Contents
Academic literature on the topic 'Plasma (Gaz ionisés) – Propriétés optiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma (Gaz ionisés) – Propriétés optiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Plasma (Gaz ionisés) – Propriétés optiques"
Marceau, Claude. "Anisotropie optique ultrarapide induite par la filamentation d'impulsions femtosecondes dans les gaz." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26889/26889.pdf.
Full textUrsu, Cristian. "Caractérisation par méthodes optiques et électriques du plasma produit par ablation laser." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10005/document.
Full textThe transient plasmas generated by high-fluence laser ablation are complex phenomena involving multiple processes, as optical radiation absorption by the matter, temperature increase and phase transitions generated by the energy transfer, expanding gas hydrodynamics, electrical interactions between the charged particles, or the interaction of the laser radiation with the generated plasma. A most complete understanding of this phenomenon is therefore necessary from the fundamental point of view, but also for characterizing the behavior of high technological potential materials under intense irradiation. We have developed a multi-diagnostic approach, based on optical and electrical techniques: fast ICCD camera imaging, space- and time-resolved optical emission spectroscopy, diode laser absorption spectroscopy, Langmuir probe. These techniques have been used to characterize plasmas generated by nanosecond laser ablation of various samples, from simple Al and Cu metals, to more complicated ceramics, chalcogenide glasses or ferromagnetics. The main results have been the observation of the plasma splitting in two structures and the kinetic and energetic characterization of their constituents. These results present fundamental (development of a fractal hydrodynamic model) and applied (erosion of dielectric walls in space plasma thrusters, pulsed laser deposition of thin films) interest
Le, Marec Andréa. "Vers les lasers XUV femtosecondes : étude des propriétés spectrales et temporelles de l'amplification de rayonnement XUV dans un plasma." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS337/document.
Full textThe work of this thesis was made in the context of the efforts made to reduce the pulse duration of plasma-based XUV lasers down to the femtosecond domain. The very narrow spectral width of the amplifier medium (~ 1E10 - 1E11 Hz) limits the minimum achievable pulse duration (Fourier limit). The amplifier medium of XUV lasers pumped by collisional excitation are dense and hot plasmas that can be created both by rapid electrical discharge and by different types of power lasers. There are thus 4 distinct types of XUV laser sources with different plasma parameters (density, temperature) in the gain region. Yet, the spectral and temporal properties of the emitted radiation are strongly linked to these parameters. All 4types of XUV lasers operate in amplification of spontaneous emission (ASE) mode, and 2 of them, for a few years, can operate in "seeded" mode. This technique consists in injecting a femtosecond high order harmonic pulse (the seed), resonant with the lasing transition, at one extremity of the plasma amplifier. Because of the major mismatch between the spectral width of the plasma and that of the seed the femtosecond duration of the latter is not preserved during amplification. Simulations (COLAX Maxwell-Bloch code) show that the amplification is highly non-linear in such systems, including the appearance of Rabi oscillations. Generating Rabi oscillations in seeded XUV lasers is currently considered a promising way to produce femtosecond XUV lasers. However Rabi oscillations have yet never been experimentally demonstrated. Thus, a meticulous experimental characterization of the spectral properties of the 4 types of XUV lasers in connection with the plasma conditions, combined with a better understanding of amplification mechanisms under different theoretical plasma conditions based on studies and simulations are needed to reach our goal. A wide experimental campaign aiming to spectrally characterize all different types of XUV lasers was conducted by our group over the past decade. The required spectral resolution is not available with the best current spectrometers, so the method we used consists on the measurement of the temporal coherence of the XUV laser through an electric field autocorrelation, using a wave front-division interferometer that was specifically designed for these measures, from which the spectral width can be deduced. The latter type of the four XUV laser types (PALS, Prague) was characterized during this thesis, closing this experimental campaign. The measured coherence time was 0.68 ps, which is significantly lower than the coherence times measured on the other XUV laser types. Analysis of the overall results revealed two different behavior whether the XUV laser has a long pulse duration compared to its coherence time or if the two durations are close. In the first case the inferred spectral widths are in good agreement with theoretical predictions, while in the second case the agreement was not as good and the shape of the electric field autocorrelation traces was not understood. This observation has prompted a detailed study of the influence of temporal properties of ASE XUV lasers on the interferometric methodology used to determine the spectral width of XUV lasers. The study, based on a model developed for X-free electron lasers, revealed an effect of partial temporal coherence in electric field autocorrelation measures of these sources. This study offers perspectives on a simultaneous measure of the spectral width and the duration of theses sources with our method. Finally, a study based on Maxwell-Bloch equations was carried out in order to understand better the conditions of apparition of Rabi oscillations. This study highlighted two amplification regimes, adiabatic and dynamic, around a population inversion threshold
Sanchez, Sandrine. "Croissance par M. O. V. P. E. Et caractérisation d'hétérostructures ZnCdSe à gradient d'indice et à confinement séparé." Montpellier 2, 1997. http://www.theses.fr/1997MON20085.
Full textAlastuey, Angel. "Quelques propriétés d'équilibre du plasma à une composante." Paris 11, 1985. http://www.theses.fr/1985PA112025.
Full textWe study some equilibrium properties of the classical one component plasma (OCP), in three and two dimensions (1/r and- lnr potentials respectively). This simple model does have the essential properties (screening effects) of multicomponent Coulomb systems in the plasma phase. Furthermore the OCP describes with a good accuracy some real systems, in Astrophysics or on the Earth. Because of its basic and practical interest, there has been numerous works on the OCP: rigorous approaches, numerical simulations, approximated theories. Our work presents some of the aspects mentioned before (numerical simulations excluded). We consider both the homogeneous system (fluid phase) and the inhomogeneous system (interfaces). Our rigorous approaches contain a non-perturbative proof of the fast decay of the correlations in the monotonic regime, a general study of the potential and field fluctuations dimensions in two dimensions, an analytic computations in asymptotic regimes (dielectric wall in the weak-coupling limit)or in particular cases (two-dimensional model at a special value of the temperature). With respect to approximated theories, we propose a scheme of successive approximations for computing the micro field distribution on the basis of a new systematic expansion. Furthermore we study density functional theories applied to the computation of interface density profiles; in particular we derive a new density functional expansion well appropriate for hard walls. For both problems (microfield and interfaces), we make unambiguous tests of the approximated theories by taking advantage of the exact results (analytic and Monte Carlo). The common axis of this work is a formulation starting from the first principles for the problems considered. This allows a better under standing of some fundamental mechanisms as well as a clear interpretation of the successes or failures of the approximated theories (with the possibility of including corrections)
Salin, Gwenaël. "Etude des propriétés dynamiques d'un modèle simple de plasma : théorie et simulations numériques." Orléans, 2002. http://www.theses.fr/2002ORLE2042.
Full textBillou, Eric. "Caracterisation énergetique et physico-chimie d'un plasma a superposition de puissance." Perpignan, 1989. http://www.theses.fr/1989PERP0077.
Full textETEMADI, ROXANA. "Depot d'oxydes et de nitrures de silicium par double plasma microonde et radiofrequence : etude du plasma et des proprietes optiques et structurelles des couches deposees." Paris 11, 1996. http://www.theses.fr/1996PA112075.
Full textMétral, Jérôme. "Modélisation et simulation numérique de l'écoulement d'un plasma atmosphérique pour l'étude de l'activité électrique des plasmas sur avion." Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0868.
Full textA ionized gas (or plasma) has the ability of absorbing or reflecting electromagnetic (radar) waves if its ionization rate is high enough. This is particularly interesting for aeronautics. This study aims at predicting the electric and energetic characteristics of a weakly ionized air plasma in an atmospheric pressure flow. The plasma is described by a two-temperature model, coming from the non-equilibrium description of plasmas. Plasma flow is then described by a two-temperature hydrodynamic system coupled with a collisional model (energy exchanges rates) and a kinetic model (chemical reactions). An algorithm was built to simulate plasma flow in axisymetric geometry. The algorithm is a 2D Lagrange + Projection scheme. The projection step was adapted to multi-components advection, using a second order, non oscillating, and bidimensionnal scheme. This algorithm allows the simulation of experiments concerning atmospheric pressure plasma and then the validation of the model parameters. In a second part, we study the Perfectly Matched Layer (PML) which is a boundary condition to simulate wave propagation in open domains. This method is particularly efficient for electromagnetic problems, and we want to enlarge this approach to aeroacoutics problems (linearized Euler equations). We propose two solutions: a practical approach to avoid numerical oscillations of the solution and a more general approach which consists in a new absorbing layer formulation which leads to well-posed problems
Prazeres, Lino Da Silva Mário António. "Simulation des propriétés radiatives du plasma entourant un véhicule traversant une atmosphère planétaire à vitesse hypersonique : application à la Planète Mars." Orléans, 2004. http://www.theses.fr/2004ORLE2071.
Full text