Academic literature on the topic 'Plasma heating in steelmaking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma heating in steelmaking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasma heating in steelmaking"
Zhao, Mengjing, Yong Wang, Shufeng Yang, Maolin Ye, Jingshe Li, and Yuhang Liu. "Flow Field and Temperature Field in a Four-Strand Tundish Heated by Plasma." Metals 11, no. 5 (April 28, 2021): 722. http://dx.doi.org/10.3390/met11050722.
Full textProtasov, A. V., B. A. Sivak, and L. A. Smirnov. "A review of domestic and foreign experience of steel treatment in CCM tundishes." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 12 (December 23, 2020): 1230–42. http://dx.doi.org/10.32339/0135-5910-2020-12-1230-1242.
Full textZyryanov, V. V., O. N. Nikolaev, and G. N. Fedorenko. "Improving the efficiency of heating in steelmaking and rolling." Metallurgist 44, no. 2 (February 2000): 71–73. http://dx.doi.org/10.1007/bf02463534.
Full textNishioka, Koki, Takayuki Maeda, and Masakata Shimizu. "Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating." ISIJ International 42, Suppl (2002): S19—S22. http://dx.doi.org/10.2355/isijinternational.42.suppl_s19.
Full textDildin, A. N., and I. V. Chumanov. "Liquid-Phase Recovery of the Metallurgical Slag Using Induction Heating Installation." Materials Science Forum 870 (September 2016): 535–38. http://dx.doi.org/10.4028/www.scientific.net/msf.870.535.
Full textChen, Jun, An Lin Li, Yong Chen, Xin Teng Liang, and Jian Hua Zeng. "Optimization of Steelmaking Process for 200t Converter." Advanced Materials Research 581-582 (October 2012): 1180–83. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.1180.
Full textMakarov, A. N., Yu A. Lugovoi, and R. M. Zuikov. "Energy saving for steelmaking in plasma-arc furnaces." Russian Metallurgy (Metally) 2011, no. 6 (June 2011): 526–30. http://dx.doi.org/10.1134/s0036029511060152.
Full textKuznetsov, V. M. "Conversion of arc steelmaking furnaces into plasma furnaces." Metallurgist 32, no. 8 (August 1988): 266–67. http://dx.doi.org/10.1007/bf00741528.
Full textOkorokov, G. N., A. I. Donets, A. Z. Shevtsov, V. A. Sinel’nikov, P. I. Yugov, B. F. Zin’ko, M. M. Krutyanskii, and A. M. Popov. "A heating tundish — The final link in a continuous steelmaking technology." Metallurgist 42, no. 1 (January 1998): 15–20. http://dx.doi.org/10.1007/bf02765047.
Full textSunaga, Yoshio. "Heating by Plasma." Kakuyūgō kenkyū 67, no. 3 (1992): 215–22. http://dx.doi.org/10.1585/jspf1958.67.215.
Full textDissertations / Theses on the topic "Plasma heating in steelmaking"
Barreto, Sandoval Jose de Jesus. "Model studies of plasma heating in the continuous casting tundish." Thesis, Sheffield Hallam University, 1993. http://shura.shu.ac.uk/19322/.
Full textSimon, M. J. "The thermal performance of water cooled panels in electric arc steelmaking furnaces." Thesis, Sheffield Hallam University, 1989. http://shura.shu.ac.uk/20363/.
Full textSandoval, Parra Astor Emar. "Electron heating in a collisionless plasma." Tesis, Universidad de Chile, 2019. http://repositorio.uchile.cl/handle/2250/172658.
Full textLos plasmas son comunes en diferentes sistemas astronómicos. Una parte importante de estos plasmas están en el régimen no colisional, en que el camino libre medio de las partículas que lo componen es más grande que el tamaño del sistema. Un ejemplo de este tipo de objetos es el disco de acreción que se encuentra en las cercanías del agujero negro ubicado en el centro de la Vía Láctea, Sagitario A* (Sgr A*). Por su baja colisionalidad, se espera que el plasma en Sgr A* no siga una distribución de Maxwell-Boltzmann. Además, por la mayor eficiencia radiativa de los electrones, es también esperable que estos tengan menor temperatura que los iones. El grado en que se calientan los electrones en un sistema no colisional, así como su espectro de energía, tienen importantes consecuencias observacionales. Existen diversos mecanismos que pueden transferir energía a los electrones. Entre ellos están: reconexión magnética, interacción onda-partícula, y viscosidad anisotrópica. En esta tesis nos enfocamos en el calentamiento de electrones por medio de la interacción onda partícula y por calentamiento viscoso. Para ello realizamos simulaciones ``particle-in-cell'' (o PIC) de un plasma no colisional, magnetizado y sujeto a un cizalle permanente. Este cizalle produce una amplificación del campo magnético, obteniéndose así una anisotropía de presión en las particulas, debido a la invarianza adiabatica de su momento magnetico. Esta anisotropía produce inestabilidades cinéticas en el plasma, las que propagan ondas en escalas del radio de Larmor de las partículas. Algunos ejemplos relevantes para nuestro estudio son las inestabilidades de whistler e ion-ciclotrón. Estas inestabilidades pueden resonar preferentemente con los electrones e iones, respectivamente, otorgando o quitando energía a las partículas. Realizamos simulaciones con moderadas razones de masa entre iones y electrones, para estudiar a los electrones en el régimen cinético. Consideramos consistentemente el régimen no-lineal y cuasi-estacionario de las inestabilidades. Estudiamos el calentamiento de los electrones, y se encontró que estos se calientan principalmente por viscosidad. Sin embargo, se encontró un calentamiento extra, el que es transferido desde los iones a los electrones debido a la interacción de estos últimos con las ondas ion-ciclotrón (las que a su vez son principalmente producidas por los iones). Este calentamiento extra aumenta con la magnetización y disminuye al aumentar la razón de masa y la temperatura de los iones. Además, la componente no térmica del espectro de energía de los electrones se ve fuertemente modificada cuando el radio de Larmor de estos es similar al de los iones. Esta componente no térmica se asemeja bastante a lo que se infiere de observaciones de sistemas como Sgr A*. Nuestro trabajo nos permitió entonces encontrar condiciones que facilitan el calentamiento y aceleración no térmica de electrones debido a la transferencia de energía entre iones y electrones en plasmas no colisionales.
Fröberg, Gunnar, and Thomas Nygren. "Heating a Plasma to 100 Million Kelvin." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153761.
Full textBansal, Parvinder S. "A pulsed electron cyclotron maser for plasma heating." Thesis, University of Strathclyde, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381504.
Full textMcGregor, Duncan Ekundayo. "Electron cyclotron heating and current drive using the electron Bernstein modes." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/212.
Full textDaniel, R. D. "Plasma diagnostics and the heating of the solar corona." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598268.
Full textO'Connell, Daniel J. "Plasma heating and kinetic instabilities in the terrestrial foreshock." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/107761/.
Full textZornig, Nicolaas Hendricus. "Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285095.
Full textBuckner, A. J. F. "The theory of electron heating in collisonless plasma shock waves." Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/13973.
Full textBooks on the topic "Plasma heating in steelmaking"
Golant, Viktor Evgenʹevich. RF plasma heating in toroidal fusion devices. New York: Consultants Bureau, 1989.
Find full textGolant, V. E., and V. I. Fedorov. RF Plasma Heating in Toroidal Fusion Devices. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8.
Full textCardozo, Nicolaas Joost Lopes. Anomalous plasma heating induced by modulation of the current-density profile =: Anomale verhitting van een plasma opgewekt door vervorming van het stroomdichtheidsprofiel. [Utrecht: Rijksuniversiteit te Utrecht], 1985.
Find full textMoore, T. E. Plasma heating and flow in an auroral arc. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textHansen, Flemming Ramskov. Electron cyclotron resonance heating of a high-density plasma. Roskilde, Denmark: Riso National Laboratory, 1986.
Find full textJalufka, N. W. Laser production and heating of plasma for MHD application. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textJalufka, N. W. Laser production and heating of plasma for MHD application. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textEuropean Conference on Controlled Fusion and Plasma Heating (13th 1986 Schliersee, Germany). 13th European Conference on Controlled Fusion and Plasma Heating, Schliersee, 14-18 April 1986: Contributed papers. Edited by Briffod G, Kaufmann M, and European Physical Society. Geneva: European Physical Society, 1986.
Find full textKruchinin, A. M. Piece i Urządzenia plazmowe. Częstochowa: Wydawn. Politechniki Częstochowskiej, 2001.
Find full textBook chapters on the topic "Plasma heating in steelmaking"
Chang, Tom, and Mats André. "Ion Heating by Low Frequency Waves." In Auroral Plasma Dynamics, 207–12. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0207.
Full textDolan, Thomas J. "Plasma Heating and Current Drive." In Magnetic Fusion Technology, 175–232. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5556-0_5.
Full textGolant, V. E., and V. I. Fedorov. "Electron Cyclotron Heating." In RF Plasma Heating in Toroidal Fusion Devices, 93–110. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_3.
Full textGolant, V. E., and V. I. Fedorov. "Lower Hybrid Heating." In RF Plasma Heating in Toroidal Fusion Devices, 111–33. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_4.
Full textGolant, V. E., and V. I. Fedorov. "Ion Cyclotron Heating." In RF Plasma Heating in Toroidal Fusion Devices, 135–68. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_5.
Full textGolant, V. E., and V. I. Fedorov. "Alfvén Wave Heating." In RF Plasma Heating in Toroidal Fusion Devices, 169–77. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1671-8_6.
Full textMontagud-Camps, Victor. "Plasma Description." In Turbulent Heating and Anisotropy in the Solar Wind, 11–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30383-9_2.
Full textPiliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1777-7_5.
Full textPiliya, A. D., and V. I. Fedorov. "Electron Cyclotron Plasma Heating in Tokamaks." In Reviews of Plasma Physics, 335–88. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7778-2_5.
Full textPopel, S. I. "Nonlinear Processes in Lower-Hybrid Current Drive and Plasma Heating." In Plasma Physics, 273–76. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_20.
Full textConference papers on the topic "Plasma heating in steelmaking"
Lee, M. C., and S. P. Kuo. "Induced magnetic perturbations by plasma heating." In 1987 Twelth International Conference on Infrared and Millimeter Waves. IEEE, 1987. http://dx.doi.org/10.1109/irmm.1987.9127070.
Full textNelson, Scott D., George Kamin, Roger Van Maren, Brian Poole, Charles Moeller, and David Phelps. "Combline antenna modeling for plasma heating." In The 11th topical conference on radio frequency power in plasmas. AIP, 1996. http://dx.doi.org/10.1063/1.49552.
Full textMartínez-Gómez, E., H. Durand-Manterola, and H. Pérez de Tejada. "Plasma Heating In The Saturn’s Magnetosphere." In PLASMA AND FUSION SCIENCE: 16th IAEA Technical Meeting on Research using Small Fusion Devices; XI Latin American Workshop on Plasma Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2405955.
Full textIves, Lawerence, David Marsden, George Collins, Jeffry Neilson, James Anderson, and Kurt Zeller. "Direct Coupled Gyrotrons for Plasma Heating." In 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). IEEE, 2020. http://dx.doi.org/10.1109/ivec45766.2020.9520537.
Full textHosea, Joel C. "Foundations of ICRF heating--A historical perspective." In Advances in plasma physics. AIP, 1994. http://dx.doi.org/10.1063/1.46748.
Full textSpielman, R. B., and J. S. DeGroot. "Resistive heating in Z-pinches." In International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593466.
Full textVranjes, J., S. Poedts, Bengt Eliasson, and Padma K. Shukla. "The Problem of Coronal Heating." In NEW FRONTIERS IN ADVANCED PLASMA PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3533189.
Full textAndo, Akira. "An Ion Heating Experiment in a Supersonic Plasma Flow." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1593924.
Full textSeki, T. "Long Pulse Plasma Heating Experiment by Ion Cyclotron Heating in LHD." In RADIO FREQUENCY POWER IN PLASMAS: 16th Topical Conference on Radio Frequency Power in Plasmas. AIP, 2005. http://dx.doi.org/10.1063/1.2098203.
Full textPorkolab, Miklos. "Plasma heating by fast magnetosonic waves in Tokamaks." In Advances in plasma physics. AIP, 1994. http://dx.doi.org/10.1063/1.46754.
Full textReports on the topic "Plasma heating in steelmaking"
Dr. Xiaodi Huang and Dr. J. Y. Hwang. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/840931.
Full textH.W. Kugel, D. Spong, R. Majeski, and M. Zarnstorff. NCSX Plasma Heating Methods. US: Princeton Plasma Physics Lab., NJ (US), February 2003. http://dx.doi.org/10.2172/812088.
Full textKugel, H. W., D. Spong, R. Majeski, and M. Zarnstorff. NCSX Plasma Heating Methods. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/960422.
Full textSudan, R. N. Theoretical studies on plasma heating and confinement. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7012555.
Full textHawryluk, R. J., H. Adler, P. Alling, and E. Synakowski. Confinement and heating of a deuterium-tritium plasma. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10135713.
Full textReddy, G. S. Versatile and Rapid Plasma Heating Device for Steel and Aluminum. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/881038.
Full textScharer, J. E. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6933183.
Full textHanada, K., H. Tanaka, M. Iida, T. Minami, T. Maekawa, Y. Terumichi, S. Tanaka, et al. Sawtooth stabilization by localized electron cyclotron heating in a tokamak plasma. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6276375.
Full textVernon, R. J. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5182806.
Full textProcassini, R. J., and B. I. Cohen. Auxiliary plasma heating and fueling models for use in particle simulation codes. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6317430.
Full text