Academic literature on the topic 'Plasma arc melting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma arc melting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasma arc melting"
Sinha, O. P., and R. C. Gupta. "Acoustic Emission during Plasma Arc Melting." ISIJ International 33, no. 8 (1993): 903–5. http://dx.doi.org/10.2355/isijinternational.33.903.
Full textBlackburn, M. J., and D. R. Malley. "Plasma arc melting of titanium alloys." Materials & Design 14, no. 1 (January 1993): 19–27. http://dx.doi.org/10.1016/0261-3069(93)90041-s.
Full textNikolaev, A. A. "Separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate." Physics and Chemistry of Materials Treatment 5 (2021): 30–36. http://dx.doi.org/10.30791/0015-3214-2021-5-30-36.
Full textHsu, Y. F., and B. Rubinsky. "Transient Melting of a Metal Plate by a Penetrating Plasma Arc." Journal of Heat Transfer 109, no. 2 (May 1, 1987): 463–69. http://dx.doi.org/10.1115/1.3248105.
Full textSydorets, Volodymyr, Volodymyr Korzhyk, and Oleksandr Babych. "On the Plasma Temperature in the Hybrid Plasma-MIG Welding Process." Applied Mechanics and Materials 872 (October 2017): 61–66. http://dx.doi.org/10.4028/www.scientific.net/amm.872.61.
Full textNishi, Seiji, Tatsuhiko Kusamichi, and Toshio Onoye. "Arc Voltage and Heat Efficiency during Plasma Arc Melting of Titanium." ISIJ International 35, no. 2 (1995): 114–20. http://dx.doi.org/10.2355/isijinternational.35.114.
Full textJegou, Claude, Gerard Cognet, A. Roubaud, J.-M. Gatt, G. Laffont, and F. Kassabji. "PLASMA TRANSFERRED ARC ROTARY FURNACE FOR "CORIUM" MELTING." High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 1, no. 3 (1997): 409–20. http://dx.doi.org/10.1615/hightempmatproc.v1.i3.100.
Full textUEJO, Satoru, Hiroyuki KOSHIMIZU, Takashi HANABUSA, Yasunori CHIBA, Takehiro KIMURA, Takashi IKEDA, and Masafumi MAEDA. "Design and Installation of Plasma Arc Melting Apparatus." Shigen-to-Sozai 109, no. 10 (1993): 823–26. http://dx.doi.org/10.2473/shigentosozai.109.823.
Full textMimura, Kouji, Keigo Matsumoto, and Minoru Isshiki. "Purification of Hafnium by Hydrogen Plasma Arc Melting." MATERIALS TRANSACTIONS 52, no. 2 (2011): 159–65. http://dx.doi.org/10.2320/matertrans.m2010296.
Full textKinoshita, Katsuo. "Plasma Arc Melting Process For Incinerated Ash Treatment." Journal of the Japan Welding Society 62, no. 7 (1993): 545–49. http://dx.doi.org/10.2207/qjjws1943.62.545.
Full textDissertations / Theses on the topic "Plasma arc melting"
Hendricks, Brian Reginald. "Simulation of plasma arc cutting." Thesis, Peninsula Technikon, 1999. http://hdl.handle.net/20.500.11838/1245.
Full textThe simulation of Plasma Arc Cutting is presented in this study. The plasma arc cutting process employs a plasma torch with a very narrow bore to produce a transferred arc to the workpiece. A technique for modelling plasma arc cutting has been developed by applying the thermo-metallurgical model to the process and integrating a model of material removal to this model. The model is solved using the finite element method using the FE package SYSWORLD, more specifically SYSWELD. The objective is to determine the minimum energy required to cut a plate of some thickness using this virtual model. The characteristics of the cut need to exhibit the characteristics of a "high quality cut". The model presented can predict the kerf size given certain process variable settings. The numerical results obtained are assessed by conducting experiments. By maintaining Ill1rumum energy input cost savings can be made through energy savings, limiting additional finishing processes and reducing expense of shortening the electrode and nozzle lifetimes. The modelling of the PAC process using virtual design techniques provides a cost-effective solution to the manufacturing industries with respect to process specification development. This plays an important role in South Africa's transition into a competitive global market. It is envisaged that the model will provide an alternative more efficient, non-destructive means of determining the optimum process variable settings for the plasma arc cutting process.
Hill, S. D. "Plasma torch interaction with a melting substrate." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17261.
Full textBeaver, James R. "Plasma vitrification of geomaterials." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/21621.
Full textPristavita, Ramona. "Transferred arc production of fumed silica : rheological properties." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99787.
Full textIn the present work, we studied the changes in the powder quality by varying the quench conditions used for the production of the powder and by agglomerating the obtained particles. The fumed silica was agglomerated by conveying in a length of tubing with sharp bends. The powder was characterized using BET, Viscosity tests, FT-IR, TEM, SEM and XRD. The product was compared to both a commercial product (Aerosil 200) and the material previously produced by Addona. Tests were done before and after the agglomeration experiments.
The experimental results showed that the agglomeration had no effect on the powder's rheological properties. We concluded that the smaller viscosity values obtained for the plasma produced fumed silica were due to the lack of the free hydroxyl groups from the surface of the particles.
Gans, Ira. "The production of ultrafine silica particles through a transferred arc plasma process /." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65464.
Full textCeles, Josepha D. "Transformation of processed kaolin by plasma magmavication." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/21643.
Full textMayer, Kate A. "Laboratory chamber experiments simulating in-situ plasma vitrification for geoenvironmental concerns." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/18990.
Full textHilborn, Monica Maria. "Production of ferro-niobium in the Plasmacan furnace." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63993.
Full textWani, Nitin Yashwant. "Simulation of thermal stresses in vacuum arc remelting process." Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1178820121.
Full textMoradi, Sara. "Transport analysis in tokamak plasmas." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210097.
Full textOne of the least understood areas of the impurity transport and indeed any plasma particle or heat transport in general, is the turbulent transport. Extensive efforts of the fusion plasma community are focused on the subject of turbulent transport. Motivated by the fact that impurity transport is an important issue for the whole community and it is an area which needs fundamental research, we focused our attention on the development of turbulent transport models for impurities and their examination against experiments. In a collaboration effort together with colleagues (theoreticians as well as experimentalist) from different research institutes, we tried to find, through our models, physical mechanisms responsible for experimental observations. Although our main focus in this thesis has been on the impurity transport, we also tried a fresh challenge, and started looking at the problem of drift wave turbulent transport in a different framework all together. Experimental observation of the edge turbulence in the fusion devices show that in the Scrape of Layer (SOL: the layer between last closed magnetic surface and machine walls) plasma is characterized with non-Gaussian statistics and non-Maxwellian Probability Distribution Function (PDF). It has been recognized that the nature of cross-field transport trough the SOL is dominated by turbulence with a significant ballistic or non-local component and it is not simply a diffusive process. There are studies of the SOL turbulent transport using the 2-D fluid descriptions or based on probabilistic models using the Levy statistics (fractional derivatives in space). However, these models are base on the fluid assumptions which is in contradiction with the non-Maxwellian plasmas observed. Therefore, we tried to make a more fundamental study by looking at the effect of the non-Maxwellian plasma on the turbulent transport using a gyro-kinetic formalism. We considered the application of fractional kinetics to plasma physics. This approach, classical indeed, is new in its application. Our aim was to study the effects of a non-Gaussian statistics on the characteristic of the drift waves in fusion plasmas.
Ce travail de thèse porte sur le transport turbulent d'impuretés dans les plasmas de fusion
par confinement magnétique. C'est une question de la plus haute importance pour le développement
de la fusion comme source d'énergie. En effet, une accumulation d'impuretés au coeur
du plasma impliquerait des pertes d'énergie par radiation, conduisant par refroidissement à
l'extinction des réactions de fusion. Il est par contre prévu d'injecter des impuretés dans le
bord du plasma, afin d'extraire la chaleur par rayonnement sans endommager les éléments de
la première paroi. Ces contraintes contradictoires nécessitent un contrôle précis du transport
d'impuretés, afin de minimiser la concentration d'impuretés au coeur du plasma tout en la
maximisant au bord. Une très bonne connaissance de la physique sous-jacente au transport
est donc indispensable. L'effet de la turbulence, principal mécanisme de transport, sur les impuretés
est alors une question centrale. Dans cette thèse, un code numérique, AFC-FL, a été développé sur la base d'une approche ``fluide' linéaire pour la turbulence d'ondes de dérive. Il calcule les taux de croissance qui caractérisent la rapidité de l'amorçage des instabilités. L'analyse de stabilité est complétée par l'évaluation des taux de croissance en présence d'un gradient de densité, un cisaillement magnétique ou un nombre arbitraire de différentes espèces d'impureté. Les formules complètes du flux turbulent d'impuretés pour ces taux de croissance calculés des instabilités des ondes de dérive ont été dérivées. Un modèle de transport anormal qui nous permet d'étudier la dépendence du transport en fonction de la charge d'impureté a été développé. Ce modèle prend en compte les effets collisionnels entre les ions, l'impureté et les particules principales de plasma. Une telle dépendence du transport anormal en fonction de la charge de l'impureté est observée dans les expériences et il a été montré que les résultats obtenus sont en bon accord avec les observations expérimentales. Nous avons également étudié l'effet des impuretés sur le confinement de l'énergie dans les plasmas du tokamak JET. La modélisation de transport a été exécutée pour des plasmas avec injection de néon dans la périphérie du tokamak. Cette technique est utilisée afin d'extraire la chaleur par rayonnement sans endommager la paroi et pour réduire certaines instabilités (ELM). Des simulations du code RITM ont été comparées à des mesures effectuées lors d'expériences au JET. Il a été montré que l'injection de néon mène toujours à une dégradation du confinement par rapport aux décharges sans néon. Cependant, l'augmentation de la charge effective, en raison du presence du néon peut diminuer le taux de croissance d'autres instabilité (ITG) et amèliorer le confinement du coeur du plasma. Ce confinement amélioré du coeur peut alors compenser la dégradation au bord et le confinement global du plasma peut s'améliorer.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Books on the topic "Plasma arc melting"
Dembovský, Vladimír. Plasma metallurgy: The principles. Amsterdam: Elsevier, 1985.
Find full textModrzyński, Andrzej. Kryteria doboru parametrów tekhnologicznych wytapiania staliwa w piecach indukcyjno-plazmowych. Poznań: Wydawn. Politechniki Poznańskiej, 1996.
Find full textBrown, David. The development of clean melting for superalloys with plasma arc remelting. Birmingham: University of Birmingham, 2000.
Find full textGrigorenko, G. M. Vodorod i azot v metallakh pri plazmennoĭ plavke. Kiev: Nauk. dumka, 1989.
Find full textKrzyżanowski, Michał. Umocnienie powierzchniowe stopów żelaza przy wykorzystaniunagrzewania plazmowego. Kraków: Wydawnictwa AGH, 1995.
Find full textGreat Britain. Energy Efficiency Office. Rapid glass melting by transferred plasma arc. Great Britain, Energy Efficiency Office, 1995.
Find full textJerome, Feinman, ed. Plasma technology in metallurgical processing. Warrendale, PA: Iron and Steel Society, 1987.
Find full textBook chapters on the topic "Plasma arc melting"
Mimura, K., and M. Isshiki. "Hydrogen Plasma Arc Melting." In Purification Process and Characterization of Ultra High Purity Metals, 181–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56255-6_6.
Full textLian, Shuang Shii, Chi Kuang Chang, and Chin Ching Tzeng. "A Study of Porous Slag with Plasma Arc Melting." In Advances in Science and Technology, 2224–28. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2224.
Full textTsao, Shen, and Shuang Shii Lian. "Refining of Metallurgical-Grade Silicon by Thermal Plasma Arc Melting." In Materials Science Forum, 2595–98. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.2595.
Full textSartkulvanich, Partchapol, Don Li, Oscar Yu, Ernie Crist, and Shane Probst. "Applications of Finite Element Modeling on Vacuum ARC Remelting (VAR) and Plasma ARC Melting (PAM) Processes of Titanium Alloys." In Proceedings of the 13th World Conference on Titanium, 365–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119296126.ch56.
Full text"Electron Beam Melting and Plasma Arc Melting Yuan Pang, Shesh Srivatsa, and Kuang-0 (Oscar) Yu." In Modeling for Casting and Solidification Processing, 627–68. CRC Press, 2001. http://dx.doi.org/10.1201/9781482277333-26.
Full textShahien, Mohammed. "Reactive Plasma Spray." In Production, Properties, and Applications of High Temperature Coatings, 299–332. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4194-3.ch012.
Full textConference papers on the topic "Plasma arc melting"
Miyajima, T., T. Iwao, M. Yumoto, S. Tashiro, and M. Tanaka. "Radiation Distribution of Argon and Nitogen Plasma Arc for Fly Ash Melting." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4346193.
Full textTakayuki Watanabe, Yaochun Yao, Kazuyuki Yatsuda, Fuji Funabiki, and Tetsuji Yano. "In-flight melting of granulated powders by 12-phase AC arc discharge for glass production." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590827.
Full textKar, Simanchal, P. P. Bandyopadhyay, and S. Paul. "Effect of Arc-Current and Particle Morphology on Fracture Toughness of Plasma Sprayed Aluminium Oxide Coating." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2993.
Full textMakled, A. H., and E. J. Grotke. "Plasma Arc Gasification for Solid Waste Disposal: Update on St. Lucie County, Florida Project." In 16th Annual North American Waste-to-Energy Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/nawtec16-1901.
Full textVardelle, M., P. Fauchais, A. Vardelle, and A. C. Léger. "Influence of the Variation of Plasma Torch Parameters on Particle Melting and Solidification." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0535.
Full textLeylavergne, M., H. Valetoux, J. F. Coudert, P. Fauchais, and V. Leroux. "Comparison of the Behaviour of Copper, Cast Iron and Aluminum Alloy Substrates Heated by a Plasma Transferred Arc." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0489.
Full textRao, Z. H., J. Hu, S. M. Liao, and H. L. Tsai. "Determination of Equilibrium Wire Feed Speeds for a Stable GMAW Process." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67799.
Full textSripada, Srinivas S., P. S. Ayyaswamy, and I. M. Cohen. "Numerical Computation of the Heat Transfer to a Spherical-Tip Anode During an Electronic Flame Off Process." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0831.
Full textLeylavergne, M., T. Chartier, A. Grimaud, and P. Fauchais. "PTA Reclamation of Cast Iron Substrates Using Tape Casting Process—The Role of the Organic Binder Concentration." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p1169.
Full textLeylavergne, M., A. Grimaud, P. Fauchais, T. Chartier, and J. F. Baumard. "PTA Reclamation of Cast Iron and Aluminum Alloys Substrate with NiCu Film Deposited by Tape Casting." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0373.
Full textReports on the topic "Plasma arc melting"
Tubesing, P. K., D. R. Korzekwa, and P. S. Dunn. Plasma arc melting of zirconium. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/638217.
Full textImhoff, Seth D., Robert M. Aikin, Jr., Hunter Swenson, and Eunice Martinez Solis. DU Processing Efficiency and Reclamation: Plasma Arc Melting. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395002.
Full text