Academic literature on the topic 'Plants – Evolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plants – Evolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plants – Evolution"
Preston, Jill. "The Evolution of Plants." BioScience 67, no. 6 (June 2017): 577–78. http://dx.doi.org/10.1093/biosci/bix030.
Full textRaven, John A. "The evolution of plants." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no. 2 (June 2009): S44. http://dx.doi.org/10.1016/j.cbpa.2009.04.489.
Full textLebeda, A. "Robert J. Henry (editor): Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants – Book Review." Plant Protection Science 41, No. 3 (March 7, 2010): 123–24. http://dx.doi.org/10.17221/2730-pps.
Full textSchiavinato, Matteo, Alexandrina Bodrug‐Schepers, Juliane C. Dohm, and Heinz Himmelbauer. "Subgenome evolution in allotetraploid plants." Plant Journal 106, no. 3 (March 24, 2021): 672–88. http://dx.doi.org/10.1111/tpj.15190.
Full textSchlessman, Mark A. "Investigating Evolution with Living Plants." American Biology Teacher 59, no. 8 (October 1, 1997): 472–79. http://dx.doi.org/10.2307/4450361.
Full textWEI, Qiang, Yong-Hong LIANG, and Guang-Lin LI. "Evolution of miRNA in plants." Hereditas (Beijing) 35, no. 3 (September 27, 2013): 315–23. http://dx.doi.org/10.3724/sp.j.1005.2013.00315.
Full textPearson, Lorentz C. "Evolution & Diversity in Plants." American Biology Teacher 50, no. 8 (November 1, 1988): 487–95. http://dx.doi.org/10.2307/4448808.
Full textStuessy, Tod F., Gerhard Jakubowsky, Roberto Salguero Gomez, Martin Pfosser, Philipp M. Schluter, Tomas Fer, Byung-Yun Sun, and Hidetoshi Kato. "Anagenetic evolution in island plants." Journal of Biogeography 33, no. 7 (July 2006): 1259–65. http://dx.doi.org/10.1111/j.1365-2699.2006.01504.x.
Full textThorpe, Andrea S., Erik T. Aschehoug, Daniel Z. Atwater, and Ragan M. Callaway. "Interactions among plants and evolution." Journal of Ecology 99, no. 3 (February 23, 2011): 729–40. http://dx.doi.org/10.1111/j.1365-2745.2011.01802.x.
Full textDonoghue, Philip, and Jordi Paps. "Plant Evolution: Assembling Land Plants." Current Biology 30, no. 2 (January 2020): R81—R83. http://dx.doi.org/10.1016/j.cub.2019.11.084.
Full textDissertations / Theses on the topic "Plants – Evolution"
Puzey, Joshua Robert. "Plant MicroRNA Evolution and Mechanisms of Shape Change in Plants." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10143.
Full textWied, Anna. "Conspecific nurse effects and the evolution of monocarpy in plants /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9841363.
Full textHaig, David. "Applications of allocation and kinship models to the interpretation of vascular plant life cycles." Phd thesis, Australia : Macquarie University, 1990. http://hdl.handle.net/1959.14/23227.
Full textThesis (PhD) -- Macquarie University, School of Biological Sciences, 1990.
Bibliography: leaves 269-324.
Introduction -- Models of parental allocation -- Sex expression in homosporous pteridophytes -- The origin of heterospory -- Pollination and the origin of the seed habit -- Brood reduction in gymnosperms -- Pollination: costs and consequences -- Adaptive explanations for the rise of the angiosperms -- Parent-specific gene expression and the triploid endosperm -- New perspectives on the angiosperm female gametophyte -- Overview -- Glossary -- Kinship terms in plants -- Literature Cited.
Among vascular plants/ different life cycles are associated with characteristic ranges of propagule size. In the modern flora, isospores of homosporous pteridophytes are almost all smaller than 150 urn diameter, megaspores of heterosporous pteridophytes fall in the range 100-1000 urn diameter, gymnosperm seeds are possibly all larger than the largest megaspores, but the smallest angiosperm seeds are of comparable size to large isospores. -- Propagule size is one of the most important features of a sporophyte's reproductive strategy. Roughly speaking, larger propagules have larger food reserves, and a greater probability of successful establishment, than smaller propagules, but a sporophyte can produce more smaller propagules from the same quantity of resources. Different species have adopted very different size-versus-number compromises. The characteristic ranges of propagule size, in each of the major groups of vascular plants, suggest that some life cycles are incompatible with particular size-versus-number compromises. -- Sex expression in homosporous plants is a property of gametophytes (homosporous sporophytes are essentially asexual). Gametophytes should produce either eggs or sperm depending on which course of action gives the greatest chance of reproductive success. A maternal gametophyte must contribute much greater resources to a young sporophyte than the paternal gametophyte. Therefore, smaller gametophytes should tend to reproduce as males, and gametophytes with abundant resources should tend to reproduce as females. Consistent with these predictions, large female gametophytes release substances (antheridiogens) which induce smaller neighbouring ametophytes to produce sperm. -- The mechanism of sex determination in heterosporous species appears to be fundamentally different. Large megaspores develop into female gametophytes, and small icrospores develop into male gametophytes. Sex expression appears to be determined by the sporophyte generation. This is misleading. As argued above, the optimal sex expression of a homosporous gametophyte is influenced by its access to resources. This is determined by (1) the quantity of food reserves in its spore and (2) the quantity of resources accumulated by the gametophyte's own activities. If a sporophyte produced spores of two sizes, gametophytes developing from the larger spores' would be more likely to reproduce as females than gametophytes developing from the smaller spores, because the pre-existing mechanisms of sex determination would favor production of archegonia by larger gametophytes. Thus, the predicted mechanisms of sex determination in homosporous species could also explain the differences in sex expression of gametophytes developing from large and small spores in heterosporous species.
Megaspores of living heterosporous pteridophytes contain sufficient resources for female reproduction without photosynthesis by the gametophyte (Platyzoma excepted), whereas microspores only contain sufficient resources for male reproduction. Furthermore, many more microspores are produced than megaspores. A gametophyte's optimal sex expression is overwhelmingly determined by the amount of resources supplied in its spore by the sporophyte, and is little influenced by the particular environmental conditions where the spore lands. Gametophytes determine sex expression in heterosporous species, as well as homosporous species. A satisfactory model for the evolution of heterospory needs to explain under what circumstances sporophytes will benefit from producing spores of two distinct sizes. -- In Chapter 4, I present a model for the origin of heterospory that predicts the existence of a "heterospory threshold". For propagule sizes below the threshold, homosporous reproduction is evolutionarily stable because gametophytes must rely on their own activities to accumulate sufficient resources for successful female reproduction. Whether a gametophyte can accumulate sufficient resources before its competitors is strongly influenced by environmental conditions. Gametophytes benefit from being able to adjust their sex expression in response to these conditions. For propagule sizes above the threshold, homosporous reproduction is evolutionarily unstable, because the propagule's food reserves are more than sufficient for a "male" gametophyte to fertilize all eggs within its neighbourhood. A population of homosporous sporophytes can be invaded by sporophytes that produce a greater number of smaller spores which could land in additional locations and fertilize additional eggs. Such'spores would be male-specialists on account of their size. Therefore, both spore types would be maintained in the population because of frequency-dependent selection. -- The earliest vascular plants were homosporous. Several homosporous groups gave rise to heterosporous lineages, at least one of which was the progeniture of the seed plants. The first heterosporous species appear in the Devonian. During the Devonian, there was a gradual increase in maximum spore size, possibly associated with the evolution of trees and the appearance of the first forests. As the heterospory threshold was approached, the optimal spore size for female reproduction diverged from the optimal spore size for male reproduction. Below the threshold, a compromise spore size gave the highest fitness returns to sporophytes, but above the threshold, sporophytes could attain higher fitness by producing two types of spores. -- The evolution of heterospory had profound consequences. Once a sporophyte produced two types of spores, microspores and megaspores could become specialized for male and female function respectively. The most successful heterosporous lineage (or lineages) is that of the seed plants. The feature that distinguishes seed plants from other heterosporous lineages is pollination, the capture of microspores before, rather than after, propagule dispersal. Traditionally, pollination has been considered to be a major adaptive advance because it frees sexual reproduction from dependence on external fertilization by freeswimming sperm, but pollination has a more important advantage. In heterosporous pteridophytes, a megaspore is provisioned whether or not it will be fertilized whereas seeds are only provisioned if they are pollinated.
The total cost per seed cannot be assessed solely from the seed's energy and nutrient content. Rather, each seed also has an associated supplementary cost of adaptations for pollen capture and of resources committed to ovules that remain unpollinated. The supplementary cost per seed has important consequences for understanding reproductive strategies. First, supplementary costs are expected to be proportionally greater for smaller seeds. Thus, the benefits of decreasing seed size (in order to produce more seeds) are reduced for species with small seeds. This effect may explain minimum seed sizes. Second, supplementary costs are greater for populations at lower density. Thus, there is a minimum density below which a species cannot maintain its numbers. -- By far the most successful group of seed plants in the modern flora are the angiosperms. Two types of evidence suggest that early angiosperms had a lower supplementary cost per seed than contemporary gymnosperms. First, the minimum size of angiosperm seeds was much smaller than the minimum size of gymnosperm seeds. This suggests that angiosperms could produce small seeds more cheaply than could gymnosperms. Second, angiosperm-dominated floras were more speciose than the gymnosperm-dominated floras they replaced. This suggests that the supplementary cost per seed of angiosperms does not increase as rapidly as that of gymnosperms, as population density decreases. In consequence, angiosperms were able to displace gymnosperms from many habitats, because the angiosperms had a lower cost of rarity. -- Angiosperm embryology has a number of distinctive features that may be related to the group's success. In gymnosperms, the nutrient storage tissue of the seed is the female gametophyte. In most angiosperms, this role is taken by the endosperm. Endosperm is initiated by the fertilization of two female gametophyte nuclei by a second sperm that is genetically identical to the sperm which fertilizes the egg. Endosperm has identical genes to its associated embryo, except that there are two copies of maternal genes for every copy of a paternal gene. -- Chapter 9 presents a hypothesis to explain the unusual genetic constitution of endosperm. Paternal genes benefit from their endosperm receiving more resources than the amount which maximizes the fitness of maternal genes, and this conflict is expressed as parent-specific gene expression in endosperm. The effect of the second maternal genome is to increase maternal control of nutrient acquisition. -- Female gametophytes of angiosperms are traditionally classified as monosporic, bisporic or tetrasporic. Bisporic and tetrasporic embryo sacs contain the derivatives of more than one megaspore nucleus. Therefore, there is potential for conflict between the different nuclear types within an embryo sac, but this possibility has not been recognized by plant embryologists. In Chapter 10, I show that many previously inexplicable observations can be understood in terms of genetic conflicts within the embryo sac.
Mode of access: World Wide Web.
324 leaves ill
Maher, Keri Renee. "A geographically constrained molecular phylogeny of Panamanian Aechmea species (Bromeliaceae, subfamily bromelioideae)." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3280.
Full textCampbell, Lesley Geills. "Rapid evolution in a crop-weed complex (Raphanus spp.)." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1166549627.
Full textLindh, Magnus. "Evolution of Plants : a mathematical perspective." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-119458.
Full textArtikel I: Arters reproduktionsframgång (fitness), till exempel antal avkommor eller frön som produceras under livet, är ofta avgörande för huruvida de är evolutionärt framgångsrika eller inte. Här undersöker vi hur ettåriga växter med eller utan tillväxtbegränsningar ska optimera sin blomningstid när produktivitet eller säsongslängd ändras. Det är optimalt att gå direkt från tillväxt till blomning när tillväxten är begränsad och dödligheten är konstant. Vid ökad produktivitet sker blomningen tidigare med tillväxtbegränsningar men senare utan tillväxtbegränsningar, vilket beror på att med tillväxtbegränsningar ökar den vegetativa massan långsamt. Därför är det bättre att blomma tidigare och ta tillvara på en längre reproduktionsperiod. Vi får samma resultat om säsongslängden ökar lika mycket i början och slutet av säsongen. Vår teori kan bidra till att förutsäga blomningstider vid produktivitetsförändringar och säsongsförändringar. Artikel II: Tillväxten hos träd kan begränsas av brist på ljus, vatten, och näring, men också genom förlust av grenar. Vi introducerar ett nytt mått på tillväxteffektiviteten hos trädkronor baserat på förlust av biomassa under trädets tillväxt. Ju mer massa trädet förlorar under tillväxt, desto mindre tillväxteffektiva är de. Topptunga former förlorar mer biomassa än bottentunga former. Vi studerar avvägningar mellan ljuseffektivitet och tillväxteffektivitet för trädformer, där ljuseffektiviteten definieras som medelljusupptaget för löven i kronan. Vi antar en konstant totalmassa, och en statisk vertikal skuggning som representerar skuggningen från en omgivande skog. Vi hittar stora skillnader i kronformer vid en medelhög skuggning, då både självskuggningen och medelskuggningen har betydelse. Vårt mått för tillväxteffektivitet kan enkelt integreras i existerande skogsmodeller. Studien visar att avvägningar mellan tillväxteffektivitet och ljuseffektivitetet kan vara viktig för mångfalden av trädformer i en skog. En överraskande upptäckt är att konformade eller sfäriska trädkronor aldrig är effektiva, men däremot timglasformade kronor. Artikel III: Växter kan försvara sig på olika sätt mot torka, till exempel genom att rulla ihop bladen eller genom att reproducera tidigare och därigenom undvika uttdragen torka. Här undersöker vi fördelarna med en pålrot vid torka. En pålrot är en rot som växer nedåt för att nå djupliggande grundvatten. Vi utvidgar en evolutionär modell av trädkronor med grundvatten och en pålrot, där träd med olika höjd konkurrerar om ljus. Det finns ingen konkurrens om vatten. Vi undersöker hur mångfalden hos träden beror på vattendjup, vattengradient och dödlighet orsakad av torka. Med hjälp av pålroten kan träden nå djupt vatten och därigenom minska dödligheten, men den medför också en kostnad, så en avvägning måste göras. Vi ser att pålrötter upprätthåller mångfalden hos växterna vid ökad mortalitet, och att pålrötter uppstår när grundvattnet är grunt. Det finns inga strategier som kan överleva om grundvattnet är djupt och dödligheten är hög. Vår modell kan förklara hur grundvatten kan förändra sammansättningen på trädsamhällen, när träd med och utan pålrot kan samexistera, och under vilka förutsättningar endast en av strategierna förväntas dominera. Artikel IV: Träd som växer upp i en skog måste konkurrera med andra träd om ljus, framförallt större träd. Detta ger upphov till en asymmetrisk ljuskonkurrens, där de små träden hämmas av större träd. Små träd har därmed små chanser att överleva utom då skogen nyligen störts och det öppnas upp en glänta. Vid denna ljuskonkurrens kan man anta att trädkronans form har stor betydelse för trädets framgång. Frågan är hur de evolutionärt fördelaktiga kronformerna beror på latituden och produktiviteten. Vi antar att latituden påverkar solens genomsnittliga vinkel och ljusrespons. Vi utvidgar en storleksstrukturerad trädmodell med självskuggning där två evolverande egenskaper beskriver kronans topptyngd och bredd. Med modellen kan vi undersöka vilka strategiska avvägningar som bestämmer om kronans form blir konkurrenskraftig. En topptung krona har högt ljusupptag eftersom det finns mest ljus högt upp i grenverket. Å andra sidan har den en låg tillväxteffektivitet eftersom topptunga kronor måste tappa mycket grenar för att behålla sin form. En bred krona har en låg självskuggning eftersom bladen är utspridda. Å andra sidan har den höga kostnader för de långa grenar som krävs. Vi finner att när dessa egenskaper evolverar tillsammans så finns endast en evolutionärt stabil strategi (ESS), långt från den högsta nettoproduktionen. När endast solvinkeln minskar med ökande latitud minskar både kronans bredd och topptyngd, men när både solvinkel och ljusrespons minskar med ökande latitud så är bredden nästan oförändrad utom vid låg produktivitet då den minskar med latituden. Kronans topptyngd minskar alltid med latituden. Slutligen ser vi hur kronans topptyngd alltid ökar med nettoproduktionen vid ESS, medan kronans bredd har ett maxium för ett mellanvärde hos nettoproduktionen vid ESS.
Sun, Zhiying. "Pattern formation and evolution on plants." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/194905.
Full textKilaru, Aruna. "The Early Evolution of Land Plants." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/4762.
Full textWang, Sishuo. "Evolution of duplicated non-coding RNAs in plants." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63301.
Full textHarris, Mark Steven. "The evolution of sexual dimorphism in flowering plants." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442466.
Full textBooks on the topic "Plants – Evolution"
J, Doyle Jeff, and Gaut Brandon S, eds. Plant molecular evolution. Dordrecht: Kluwer, 2000.
Find full textGarassino, Alessandro. Plants: Origins and evolution. Austin, Tex: Raintree Steck-Vaughn, 1995.
Find full textC, McElwain J., ed. The evolution of plants. New York: Oxford University Press, 2002.
Find full textBill, Eddie, ed. Plants: Evolution and diversity. Cambridge, UK: Cambridge University Press, 2006.
Find full textJ, Smartt, and Simmonds N. W. 1922-, eds. Evolution of crop plants. 2nd ed. Harlow, Essex, England: Longman Scientific and Technical, 1995.
Find full textAmbrose, Barbara A., and Michael D. Purugganan. The evolution of plant form. Hoboken [N.J.]: Wiley-Blackwell, 2012.
Find full textAllessio, Leck Mary, Parker V. Thomas, and Simpson Robert, eds. Seedling ecology and evolution. Cambridge: Cambridge University Press, 2008.
Find full textIngrouille, Martin. Diversity and evolution of land plants. London: Chapman & Hall, 1992.
Find full textKlekowski, Edward J. Mutation, developmental selection, and plant evolution. New York: Columbia University Press, 1988.
Find full textD, Briggs. Plant variation and evolution. 3rd ed. New York: Cambridge University Press, 1997.
Find full textBook chapters on the topic "Plants – Evolution"
Budyko, M. I. "Plants." In The Evolution of the Biosphere, 99–137. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4556-2_4.
Full textBard, Jonathan. "The Evolution of Algae and Plants." In Evolution, 125–40. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429346217-14.
Full textKubitzki, K., P. J. Rudall, and M. C. Chase. "Systematics and Evolution." In Flowering Plants · Monocotyledons, 23–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03533-7_3.
Full textLack, Andrew, and David Evans. "Evolution of flowering plants." In Plant Biology, 317–24. 2nd ed. London: Taylor & Francis, 2021. http://dx.doi.org/10.1201/9780203002902-93.
Full textPedersen, Bård. "Senescence in Plants." In Life History Evolution in Plants, 239–74. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-010-9460-3_8.
Full textWalter, David Evans, and Heather C. Proctor. "Mites on Plants." In Mites: Ecology, Evolution & Behaviour, 281–339. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7164-2_8.
Full textZielinski, Marie-Luise, and Ortrun Mittelsten Scheid. "Meiosis in Polyploid Plants." In Polyploidy and Genome Evolution, 33–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31442-1_3.
Full textIngrouille, Martin. "Cultivated plants: conclusion." In Diversity and Evolution of Land Plants, 291–96. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2300-6_9.
Full textPearson, Lorentz C. "The Flowering Plants." In The Diversity and Evolution of Plants, 523–74. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419877-22.
Full textEvert, Ray F., and Susan E. Eichhorn. "The Process of Evolution." In Raven Biology of Plants, 209–31. New York: Macmillan Learning, 2013. http://dx.doi.org/10.1007/978-1-319-15626-8_12.
Full textConference papers on the topic "Plants – Evolution"
Demchenko, K. N. "Root systems evolution: from lateral root initiation strategy to branch plasticity." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-16.
Full textEvkaykina, A. I., E. A. Klimova, E. V. Tyutereva, K. S. Dobryakova, A. N. Ivanova, C. Rydin, L. Berke, et al. "Evolution of the mechanisms of regulation of the apical meristem and laying of leaves in vascular plants." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-160.
Full text"Evolution of MLO-like proteins in flowering plants." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-162.
Full textZhang, Fan, Qing Li, and Ying Luo. "Evolution of Skill Training in Nuclear Power Plants." In 2021 IEEE International Conference on Engineering, Technology & Education (TALE). IEEE, 2021. http://dx.doi.org/10.1109/tale52509.2021.9678641.
Full textCheng, Zhonghua, Zhe Dong, and Bowen Li. "Control Strategies Evolution of Nuclear Plant: From Obninsk to HTR-PM." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-91296.
Full text"Regulation and evolution of flavonoid biosynthesis pathway in polyploid plants." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-187.
Full text"Analysis of the evolution of gene expression patterns in flowering plants." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-137.
Full textOh, Hyun-Woo. "Phytochemical co-evolution between insects and plants through plant diterpenes and insect juvenile hormone receptors." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.110912.
Full textLikholat, Yu V., A. N. Vinnichenko, O. O. Drobakhin, I. A. Oginova, N. M. Subotina, V. N. Pokataev, L. L. Shirokopoyas, V. V. Hobotov, and Yu A. Elanskiy. "The mm-wave application for optimization of plants’ evolution." In Telecommunication Technology" (CriMiCo 2008). IEEE, 2008. http://dx.doi.org/10.1109/crmico.2008.4676632.
Full textKumar, Pravesh, and Millie Pant. "Noisy source recognition in multi noise plants by differential evolution." In 2013 IEEE Symposium on Swarm Intelligence (SIS). IEEE, 2013. http://dx.doi.org/10.1109/sis.2013.6615189.
Full textReports on the topic "Plants – Evolution"
Berner, Robert A. Plants, Weathering, and the Evolution of Atmospheric Carbon Dioxide and Oxygen. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/923048.
Full textUllman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein, and Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, September 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Full textOhad, Nir, and Robert Fischer. Control of Fertilization-Independent Development by the FIE1 Gene. United States Department of Agriculture, August 2000. http://dx.doi.org/10.32747/2000.7575290.bard.
Full textAlarcón, Arturo, Juan Alberto, Cecilia Correa, Edwin Malagon, Emilio Sawada, Hector Baldivieso, and Gabriel Rocha. Analysis of the Policy and Market Framework for Hydro Pumped Storage in Latin America and the Caribbean. Inter-American Development Bank, October 2021. http://dx.doi.org/10.18235/0003721.
Full textPichersky, Eran, Alexander Vainstein, and Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Full textSchuster, Gadi, and David Stern. Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7695859.bard.
Full textUllman, Diane E., Benjamin Raccah, John Sherwood, Meir Klein, Yehezkiel Antignus, and Abed Gera. Tomato Spotted Wilt Tosporvirus and its Thrips Vectors: Epidemiology, Insect/Virus Interactions and Control. United States Department of Agriculture, November 1999. http://dx.doi.org/10.32747/1999.7573062.bard.
Full textFriedman, Haya, Julia Vrebalov, James Giovannoni, and Edna Pesis. Unravelling the Mode of Action of Ripening-Specific MADS-box Genes for Development of Tools to Improve Banana Fruit Shelf-life and Quality. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592116.bard.
Full textCochran, J., D. Lew, and N. Kumar. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure). Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1110465.
Full textSingh, Anjali. Estimating the Chiasma Frequency in Diplotene-Diakinesis Stage. ConductScience, September 2020. http://dx.doi.org/10.55157/cs20200925.
Full text