To see the other types of publications on this topic, follow the link: Plasma Enhanced Chemical Vapour deposition.

Journal articles on the topic 'Plasma Enhanced Chemical Vapour deposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Plasma Enhanced Chemical Vapour deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bain, M. F., B. M. Armstrong, and H. S. Gamble. "Deposition of tungsten by plasma enhanced chemical vapour deposition." Le Journal de Physique IV 09, PR8 (September 1999): Pr8–827—Pr8–833. http://dx.doi.org/10.1051/jp4:19998105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Xiuhua, Lin Li, Gibson Des, Waddell Ewan, and Wingo Lv. "Modelling and optimization of f ilm thickness variation for plasma enhanced chemical vapour deposition processes." Chinese Optics Letters 11, S1 (2013): S10209. http://dx.doi.org/10.3788/col201311.s10209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Philip A., Andrew D. Jackson, Paul D. Lickiss, Richard D. Pilkington, and Robert D. Tomlinson. "The plasma enhanced chemical vapour deposition of CuInSe2." Thin Solid Films 238, no. 1 (January 1994): 4–7. http://dx.doi.org/10.1016/0040-6090(94)90638-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Uttam, Sachin S. Chauhan, Jayshree Sharma, A. K. Sanyasi, J. Ghosh, K. K. Choudhary, and S. K. Ghosh. "Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition." Journal of Physics: Conference Series 755 (October 2016): 012010. http://dx.doi.org/10.1088/1742-6596/755/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oehr, C., and H. Suhr. "Deposition of silver films by plasma-enhanced chemical vapour deposition." Applied Physics A Solids and Surfaces 49, no. 6 (December 1989): 691–96. http://dx.doi.org/10.1007/bf00616995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jašek, Ondřej, Petr Synek, Lenka Zajíčková, Marek Eliáš, and Vít Kudrle. "Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric Pressure." Journal of Electrical Engineering 61, no. 5 (September 1, 2010): 311–13. http://dx.doi.org/10.2478/v10187-011-0049-9.

Full text
Abstract:
Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric PressureCarbon nanostructures present the leading field in nanotechnology research. A wide range of chemical and physical methods was used for carbon nanostructures synthesis including arc discharges, laser ablation and chemical vapour deposition. Plasma enhanced chemical vapour deposition (PECVD) with its application in modern microelectronics industry became soon target of research in carbon nanostructures synthesis. Selection of the ideal growth process depends on the application. Most of PECVD techniques work at low pressure requiring vacuum systems. However for industrial applications it would be desirable to work at atmospheric pressure. In this article carbon nanostructures synthesis by plasma discharges working at atmospheric pressure will be reviewed.
APA, Harvard, Vancouver, ISO, and other styles
7

Choi, Seong S., D. W. Kim, J. W. Joe, J. H. Moon, K. C. Park, and J. Jang. "Deposition of diamondlike carbon films by plasma enhanced chemical vapour deposition." Materials Science and Engineering: B 46, no. 1-3 (April 1997): 133–36. http://dx.doi.org/10.1016/s0921-5107(96)01948-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramirez, J., H. Suhr, L. Szepes, L. Zanathy, and A. Nagy. "Deposition of silicon carbide films by plasma enhanced chemical vapour deposition." Journal of Organometallic Chemistry 514, no. 1-2 (May 1996): 23–28. http://dx.doi.org/10.1016/0022-328x(95)06032-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carreño, M. N. P., J. P. Bottecchia, and I. Pereyra. "Low temperature plasma enhanced chemical vapour deposition boron nitride." Thin Solid Films 308-309 (October 1997): 219–22. http://dx.doi.org/10.1016/s0040-6090(97)00389-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nagels, P., E. Sleeckx, and R. Callaerts. "Plasma-Enhanced Chemical Vapour Deposition of Amorphous Se Films." Le Journal de Physique IV 05, no. C5 (June 1995): C5–1109—C5–1115. http://dx.doi.org/10.1051/jphyscol:19955131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kulisch, W., M. Witt, H. J. Frenck, and R. Kassing. "Characterization of remote plasma-enhanced chemical vapour deposition processes." Materials Science and Engineering: A 140 (July 1991): 715–21. http://dx.doi.org/10.1016/0921-5093(91)90502-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kelm, G., and G. Jungnickel. "Hydrogen in plasma-enhanced chemical vapour deposition insulating films." Materials Science and Engineering: A 139 (July 1991): 401–7. http://dx.doi.org/10.1016/0921-5093(91)90649-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sardella, Eloisa, Francesca Intranuovo, Pasqua Rossini, Marina Nardulli, Roberto Gristina, Riccardo d'Agostino, and Pietro Favia. "Plasma Enhanced Chemical Vapour Deposition of Nanostructured Fluorocarbon Surfaces." Plasma Processes and Polymers 6, S1 (May 6, 2009): S57—S60. http://dx.doi.org/10.1002/ppap.200930302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Othman, Maisara, Richard Ritikos, and Saadah Abdul Rahman. "Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst." Thin Solid Films 685 (September 2019): 335–42. http://dx.doi.org/10.1016/j.tsf.2019.06.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

KAKIUCHI, Hiroaki. "Plasma-Enhanced Chemical Vapor Deposition." Journal of the Japan Society for Precision Engineering 82, no. 11 (2016): 956–60. http://dx.doi.org/10.2493/jjspe.82.956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cole, Matthew, and William Milne. "Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes." Materials 6, no. 6 (May 31, 2013): 2262–73. http://dx.doi.org/10.3390/ma6062262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fischer, R. "Bayesian group analysis of plasma-enhanced chemical vapour deposition data." New Journal of Physics 6 (February 19, 2004): 25. http://dx.doi.org/10.1088/1367-2630/6/1/025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Suhr, Harald. "Applications and trends in plasma-enhanced organometallic chemical vapour deposition." Surface and Coatings Technology 49, no. 1-3 (December 1991): 233–38. http://dx.doi.org/10.1016/0257-8972(91)90061-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gupta, Manju, V. K. Rathi, S. P. Singh, O. P. Agnihotri, and K. S. Chari. "Plasma enhanced chemical vapour deposition silicon nitride for microelectronic applications." Thin Solid Films 164 (October 1988): 309–12. http://dx.doi.org/10.1016/0040-6090(88)90154-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ratcliffe, P. J., J. Hopkins, A. D. Fitzpatrick, C. P. Barker, and J. P. S. Badyal. "Plasma-enhanced chemical vapour deposition of TiO2/polymer composite layers." Journal of Materials Chemistry 4, no. 7 (1994): 1055. http://dx.doi.org/10.1039/jm9940401055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ortiz, A., J. C. Alonso, M. Garcia, and J. Toriz. "Tin sulphide films deposited by plasma-enhanced chemical vapour deposition." Semiconductor Science and Technology 11, no. 2 (February 1, 1996): 243–47. http://dx.doi.org/10.1088/0268-1242/11/2/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sleeckx, E., P. Nagels, R. Callaerts, and M. Van Roy. "Plasma-enhanced chemical vapour deposition of amorphous GexSe1−x films." Journal of Non-Crystalline Solids 164-166 (December 1993): 1195–98. http://dx.doi.org/10.1016/0022-3093(93)91214-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hofmann, S., B. Kleinsorge, C. Ducati, A. C. Ferrari, and J. Robertson. "Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes." Diamond and Related Materials 13, no. 4-8 (April 2004): 1171–76. http://dx.doi.org/10.1016/j.diamond.2003.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chuang, Alfred T. H., Bojan O. Boskovic, and John Robertson. "Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition." Diamond and Related Materials 15, no. 4-8 (April 2006): 1103–6. http://dx.doi.org/10.1016/j.diamond.2005.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, C. H., C. T. Wu, and C. Y. Peung. "AlN thin films prepared by plasma-enhanced chemical vapour deposition." Materials Science and Engineering: B 15, no. 3 (December 1992): 229–36. http://dx.doi.org/10.1016/0921-5107(92)90063-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bath, A., O. Baehr, M. Barrada, B. Lepley, P. J. van der Put, and J. Schoonman. "Plasma enhanced chemical vapour deposition of boron nitride onto InP." Thin Solid Films 241, no. 1-2 (April 1994): 278–81. http://dx.doi.org/10.1016/0040-6090(94)90441-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kumar, Sunil, Amit Malik, Dipendra Singh Rawal, Seema Vinayak, and Hitendra Malik. "Performance Analysis of GaN/AlGaN HEMTs Passivation using Inductively Coupled Plasma Chemical Vapour Deposition and Plasma Enhanced Chemical Vapour Deposition Techniques." Defence Science Journal 68, no. 6 (October 31, 2018): 572. http://dx.doi.org/10.14429/dsj.68.12329.

Full text
Abstract:
<p class="p1">In the present paper SiN thin film has been studied as a passivation layer and its effect on AlGaN/GaN HEMTs is investigated using two different deposition techniques i.e PECVD and ICPCVD. AlGaN/GaN HEMTs devices passivated with optimised SiN film have delivered lower gate leakage current (from μA to nA). Device source drain saturation current (I<span class="s2">ds</span>) increased from 400mA/mm to ~550 A/mm and the peak extrinsic trans-conductance increased from 100 mS/mm to 170 mS/mm for a 0.8 μm HEMT device. The optimised SiN passivation process has resulted in reduced current collapse and increased breakdown voltage for HEMT devices.<span class="Apple-converted-space"> </span></p>
APA, Harvard, Vancouver, ISO, and other styles
28

Oliveri, C., F. Baroetto, and C. Magro. "Study of the chemical composition of silicon nitride films obtained by chemical vapour deposition and plasma-enhanced chemical vapour deposition." Surface and Coatings Technology 45, no. 1-3 (May 1991): 137–46. http://dx.doi.org/10.1016/0257-8972(91)90216-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hyman, E., K. Tsang, I. Lottati, A. Drobot, B. Lane, R. Post, and H. Sawin. "Plasma enhanced chemical vapor deposition modeling." Surface and Coatings Technology 49, no. 1-3 (December 1991): 387–93. http://dx.doi.org/10.1016/0257-8972(91)90088-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nunomura, Shota, Michio Kondo, and Hiroshi Akatsuka. "Gas temperature and surface heating in plasma enhanced chemical-vapour-deposition." Plasma Sources Science and Technology 15, no. 4 (August 29, 2006): 783–89. http://dx.doi.org/10.1088/0963-0252/15/4/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meyyappan, M. "A review of plasma enhanced chemical vapour deposition of carbon nanotubes." Journal of Physics D: Applied Physics 42, no. 21 (October 7, 2009): 213001. http://dx.doi.org/10.1088/0022-3727/42/21/213001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yoshihara, M., A. Sekiya, T. Morita, K. Ishii, S. Shimoto, S. Sakai, and Y. Ohki. "Rare-earth-doped films prepared by plasma-enhanced chemical vapour deposition." Journal of Physics D: Applied Physics 30, no. 13 (July 7, 1997): 1908–12. http://dx.doi.org/10.1088/0022-3727/30/13/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Farsari, E., A. G. Kalampounias, E. Amanatides, and D. Mataras. "ECWR plasma enhanced chemical vapour deposition of microcrystalline silicon thin films." Journal of Physics: Conference Series 550 (November 26, 2014): 012031. http://dx.doi.org/10.1088/1742-6596/550/1/012031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gerretsen, J., G. Kirchner, T. Kelly, V. Mernagh, R. Koekoek, and L. McDonnell. "SiC-Si3N4 composite coatings produced by plasma-enhanced chemical vapour deposition." Surface and Coatings Technology 60, no. 1-3 (October 1993): 566–70. http://dx.doi.org/10.1016/0257-8972(93)90154-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Itoh, H., M. Kato, and K. Sugiyama. "Plasma-enhanced chemical vapour deposition of AlN coatings on graphite substrates." Thin Solid Films 146, no. 3 (February 1987): 255–64. http://dx.doi.org/10.1016/0040-6090(87)90432-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zorc, H., and R. Sinovčevic̀. "Medium optical index material tailoring by plasma-enhanced chemical vapour deposition." Thin Solid Films 164 (October 1988): 375–79. http://dx.doi.org/10.1016/0040-6090(88)90165-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhao, Yu Wen, and H. Suhr. "Aluminium oxide thin films prepared by plasma-enhanced chemical vapour deposition." Applied Physics A Solids and Surfaces 55, no. 2 (August 1992): 176–79. http://dx.doi.org/10.1007/bf00334220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Han, I. K., Y. J. Lee, J. H. Jo, J. I. Lee, and K. N. Kang. "Heating effect in plasma-enhanced chemical vapour deposition of silicon nitride." Journal of Materials Science Letters 10, no. 9 (1991): 526–28. http://dx.doi.org/10.1007/bf00726926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Horáková, M., A. Kolouch, P. Špatenka, and P. Špatenka. "Hydrophility of TiO2 films prepared by plasma enhanced chemical vapour deposition." Czechoslovak Journal of Physics 56, S2 (October 2006): B1185—B1191. http://dx.doi.org/10.1007/s10582-006-0348-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Regnier, C., J. Desmaison, P. Tristant, and D. Merle. "Remote Microwave Plasma Enhanced Chemical Vapour Deposition of SiO2 Films : Oxygen Plasma Diagnostic." Le Journal de Physique IV 05, no. C5 (June 1995): C5–621—C5–628. http://dx.doi.org/10.1051/jphyscol:1995574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Thomas, Rajesh, and G. Mohan Rao. "Synthesis of 3-dimensional porous graphene nanosheets using electron cyclotron resonance plasma enhanced chemical vapour deposition." RSC Advances 5, no. 103 (2015): 84927–35. http://dx.doi.org/10.1039/c5ra09087c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Franz, Gerhard. "Plasma Enhanced Chemical Vapor Deposition of Organic Polymers." Processes 9, no. 6 (June 1, 2021): 980. http://dx.doi.org/10.3390/pr9060980.

Full text
Abstract:
Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal. Therefore, the view is directed to the reasons for this behavior. The advantages and disadvantages of three of the widest-spread types, namely microwave-driven plasmas and the two types of radio frequency-driven plasmas denoted Capacitively-Coupled Plasmas (CCPs) and Inductively-Coupled Plasmas (ICPs) are described. The view is also directed towards the surface analytics of the deposited layers—a very delicate issue because carbon is the most prominent atom to form multiple bonds and branched polymers which causes multifold reaction paths in almost all cases. Purification of a mixture of volatile compounds is not at all an easy task, but it is impossible for solids. Therefore, the characterization of the film properties is often more orientated towards typical surface properties, e.g., hydrophobicity, or dielectric strength instead of chemical parameters, e.g., certain spectra which characterize the purity (infrared or Raman). Besides diamond and Carbon Nano Tubes, CNTs, one of the polymers which exhibit an almost threadlike character is poly-pxylylene, commercially denoted parylene, which has turned out a film with outstanding properties when compared to other synthetics. Therefore, CVD deposition of parylene is making inroads in several technical fields. Even applications demanding tight requirements on coating quality, like gate dielectrics for semiconductor industry and semi-permeable layers for drug eluting implants in medical science, are coming within its purview. Plasma-enhancement of chemical vapor deposition has opened the window for coatings with remarkable surface qualities. In the case of diamond and CNTs, their purity can be proven by spectroscopic methods. In all the other cases, quantitative measurements of other parameters of bulk or surface parameters, resp., are more appropriate to describe and to evaluate the quality of the coatings.
APA, Harvard, Vancouver, ISO, and other styles
43

Ecke, G., G. Eichhorn, J. Pezoldt, C. Reinhold, T. Stauden, and F. Supplieth. "Deposition of aluminium nitride films by electron cyclotron resonance plasma-enhanced chemical vapour deposition." Surface and Coatings Technology 98, no. 1-3 (January 1998): 1503–9. http://dx.doi.org/10.1016/s0257-8972(97)00282-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Baba, K., R. Hatada, S. Flege, and W. Ensinger. "Deposition of silicon-containing diamond-like carbon films by plasma-enhanced chemical vapour deposition." Surface and Coatings Technology 203, no. 17-18 (June 2009): 2747–50. http://dx.doi.org/10.1016/j.surfcoat.2009.02.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Milne, S. B., Y. Q. Fu, J. K. Luo, A. J. Flewitt, S. Pisana, A. Fasoli, and W. I. Milne. "Stress and Crystallization of Plasma Enhanced Chemical Vapour Deposition Nanocrystalline Silicon Films." Journal of Nanoscience and Nanotechnology 8, no. 5 (May 1, 2008): 2693–98. http://dx.doi.org/10.1166/jnn.2008.629.

Full text
Abstract:
Nanocrystalline Si films were prepared with a RF-PECVD system using different SiH4/H2 ratios, plasma powers, substrate temperatures and annealing conditions. The film's intrinsic stress was characterized in relation to the crystallization fraction. Results show that an increasing H2 gas ratio, plasma power or substrate temperature can shift the growth mechanism across a transition point, past which nanocrystalline Si is dominant in the film structure. The film's intrinsic stress normally peaks during this transition region. Different mechanisms of stress formation and relaxation during film growth were discussed, including ion bombardment effects, hydrogen induced bond-reconstruction and nanocomposite effects (nanocrystals embedded in an amorphous Si matrix). A three-parameter schematic plot has been proposed which is based on the results obtained. The film structure and stress are presented in relation to SiH4 gas ratio, plasma power and temperature.
APA, Harvard, Vancouver, ISO, and other styles
46

Awaya, Nobuyoshi, and Yoshinobu Arita. "Plasma-Enhanced Chemical Vapor Deposition of Copper." Japanese Journal of Applied Physics 30, Part 1, No. 8 (August 15, 1991): 1813–17. http://dx.doi.org/10.1143/jjap.30.1813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kummer, M., C. Rosenblad, A. Dommann, T. Hackbarth, G. Höck, M. Zeuner, E. Müller, and H. von Känel. "Low energy plasma enhanced chemical vapor deposition." Materials Science and Engineering: B 89, no. 1-3 (February 2002): 288–95. http://dx.doi.org/10.1016/s0921-5107(01)00801-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mahowald, M. A., and N. J. Ianno. "Plasma-enhanced chemical vapor deposition of tungsten." Thin Solid Films 170, no. 1 (March 1989): 91–97. http://dx.doi.org/10.1016/0040-6090(89)90625-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ianno, N. J., and J. A. Plaster. "Plasma-enhanced chemical vapor deposition of molybdenum." Thin Solid Films 147, no. 2 (March 1987): 193–202. http://dx.doi.org/10.1016/0040-6090(87)90284-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Blain, S., J. E. Klemberg-Sapieha, M. R. Wertheimer, and S. C. Gujrathi. "Silicon oxynitride from microwave plasma: fabrication and characterization." Canadian Journal of Physics 67, no. 4 (April 1, 1989): 190–94. http://dx.doi.org/10.1139/p89-033.

Full text
Abstract:
Plasma silicon nitride (P-SiN), oxynitride (P-SiON), and silicon dioxide (P-SiO2) films have been prepared from SiH4–NH3–N2O mixtures in a large volume microwave plasma (LMPR, 2.45 GHz) apparatus at TS = 280 °C. Film compositions, determined by X-ray photoelectron spectroscopy and nuclear elastic recoil detection analysis, reveal about 15 at.% hydrogen in P-SiN, <2% in P-SiO2, and intermediate values in P-SiON. Various physicochemical and electrical properties (density, refractive index, intrinsic stress, permittivity, and conductivity) vary systematically with film composition, O/(O + N), determined from the above analyses. The present microwave plasma enhanced chemical vapour deposition (PECVD) films compare favorably with the best PECVD and low pressure chemical vapour deposition (LPCVD) materials reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography