Academic literature on the topic 'Plasma Atomic Layer Etching (ALE)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma Atomic Layer Etching (ALE).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma Atomic Layer Etching (ALE)"

1

Guan, Lulu, Xingyu Li, Dongchen Che, Kaidong Xu, and Shiwei Zhuang. "Plasma atomic layer etching of GaN/AlGaN materials and application: An overview." Journal of Semiconductors 43, no. 11 (2022): 113101. http://dx.doi.org/10.1088/1674-4926/43/11/113101.

Full text
Abstract:
Abstract With the development of the third generation of semiconductor devices, it is essential to achieve precise etching of gallium nitride (GaN) materials that is close to the atomic level. Compared with the traditional wet etching and continuous plasma etching, plasma atomic layer etching (ALE) of GaN has the advantages of self-limiting etching, high selectivity to other materials, and smooth etched surface. In this paper the basic properties and applications of GaN are presented. It also presents the various etching methods of GaN. GaN plasma ALE systems are reviewed, and their similariti
APA, Harvard, Vancouver, ISO, and other styles
2

Chittock, Nicholas John, Wilhelmus M. M. (Erwin) Kessels, Harm Knoops, and Adrie Mackus. "(Invited) The Use of Plasmas for Isotropic Atomic Layer Etching." ECS Meeting Abstracts MA2023-02, no. 29 (2023): 1464. http://dx.doi.org/10.1149/ma2023-02291464mtgabs.

Full text
Abstract:
Atomic layer etching (ALE) is set to be a vital part of the advanced semiconductor manufacturing toolbox, known for its precise control of the film thickness and minimal damage. These benefits are possible due to the sequential self-limiting half-cycles that are employed within an ALE process. Initially, ALE was underestimated due to low etch rates, but it is now experiencing a renaissance due to the requirements imposed by further downscaling.1 The ALE community is mostly divided into two groups: plasma anisotropic and thermal isotropic etching. 2 In this work, the focus is on exploring isotr
APA, Harvard, Vancouver, ISO, and other styles
3

Lill, Thorsten. "(Invited) Atomic Layer Etching: Basics, New Developments & Applications." ECS Meeting Abstracts MA2024-02, no. 30 (2024): 2231. https://doi.org/10.1149/ma2024-02302231mtgabs.

Full text
Abstract:
Atomic layer etching (ALE) is becoming an important technology for patterning and shaping of electronic and photonic devices. This tutorial briefly recaps the fundamentals of thermal, directional and plasma assisted atomic layer etching. Performance benefits and limitations for ALE in comparison to the continuous processing analogues such as reactive ion etching, radical and vapor etching are the consequence of the cyclic self-limited structure of ALE processes. Selection criteria for the appropriate etching technology for a given task will be presented. The enormous progress in the developmen
APA, Harvard, Vancouver, ISO, and other styles
4

Hamraoui, Lamiae, Tinghui Zhang, Angela Crespi, et al. "Atomic layer etching of gallium nitride using fluorine-based chemistry." Journal of Vacuum Science & Technology A 41, no. 3 (2023): 032602. http://dx.doi.org/10.1116/6.0002452.

Full text
Abstract:
Atomic layer etching (ALE) of GaN on silicon substrates has been investigated using fluorine-based chemistry. The ALE process used for this study consists of a modification step using SF6 plasma and a removal step using argon plasma. Two configurations were studied in which the distance between the sample and the plasma source was modified. The energy scan, synergy, selective etching of GaFx by Ar+ ion bombardment, and self-limiting etching regime of the ALE of GaN were first investigated. An etch per cycle of 0.50 nm/cycle averaged over 100 cycles was reached for GaN ALE. The self-limiting re
APA, Harvard, Vancouver, ISO, and other styles
5

Hwang, Il-Hwan, Ho-Young Cha, and Kwang-Seok Seo. "Low-Damage and Self-Limiting (Al)GaN Etching Process through Atomic Layer Etching Using O2 and BCl3 Plasma." Coatings 11, no. 3 (2021): 268. http://dx.doi.org/10.3390/coatings11030268.

Full text
Abstract:
This paper reports on the use of low-damage atomic layer etching (ALE) performed using O2 and BCl3 plasma for etching (Al)GaN. The proposed ALE process led to excellent self-limiting etch characteristics with a low direct current (DC) self-bias, which resulted in a high linearity between the etching depth and number of cycles. The etching damage was evaluated using several methods, including atomic force microscopy, photoluminescence (PL), and X-ray photoelectron spectroscopy, and the I–V properties of the recessed Schottky diodes were compared with those of digital etching performed using O2
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Junho, and Kyongnam Kim. "Atomic Layer Etching Using a Novel Radical Generation Module." Materials 16, no. 10 (2023): 3611. http://dx.doi.org/10.3390/ma16103611.

Full text
Abstract:
To fabricate miniature semiconductors of 10 nm or less, various process technologies have reached their physical limits, and new process technologies for miniaturization are required. In the etching process, problems such as surface damage and profile distortion have been reported during etching using conventional plasma. Therefore, several studies have reported novel etching techniques such as atomic layer etching (ALE). In this study, a new type of adsorption module, called the radical generation module, was developed and applied in the ALE process. Using this module, the adsorption time cou
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Shohei, Atsushi Tanide, Takahiro Kimura, et al. "GaN damage-free cyclic etching by sequential exposure to Cl2 plasma and Ar plasma with low Ar+-ion energy at substrate temperature of 400 °C." Journal of Applied Physics 133, no. 4 (2023): 043302. http://dx.doi.org/10.1063/5.0131685.

Full text
Abstract:
Damage-free atomic layer etching (ALE) of GaN was demonstrated using a cyclic process in which the chlorinated layer formed by Cl2 plasma exposure was removed by exposure to Ar plasma with energy-controlled ions when the substrate temperature was maintained at 400 °C. The layer chlorinated at 400 °C by Cl2 plasma exposure was found to be thinner than that chlorinated at 25 °C. Therefore, in the case of an Ar+-ion energy of 70 eV, the “ALE synergy” parameter, which quantifies the degree to which a process approaches the ideal ALE regime, decreased from 86% at a substrate temperature of 25 °C to
APA, Harvard, Vancouver, ISO, and other styles
8

Shim, Dahee, Jihyun Kim, Yongjae Kim, and Heeyeop Chae. "Plasma atomic layer etching for titanium nitride at low temperatures." Journal of Vacuum Science & Technology B 40, no. 2 (2022): 022208. http://dx.doi.org/10.1116/6.0001602.

Full text
Abstract:
Isotropic plasma atomic layer etching (ALE) was developed for titanium nitride (TiN) through a three-step process: plasma oxidation, plasma fluorination, and thermal removal at low temperatures. In the plasma oxidation step, TiN was oxidized to form a titanium oxide (TiO2) layer with O radicals generated from O2 plasma at 100 °C. The TiO2 thickness was found to be saturated with plasma after an exposure time of 300 s, and the saturated thickness increased from 0.29 to 1.23 nm with increasing temperature and RF power. In the plasma fluorination step, the TiO2 layer was converted to titanium oxy
APA, Harvard, Vancouver, ISO, and other styles
9

Khan, M. B., Sh Shakeel, K. Richter, S. Ghosh, A. Erbe, and Yo M. Georgiev. "Atomic layer etching of nanowires using conventional reactive ion etching tool." Journal of Physics: Conference Series 2443, no. 1 (2023): 012004. http://dx.doi.org/10.1088/1742-6596/2443/1/012004.

Full text
Abstract:
Abstract Innovative material and processing concepts are needed to further enhance the performance of complementary metal-oxide-semiconductor (CMOS) transistors-based circuits as the scaling limits are being reached. To supplement that, we report on the development of an atomic layer etching (ALE) process to fabricate small and smooth nanowires using a conventional dry etching tool. Firstly, a negative tone resist (hydrogen silsesquioxane) is spin-coated on Silicon Germanium-on-insulator (SiGeOI) samples and electron beam lithography is performed to create nanopatterns. These patterns act as a
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Jihyun, Dahee Shim, Yongjae Kim, and Heeyeop Chae. "Atomic layer etching of Al2O3 with NF3 plasma fluorination and trimethylaluminum ligand exchange." Journal of Vacuum Science & Technology A 40, no. 3 (2022): 032603. http://dx.doi.org/10.1116/6.0001616.

Full text
Abstract:
In this study, a cyclic isotropic plasma atomic layer etching (ALE) process was developed for aluminum oxide that involves fluorination with NF3 plasma and ligand exchange with trimethylaluminum (TMA). The isotropic plasma ALE consists of two steps: fluorination and removal. During the fluorination step, the Al2O3 surface was fluorinated to AlOFx with NF3 plasma at 100 °C. The formation of the AlOFx layer was confirmed by x-ray photoelectron spectroscopy analysis, and the atomic fraction of fluorine on the surface was saturated at 25% after 50 s of plasma fluorination. The depths of the fluori
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasma Atomic Layer Etching (ALE)"

1

Tran, Duc-Duy. "Techniques avancées de gravure pour les composants électroniques et optiques en diamant." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT115.

Full text
Abstract:
Le diamant suscite depuis quelques années une attention considérable en tant que matériau de choix pour les dispositifs électroniques et optiques avancés. Cependant, pour exploiter pleinement son potentiel, il est essentiel de surmonter des défis majeurs dans les processus de gravure. En effet, si les liaisons carbone-carbone très fortes du diamant lui confèrent des propriétés très intéressantes, elles rendent les procédés de gravure inefficaces ou mal adaptés. Les méthodes de gravure classiques sont inadaptées car elles causent trop de dommages de surface et de subsurface, ce qui affecte les
APA, Harvard, Vancouver, ISO, and other styles
2

Pezeril, Maxime. "Développement d'un procédé de gravure par plasma pour les transistors de puissance à base de matériaux III-V." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT049.

Full text
Abstract:
Dans le secteur de l’électronique de puissance, le Nitrure de Gallium (GaN) émerge comme un matériau prometteur grâce à ses qualités intrinsèques, en particulier son grand gap et sa tenue à fortes tensions. Les transistors qui l’utilisent, appelés HEMT (High Electron Mobility Transistors), reposent sur une propriété particulière d’une hétérostructure AlGaN/GaN: un canal bi-dimensionnel (2DEG). Les différentes technologies sont encore en développement et font face à différentes problématiques liées aux étapes critiques du procédé de fabrication des composants. L’une de ces étapes est la gravure
APA, Harvard, Vancouver, ISO, and other styles
3

Fecko, Peter. "Mikrostruktury mimikující povrch tlapky gekona." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400722.

Full text
Abstract:
Adhezní schopnosti gekona byly předmětem mnoha studií a inspirací pro vytvoření mnoha napodobenin. Tato práce navrhuje vlastní verzi umělých gekoních struktur ve tvaru mikroskopických pilířů, které by vykazovaly adhezní vlastnosti srovnatelné s tlapkou gekona. Vyrobeny byli struktury z polymeru Parylen C pomocí fotolitografie a technik na leptání křemíku. Dalším cílem bylo různými metodami pro modifikaci povrchu a charakterizaci vytvořených struktur, které určí adhezní síly těchto povrchů, před a po modifikacích.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma Atomic Layer Etching (ALE)"

1

"Atomic Layer Etching." In Encyclopedia of Plasma Technology. CRC Press, 2016. http://dx.doi.org/10.1081/e-eplt-120049598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Atomic Layer Etching: Directional." In Encyclopedia of Plasma Technology. CRC Press, 2016. http://dx.doi.org/10.1081/e-eplt-120053939.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma Atomic Layer Etching (ALE)"

1

Ha, Heeju, Yongjae Kim, Minsung Jeon, and Heeyeop Chae. "Plasma atomic layer etching of molybdenum with surface fluorination for next-generation interconnect." In Advanced Etch Technology and Process Integration for Nanopatterning XIV, edited by Efrain Altamirano-Sánchez and Nihar Mohanty. SPIE, 2025. https://doi.org/10.1117/12.3050967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dineen, Mark, Matthew Loveday, Andy Goodyear, et al. "Low damage etching by Inductively Coupled Plasma Reactive Ion Etch (ICP-RIE) and Atomic Layer Etching (ALE) of III-V materials to enable next generation device performance." In Advanced Etch Technology for Nanopatterning IX, edited by Catherine B. Labelle and Richard S. Wise. SPIE, 2020. http://dx.doi.org/10.1117/12.2558732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agarwal, A., and M. J. Kushner. "Plasma atomic layer etching." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Agarwal, Ankur, and Mark J. Kushner. "Recipes for Plasma Atomic Layer Etching." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nipane, Ankur, Punnu Jose Sebastian, Younghun Jung, et al. "Atomic Layer Etching (ALE) of WSe2 Yielding High Mobility p-FETs." In 2019 Device Research Conference (DRC). IEEE, 2019. http://dx.doi.org/10.1109/drc46940.2019.9046402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fischer, Andreas, Richard Janek, John Boniface, et al. "Plasma-assisted thermal atomic layer etching of Al2O3." In SPIE Advanced Lithography, edited by Sebastian U. Engelmann and Rich S. Wise. SPIE, 2017. http://dx.doi.org/10.1117/12.2258129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Basher, Abdulrahman H. "Mechanisms of Thermal Atomic Layer Etching (ALE) of Nickel by Acetylacetone (acacH) Molecules." In 64th Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2021. http://dx.doi.org/10.14332/svc21.proc.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xifeng, Mark J. Kushner, Mingmei Wang, and Peter Biolsi. "Scaling of Atomic Layer Etching of SiO2 in Fluorocarbon Plasmas: Transient Etching and Surface Roughness." In 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mameli, Alfredo, Marcel A. Verheijen, Adrie Mackus, Fred Roozeboom, and Erwin W. M. M. Kessels. "Isotropic atomic layer etching of ZnO using acetylacetone and O2 plasma (Conference Presentation)." In Advanced Etch Technology for Nanopatterning VIII, edited by Catherine B. Labelle and Richard S. Wise. SPIE, 2019. http://dx.doi.org/10.1117/12.2514645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Jihye, Hojin Kang, Yongsun Cho, Junsik Hong, and Heeyeop Chae. "Low global warming C5F10O isomers for plasma atomic layer etching and reactive ion etching of SiO2 and Si3N4." In Advanced Etch Technology and Process Integration for Nanopatterning XIII, edited by Efrain Altamirano-Sánchez and Nihar Mohanty. SPIE, 2024. http://dx.doi.org/10.1117/12.3014577.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma Atomic Layer Etching (ALE)"

1

Economou, Demetre J., and Vincent M. Donnelly. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1130983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!