Academic literature on the topic 'Plants Effect of photooxidative stress on'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plants Effect of photooxidative stress on.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plants Effect of photooxidative stress on"
Shibaeva, T. G., E. G. Sherudilo, A. A. Rubaeva, and A. F. Titov. "Effect of end-of production continuous lighting on yield and nutritional value of Brassicaceae microgreens." BIO Web of Conferences 48 (2022): 02005. http://dx.doi.org/10.1051/bioconf/20224802005.
Full textLascano, H. Ramiro, Mariana N. Melchiorre, Celina M. Luna, and Victorio S. Trippi. "Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress." Plant Science 164, no. 5 (May 2003): 841–48. http://dx.doi.org/10.1016/s0168-9452(03)00073-6.
Full textQuina, Frank H., Paulo F. Moreira, Carolina Vautier-Giongo, Daniel Rettori, Rita F. Rodrigues, Adilson A. Freitas, Palmira F. Silva, and António L. Maçanita. "Photochemistry of anthocyanins and their biological role in plant tissues." Pure and Applied Chemistry 81, no. 9 (August 19, 2009): 1687–94. http://dx.doi.org/10.1351/pac-con-08-09-28.
Full textRomanowska, Elzbieta, Marta Powikrowska, Maksymilian Zienkiewicz, Anna Drozak, and Berenika Pokorska. "High light induced accumulation of two isoforms of the CF1 alpha-subunit in mesophyll and bundle sheath chloroplasts of C4 plants." Acta Biochimica Polonica 55, no. 1 (March 7, 2008): 175–82. http://dx.doi.org/10.18388/abp.2008_3110.
Full textFoyer, Christine H., Maud Lelandais, and Karl J. Kunert. "Photooxidative stress in plants." Physiologia Plantarum 92, no. 4 (December 1994): 696–717. http://dx.doi.org/10.1111/j.1399-3054.1994.tb03042.x.
Full textFoyer, Christine H., Maud Lelandais, and Karl J. Kunert. "Photooxidative stress in plants." Physiologia Plantarum 92, no. 4 (December 1994): 696–717. http://dx.doi.org/10.1034/j.1399-3054.1994.920422.x.
Full textStaudt, Michael, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche. "Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways." Biogeosciences 19, no. 20 (October 26, 2022): 4945–63. http://dx.doi.org/10.5194/bg-19-4945-2022.
Full textCamejo, Daymi, Ana Jiménez, Juan José Alarcón, Walfredo Torres, Juana María Gómez, and Francisca Sevilla. "Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants." Functional Plant Biology 33, no. 2 (2006): 177. http://dx.doi.org/10.1071/fp05067.
Full textJunker-Frohn, Laura Verena, Anita Kleiber, Kirstin Jansen, Arthur Gessler, Jürgen Kreuzwieser, and Ingo Ensminger. "Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought." Tree Physiology 39, no. 10 (October 1, 2019): 1750–66. http://dx.doi.org/10.1093/treephys/tpz075.
Full textRamel, Fanny, Alexis S. Mialoundama, and Michel Havaux. "Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants." Journal of Experimental Botany 64, no. 3 (August 21, 2012): 799–805. http://dx.doi.org/10.1093/jxb/ers223.
Full textDissertations / Theses on the topic "Plants Effect of photooxidative stress on"
Shumbe, Leonard Tansie. "Singlet Oxygen Signaling and Acclimation of Plants to Environmental Constraints." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4109.
Full textDuring biotic and abiotic stress conditions, the production of several reactive oxygen species (ROS) at different specialized compartments of the cell is inevitable. Singlet oxygen (1O2) was identified to be the predominant ROS produced in the chloroplast during high light stress. This molecule is highly reactive, with a short life time of about 3 µs in biological tissues. Such properties make believe that the predominant effect of 1O2 in plants is cytotoxicity. However, 1O2 has been identified to function as a chloroplast-to-nucleus retrograde signaling molecule, leading to acclimation or programmed cell death (PCD). Cognizant of the properties of 1O2, it is most unlikely to travel directly from the chloroplast to the nucleus to signal changes in nuclear gene expression. One possibility is that 1O2 carries out this signaling function with the help of mediators. We identify a β-carotene oxidation product, dihydroactinidiolide (dhA) as a 1O2 signaling intermediate, which function similarly to the β-carotene oxidation product β-cyclocitral, previously identified to be a mediator of 1O2 plastid-nuclear retrograde signaling in Arabidopsis. We reveal a dependence of the β-cyclocitral-mediated signaling pathway on the MBS1 (METHYLENE BLUE SENSITIVITY 1) protein, and show that Programmed cell death induced by 1O2 is mediated by the serine-threonine kinase, OXI1(OXIDATIVE SIGNAL INDUCIBLE 1)
Mateo, Alfonso. "Roles of LESIONS SIMULATING DISEASE1 and Salicylic Acid in Acclimation of Plants to Environmental Cues : Redox Homeostasis and physiological processes underlying plants responses to biotic and abiotic challenges." Doctoral thesis, Stockholm University, Department of Botany, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-698.
Full textIn the natural environment plants are confronted to a multitude of biotic and abiotic stress factors that must be perceived, transduced, integrated and signaled in order to achieve a successful acclimation that will secure survival and reproduction. Plants have to deal with excess excitation energy (EEE) when the amount of absorbed light energy is exceeding that needed for photosynthetic CO2 assimilation. EEE results in ROS formation and can be enhanced in low light intensities by changes in other environmental factors.
The lesions simulating disease resistance (lsd1) mutant of Arabidopsis spontaneously initiates spreading lesions paralleled by ROS production in long day photoperiod and after application of salicylic acid (SA) and SA-analogues that trigger systemic acquired resistance (SAR). Moreover, the mutant fails to limit the boundaries of hypersensitive cell death (HR) after avirulent pathogen infection giving rise to the runaway cell death (rcd) phenotype. This ROS-dependent phenotype pointed towards a putative involvement of the ROS produced during photosynthesis in the initiation and spreading of the lesions.
We report here that the rcd has a ROS-concentration dependent phenotype and that the light-triggered rcd is depending on the redox-state of the PQ pool in the chloroplast. Moreover, the lower stomatal conductance and catalase activity in the mutant suggested LSD1 was required for optimal gas exchange and ROS scavenging during EEE. Through this regulation, LSD1 can influence the effectiveness of photorespiration in dissipating EEE. Moreover, low and high SA levels are strictly correlated to lower and higher foliar H2O2 content, respectively. This implies an essential role of SA in regulating the redox homeostasis of the cell and suggests that SA could trigger rcd in lsd1 by inducing H2O2 production.
LSD1 has been postulated to be a negative regulator of cell death acting as a ROS rheostat. Above a certain threshold, the pro-death pathway would operate leading to PCD. Our data suggest that LSD1 may be subjected to a turnover, enhanced in an oxidizing milieu and slowed down in a reducing environment that could reflect this ROS rheostat property. Finally, the two protein disulphide isomerase boxes (CGHC) present in the protein and the down regulation of the NADPH thioredoxin reductase (NTR) in the mutant connect the rcd to a putative impairment in the reduction of the cytosolic thioredoxin system. We propose that LSD1 suppresses the cell death processes through its control of the oxidation-reduction state of the TRX pool. An integrated model considers the role of LSD1 in both light acclimatory processes and in restricting pathogen-induced cell death.
Eakes, Donald Joseph. "Moisture stress conditioning, potassium nutrition, and tolerance of Salvia splendens 'Bonfire' to moisture stress." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54350.
Full textPh. D.
Choudhury, Feroza Kaneez. "Rapid Metabolic Response of Plants Exposed to Light Stress." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157543/.
Full textKalifa, Ali. "Salt stress, and phosphorus absorption by potato plants cv. 'Russet Burbank'." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29727.pdf.
Full textAttumi, Al-Arbe. "Effect of salt stress on phosphorus and sodium absorptions by soybean plants." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20242.
Full textLarsson, Marie-France. "The Effect of Plants on Individuals' Stress Level in an Indoor Work Environment." Thesis, Mid Sweden University, Department of Social Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-11141.
Full textMany instances of sick leave can be linked to diseases caused by stress. An efficient way to counter the negative effects of stress is coping. However, trying to fit coping activities into an already busy schedule can be stressful in itself. Therefore it is interesting to study passive stress-reducing methods, for instance interaction with nature. This paper studied the effect of the presence of plants in a work-like environment on the stress level of 30 participants divided equally in a control group and a test group by measuring their heart rate. A factorial analysis of variance and a multivariate analysis of variance were used to analyze the data. Despite the heart rate of the control group being on an average 5 beats per minute higher than the test group, the difference was found not to be statistically significant. An explanation for this could be the poor reliability of heart rate as a measure of stress.
Keywords: coping, heart rate, indoors, nature, plants, stress, work
Wongareonwanakij, Sathaporn. "Effects of water stress and partial soil-drying on senescence of sunflower plants." Title page, contents and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09A/09aw872.pdf.
Full textZhou, Maoqian 1961. "Nitrogen fixation by alfalfa as affected by salt stress and nitrogen levels." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277231.
Full textLe, Fevre Ruth Elizabeth. "Phytate and plant stress responses." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708218.
Full textBooks on the topic "Plants Effect of photooxidative stress on"
M, Orcutt David, and Hale Maynard G, eds. The physiology of plants under stress. New York: Wiley, 1996.
Find full textKadukova, Jana. Phytoremediation and stress: Evaluation of heavy metal-induced stress in plants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textS, Basra Amarjit, ed. Stress-induced gene expression in plants. Chur, Switzerland: Harwood Academic Publishers, 1994.
Find full textA, Khan Nafees, and Singh Sarvajeet, eds. Abiotic stress and plant responses. New Delhi: I.K. International Pub. House, 2008.
Find full textJosipovic, Stanislas. Heat stress: Causes, treatment and prevention. Hauppauge, N.Y: Nova Science Publishers, 2012.
Find full textLutz, Nover, Neumann Dieter, and Scharf Klaus-Dieter, eds. Heat shock and other stress response systems of plants. Berlin: Springer-Verlag, 1989.
Find full textLeonard, R. E. The response of plant species to low-level trampling stress on Hurricane Island, Maine. [Broomall, Pa.]: U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1985.
Find full textLeonard, R. E. The response of plant species to low-level trampling stress on Hurricane Island, Maine. [Broomall, Pa.]: U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1985.
Find full textS, Basra Amarjit, and Basra Ranjit K, eds. Mechanisms of environmental stress resistance in plants. Amsterdam, The Netherlands: Harwood Academic, 1997.
Find full textBook chapters on the topic "Plants Effect of photooxidative stress on"
Carmody, Melanie, and Barry Pogson. "Systemic Photooxidative Stress Signalling." In Long-Distance Systemic Signaling and Communication in Plants, 251–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36470-9_13.
Full textKarpinski, Stanislaw, Gunnar Wingsle, Barbara Karpinska, and Jan-Erik Hällgren. "Redox Sensing of Photooxidative Stress and Acclimatory Mechanisms in Plants." In Regulation of Photosynthesis, 469–86. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-48148-0_27.
Full textKaur, Harpreet, Renu Bhardwaj, Vinod Kumar, Anket Sharma, Ravinder Singh, and Ashwani Kumar Thukral. "Effect of pesticides on leguminous plants." In Legumes under Environmental Stress, 91–101. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118917091.ch6.
Full textIvanov, Anatoly A. "Response of Wheat Seedlings to Combined Effect of Drought and Salinity." In Stress Responses in Plants, 159–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13368-3_7.
Full textPérez-Pastor, Alejandro, M. Carmen Ruiz-Sánchez, and María R. Conesa. "Drought stress effect on woody tree yield." In Water Stress and Crop Plants, 356–74. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch22.
Full textKhalid, Muhammad Fasih, Iqra Zakir, Rashid Iqbal Khan, Sobia Irum, Samreen Sabir, Nishat Zafar, Shakeel Ahmad, Mazhar Abbas, Talaat Ahmed, and Sajjad Hussain. "Effect of Water Stress (Drought and Waterlogging) on Medicinal Plants." In Medicinal Plants, 169–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5611-9_6.
Full textSrivastava, Kavita, Sachidanand Singh, Anupam Singh, Tanvi Jain, Rahul Datta, and Abhidha Kohli. "Effect of Temperature (Cold and Hot) Stress on Medicinal Plants." In Medicinal Plants, 153–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5611-9_5.
Full textHajiboland, R. "Effect of Micronutrient Deficiencies on Plants Stress Responses." In Abiotic Stress Responses in Plants, 283–329. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0634-1_16.
Full textKoshita, Yoshiko. "Effect of Temperature on Fruit Color Development." In Abiotic Stress Biology in Horticultural Plants, 47–58. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55251-2_4.
Full textTripathi, Durgesh Kumar, Swati Singh, Shweta Singh, Devendra Kumar Chauhan, Nawal Kishore Dubey, and Rajendra Prasad. "Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops." In Water Stress and Crop Plants, 682–94. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119054450.ch39.
Full textConference papers on the topic "Plants Effect of photooxidative stress on"
"Effect of melatonin deficiency and disruption of its receptor signaling pathway on photosynthetic parameters and expression of chloroplast genes in plants of Arabidopsis thaliana under photooxidative stress." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-030.
Full textBaranova, E. N. "The effect of edaphic stress factors on plant cell compartments." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-57.
Full textPopescu, Monica. "ASCOPHYLLUM NODOSUM SEAWEED EXTRACT EFFECT ON DROUGHT STRESS IN BEAN PLANTS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017h/63/s25.017.
Full textArkhipova, T. N., and E. V. Martynenko. "The effect of hormone producing bacteria on plant growth and stress tolerance." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-48.
Full textZeng, Lizhang, and Da Xing. "Alteration in delayed fluorescence characterize the effect of heat stress on plants." In Photonics Asia 2004, edited by Yun-Jiang Rao, Osuk Y. Kwon, and Gang-Ding Peng. SPIE, 2005. http://dx.doi.org/10.1117/12.572779.
Full textKreslavsky, V. D., A. Yu Khudyakova, and V. Yu Lyubimov. "The effect of the phytochrome system on the stress resistance of the photosynthetic apparatus." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-237.
Full textPonomareva, M. L., and S. N. Ponomarev. "Features of adaptation to winter stress and the effect of proline accumulation in winter cereals." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-362.
Full textEvseeva, N. V., A. Yu Denisova, G. L. Burygin, N. N. Pozdnyakova, and O. V. Tkachenko. "Coinoculation effect of potato microclones by rhizosphere bacteria under osmotic stress in vitro." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.067.
Full textAl-qahtani, Noora Saad, and Talaat Ahmed. "Effect of Seagrass Liquid Extracts on Bell Pepper (Capsicum annuum) Under Salt stress Conditions." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0104.
Full textOzolina, N. V., V. V. Gurina, and I. S. Nesterkina. "The effect of different types of abiotic stress on the dynamics of the content of common sterols of beet tonoplast (Beta vulgaris L.)." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-324.
Full textReports on the topic "Plants Effect of photooxidative stress on"
Kirova, Elisaveta. Effect of Nitrogen Nutrition Source on Antioxidant Defense System of Soybean Plants Subjected to Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2020. http://dx.doi.org/10.7546/crabs.2020.02.09.
Full textAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li, and A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Full textMosquna, Assaf, and Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604266.bard.
Full textFromm, Hillel, and Joe Poovaiah. Calcium- and Calmodulin-Mediated Regulation of Plant Responses to Stress. United States Department of Agriculture, September 1993. http://dx.doi.org/10.32747/1993.7568096.bard.
Full textHanda, Avtar K., Yuval Eshdat, Avichai Perl, Bruce A. Watkins, Doron Holland, and David Levy. Enhancing Quality Attributes of Potato and Tomato by Modifying and Controlling their Oxidative Stress Outcome. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586532.bard.
Full textCohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson, and Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7613874.bard.
Full textWolf, Shmuel, and William J. Lucas. Involvement of the TMV-MP in the Control of Carbon Metabolism and Partitioning in Transgenic Plants. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7570560.bard.
Full textSeginer, Ido, Daniel H. Willits, Michael Raviv, and Mary M. Peet. Transpirational Cooling of Greenhouse Crops. United States Department of Agriculture, March 2000. http://dx.doi.org/10.32747/2000.7573072.bard.
Full textChen, Junping, Zach Adam, and Arie Admon. The Role of FtsH11 Protease in Chloroplast Biogenesis and Maintenance at Elevated Temperatures in Model and Crop Plants. United States Department of Agriculture, May 2013. http://dx.doi.org/10.32747/2013.7699845.bard.
Full textBarg, Rivka, Kendal D. Hirschi, Avner Silber, Gozal Ben-Hayyim, Yechiam Salts, and Marla Binzel. Combining Elevated Levels of Membrane Fatty Acid Desaturation and Vacuolar H+ -pyrophosphatase Activity for Improved Drought Tolerance. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7613877.bard.
Full text