.x.
Full textCai, Binbin, Tony Vancov, Hanqi Si, et al. "Isolation and Characterization of Endomycorrhizal Fungi Associated with Growth Promotion of Blueberry Plants." Journal of Fungi 7, no. 8 (2021): 584. http://dx.doi.org/10.3390/jof7080584.
Full textLiu, Na, Wenyan Shang, Chuang Li, et al. "Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress." Open Biology 8, no. 1 (2018): 170231. http://dx.doi.org/10.1098/rsob.170231.
Full textPantigoso, Hugo A., Jun Yuan, Yanhui He, Qinggang Guo, Charlie Vollmer, and Jorge M. Vivanco. "Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants." PLOS ONE 15, no. 6 (2020): e0234216. http://dx.doi.org/10.1371/journal.pone.0234216.
Full textStetter, Markus G., Martin Benz, and Uwe Ludewig. "Increased root hair density by loss of WRKY6 in Arabidopsis thaliana." PeerJ 5 (January 24, 2017): e2891. http://dx.doi.org/10.7717/peerj.2891.
Full textYoshihara, Akiko, Noriko Nagata, Hajime Wada, and Koichi Kobayashi. "Plastid Anionic Lipids Are Essential for the Development of Both Photosynthetic and Non-Photosynthetic Organs in Arabidopsis thaliana." International Journal of Molecular Sciences 22, no. 9 (2021): 4860. http://dx.doi.org/10.3390/ijms22094860.
Full textMa, Z., D. G. Bielenberg, K. M. Brown, and J. P. Lynch. "Regulation of root hair density by phosphorus availability in Arabidopsis thaliana." Plant, Cell & Environment 24, no. 4 (2001): 459–67. http://dx.doi.org/10.1046/j.1365-3040.2001.00695.x.
Full textLott, John NA, and M. Marcia West. "Elements present in mineral nutrient reserves in dry Arabidopsis thaliana seeds of wild type and pho1, pho2, and man1 mutants." Canadian Journal of Botany 79, no. 11 (2001): 1292–96. http://dx.doi.org/10.1139/b01-117.
Full textMo, Xiaohui, Guoxuan Liu, Zeyu Zhang, Xing Lu, Cuiyue Liang, and Jiang Tian. "Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis." International Journal of Molecular Sciences 23, no. 9 (2022): 4592. http://dx.doi.org/10.3390/ijms23094592.
Full textCriollo-Arteaga, Steven, Sofia Moya-Jimenez, Martin Jimenez-Meza, et al. "Sulfur Deprivation Modulates Salicylic Acid Responses via Nonexpressor of Pathogenesis-Related Gene 1 in Arabidopsis thaliana." Plants 10, no. 6 (2021): 1065. http://dx.doi.org/10.3390/plants10061065.
Full textAllahham, Alaa, Satomi Kanno, Liu Zhang, and Akiko Maruyama-Nakashita. "Sulfur Deficiency Increases Phosphate Accumulation, Uptake, and Transport in Arabidopsis thaliana." International Journal of Molecular Sciences 21, no. 8 (2020): 2971. http://dx.doi.org/10.3390/ijms21082971.
Full textXiao, Qiying, Hugues De Gernier, László Kupcsik, et al. "Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply." Crop and Pasture Science 66, no. 12 (2015): 1249. http://dx.doi.org/10.1071/cp15108.
Full textYoon, Hakwon, Yu-Gyeong Kang, Yoon-Seok Chang, and Jae-Hwan Kim. "Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana." Nanomaterials 9, no. 11 (2019): 1543. http://dx.doi.org/10.3390/nano9111543.
Full textTyburski, Jarosław, Kamila Dunajska-Ordak, Monika Skorupa, and Andrzej Tretyn. "Role of Ascorbate in the Regulation of the Arabidopsis thaliana Root Growth by Phosphate Availability." Journal of Botany 2012 (January 12, 2012): 1–11. http://dx.doi.org/10.1155/2012/580342.
Full textHuang, Wei, Dan-Ni Ma, Hong-Ling Liu, et al. "Genome-Wide Identification of CsATGs in Tea Plant and the Involvement of CsATG8e in Nitrogen Utilization." International Journal of Molecular Sciences 21, no. 19 (2020): 7043. http://dx.doi.org/10.3390/ijms21197043.
Full textCoello, Patricia. "Purification and characterization of secreted acid phosphatase in phosphorus-deficient Arabidopsis thaliana." Physiologia Plantarum 116, no. 3 (2002): 293–98. http://dx.doi.org/10.1034/j.1399-3054.2002.1160303.x.
Full textZhu, Xunzhi, Yangmin Yi, Ling Huang, Chi Zhang, and Hua Shao. "Metabolomics Reveals the Allelopathic Potential of the Invasive Plant Eupatorium adenophorum." Plants 10, no. 7 (2021): 1473. http://dx.doi.org/10.3390/plants10071473.
Full textYAN, Zheng-Bing, Nam-Young KIM, Ting-Shen HAN, Jing-Yun FANG, and Wen-Xuan HAN. "Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana." Chinese Journal of Plant Ecology 37, no. 6 (2013): 551–57. http://dx.doi.org/10.3724/sp.j.1258.2013.00056.
Full textCai, Qiong, Chengjun Ji, Zhengbing Yan, Xingxing Jiang, and Jingyun Fang. "Anatomical responses of leaf and stem of Arabidopsis thaliana to nitrogen and phosphorus addition." Journal of Plant Research 130, no. 6 (2017): 1035–45. http://dx.doi.org/10.1007/s10265-017-0960-2.
Full textJain, Ritushree, Catherine J. Lilley, and Peter E. Urwin. "Reduction of phytate by down-regulation of Arabidopsis thaliana MIPS and IPK1 genes alters susceptibility to beet cyst nematodes." Nematology 17, no. 4 (2015): 401–7. http://dx.doi.org/10.1163/15685411-00002874.
Full textLei, Kai Jian, Jun Yan Xie, Yuan Yuan Zhu, Chun Peng Song, and Guo Yong An. "Screening and analysis of rhizosphere acidification deficiency mutants in Arabidopsis thaliana under low phosphorus." Soil Science and Plant Nutrition 61, no. 3 (2015): 493–500. http://dx.doi.org/10.1080/00380768.2015.1007025.
Full textBouranis, Dimitris L., Mario Malagoli, Jean-Christophe Avice, and Elke Bloem. "Advances in Plant Sulfur Research." Plants 9, no. 2 (2020): 256. http://dx.doi.org/10.3390/plants9020256.
Full textStrieder, M. L., K. G. Pinto, C. Bertoldi, A. B. de Schneider, and C. A. Delatorre. "Response of Arabidopsis thaliana root growth to phosphorus and its relation to media chemical composition." Biologia plantarum 61, no. 3 (2017): 587–94. http://dx.doi.org/10.1007/s10535-017-0713-z.
Full textPegler, Joseph L., Jackson M. J. Oultram, Christopher P. L. Grof, and Andrew L. Eamens. "DRB1, DRB2 and DRB4 Are Required for Appropriate Regulation of the microRNA399/PHOSPHATE2 Expression Module in Arabidopsis thaliana." Plants 8, no. 5 (2019): 124. http://dx.doi.org/10.3390/plants8050124.
Full textMo, Xiaohui, Mengke Zhang, Zeyu Zhang, Xing Lu, Cuiyue Liang, and Jiang Tian. "Phosphate (Pi) Starvation Up-Regulated GmCSN5A/B Participates in Anthocyanin Synthesis in Soybean (Glycine max) Dependent on Pi Availability." International Journal of Molecular Sciences 22, no. 22 (2021): 12348. http://dx.doi.org/10.3390/ijms222212348.
Full textSustr, Marek, Ales Soukup, and Edita Tylova. "Potassium in Root Growth and Development." Plants 8, no. 10 (2019): 435. http://dx.doi.org/10.3390/plants8100435.
Full textAssunção, Ana G. L., Sisse K. Gjetting, Michael Hansen, Anja T. Fuglsang, and Alexander Schulz. "Live Imaging of Phosphate Levels in Arabidopsis Root Cells Expressing a FRET-Based Phosphate Sensor." Plants 9, no. 10 (2020): 1310. http://dx.doi.org/10.3390/plants9101310.
Full textDunlop, J., H. T. Phung, R. Meeking, and D. W. R. White. "The Kinetics Associated with Phosphate Absorption by Arabidopsis and its Regulation by Phosphorus Status." Functional Plant Biology 24, no. 5 (1997): 623. http://dx.doi.org/10.1071/pp96137.
Full textMeghana, K. M., and D. Sayantan. "Critical review on arsenic: Its occurrence, contamination and remediation from water and soil." Journal of Applied and Natural Science 13, no. 3 (2021): 861–79. http://dx.doi.org/10.31018/jans.v13i3.2757.
Full textWan, Yuanyuan, Zhen Wang, Jichun Xia, et al. "Genome-Wide Analysis of Phosphorus Transporter Genes in Brassica and Their Roles in Heavy Metal Stress Tolerance." International Journal of Molecular Sciences 21, no. 6 (2020): 2209. http://dx.doi.org/10.3390/ijms21062209.
Full textBarragán-Rosillo, Alfonso Carlos, Carlos Alberto Peralta-Alvarez, Jonathan Odilón Ojeda-Rivera, Rodrigo G. Arzate-Mejía, Félix Recillas-Targa, and Luis Herrera-Estrella. "Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis." Proceedings of the National Academy of Sciences 118, no. 33 (2021): e2107558118. http://dx.doi.org/10.1073/pnas.2107558118.
Full textRemy, E., T. R. Cabrito, R. A. Batista, M. C. Teixeira, I. Sá-Correia, and P. Duque. "The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation." New Phytologist 195, no. 2 (2012): 356–71. http://dx.doi.org/10.1111/j.1469-8137.2012.04167.x.
Full textBates, Terence R., and Jonathan P. Lynch. "Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae)." American Journal of Botany 87, no. 7 (2000): 958–63. http://dx.doi.org/10.2307/2656994.
Full textDing, Guangda, Yuan Liao, Mei Yang, Zunkang Zhao, Lei Shi, and Fangsen Xu. "Development of gene-based markers from functional Arabidopsis thaliana genes involved in phosphorus homeostasis and mapping in Brassica napus." Euphytica 181, no. 3 (2011): 305–22. http://dx.doi.org/10.1007/s10681-011-0428-8.
Full textCoelho, Gracielle T. C. P., Newton P. Carneiro, Athikkattuvalasu S. Karthikeyan, et al. "A Phosphate Transporter Promoter from Arabidopsis thaliana AtPHT1;4 Gene Drives Preferential Gene Expression in Transgenic Maize Roots Under Phosphorus Starvation." Plant Molecular Biology Reporter 28, no. 4 (2010): 717–23. http://dx.doi.org/10.1007/s11105-010-0199-8.
Full textChen, Wanting, Ranhong Chen, Ying Zhang, et al. "Cloning, Characterization and Expression Analysis of the Phosphate Starvation Response Gene, ClPHR1, from Chinese Fir." Forests 11, no. 1 (2020): 104. http://dx.doi.org/10.3390/f11010104.
Full textHE, ZHENXIANG, ZHONG MA, KATHLEEN M. BROWN, and JONATHAN P. LYNCH. "Assessment of Inequality of Root Hair Density in Arabidopsis thaliana using the Gini Coefficient: a Close Look at the Effect of Phosphorus and its Interaction with Ethylene." Annals of Botany 95, no. 2 (2004): 287–93. http://dx.doi.org/10.1093/aob/mci024.
Full textWang, Haiyan, Rong Zhang, Yanan Duan, et al. "The Endophytic Strain Trichoderma asperellum 6S-2: An Efficient Biocontrol Agent against Apple Replant Disease in China and a Potential Plant-Growth-Promoting Fungus." Journal of Fungi 7, no. 12 (2021): 1050. http://dx.doi.org/10.3390/jof7121050.
Full textWixon, Jo. "Arabidopsis thaliana." Comparative and Functional Genomics 2, no. 2 (2001): 91–98. http://dx.doi.org/10.1002/cfg.75.
Full textLennon, K., and E. Lord. "Pollination in Arabidopsis Thaliana." Microscopy and Microanalysis 4, S2 (1998): 1180–81. http://dx.doi.org/10.1017/s1431927600026027.
Full textOgrocká, Anna, Pavla Polanská, Eva Majerová, Zlatko Janeba, Jiří Fajkus, and Miloslava Fojtová. "Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants." Nucleic Acids Research 42, no. 5 (2013): 2919–31. http://dx.doi.org/10.1093/nar/gkt1285.
Full textWeiss, Hanna, and Jolanta Maluszynska. "Chromosomal Rearrangement in Autotetraploid Plants of Arabidopsis Thaliana." Hereditas 133, no. 3 (2004): 255–61. http://dx.doi.org/10.1111/j.1601-5223.2000.00255.x.
Full textValeeva, L. R., Ch Nyamsuren, E. V. Shakirov, and M. R. Sharipova. "Characterization of Arabidopsis thaliana Plants Expressing Bacterial Phytase." Russian Journal of Plant Physiology 66, no. 6 (2019): 884–92. http://dx.doi.org/10.1134/s1021443719060128.
Full textMori, Yoko, Seisuke Kimura, Ai Saotome, et al. "Plastid DNA polymerases from higher plants, Arabidopsis thaliana." Biochemical and Biophysical Research Communications 334, no. 1 (2005): 43–50. http://dx.doi.org/10.1016/j.bbrc.2005.06.052.
Full textWang, Shenmeng, Ruoning Wang, and Chengjun Yang. "Selection and functional identification of Dof genes expressed in response to nitrogen in Populus simonii × Populus nigra." Open Life Sciences 17, no. 1 (2022): 756–80. http://dx.doi.org/10.1515/biol-2022-0084.
Full textAntoun, Marlène, and François Ouellet. "Growth temperature affects inflorescence architecture in Arabidopsis thaliana." Botany 91, no. 9 (2013): 642–51. http://dx.doi.org/10.1139/cjb-2013-0011.
Full textBorkotoky, Subhomoi, Vijayakumar Saravanan, Amit Jaiswal, et al. "The Arabidopsis Stress Responsive Gene Database." International Journal of Plant Genomics 2013 (March 17, 2013): 1–3. http://dx.doi.org/10.1155/2013/949564.
Full textCharron-Lamoureux, Vincent, and Pascale B. Beauregard. "Arabidopsis thaliana Seedlings Influence Bacillus subtilis Spore Formation." Molecular Plant-Microbe Interactions® 32, no. 9 (2019): 1188–95. http://dx.doi.org/10.1094/mpmi-10-18-0278-r.
Full text