Academic literature on the topic 'Plasma non collisionels'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma non collisionels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma non collisionels"

1

Zhang, Yanzeng, and Xian-Zhu Tang. "On the collisional damping of plasma velocity space instabilities." Physics of Plasmas 30, no. 3 (2023): 030701. http://dx.doi.org/10.1063/5.0136739.

Full text
Abstract:
For plasma velocity space instabilities driven by particle distributions significantly deviated from a Maxwellian, weak collisions can damp the instabilities by an amount that is significantly beyond the collisional rate itself. This is attributed to the dual role of collisions that tend to relax the plasma distribution toward a Maxwellian and to suppress the linearly perturbed distribution function. The former effect can dominate in cases where the unstable non-Maxwellian distribution is driven by collisionless transport on a timescale much shorter than that of collisions, and the growth rate
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Yanzeng, Yuzhi Li, Bhuvana Srinivasan, and Xian-Zhu Tang. "Resolving the mystery of electron perpendicular temperature spike in the plasma sheath." Physics of Plasmas 30, no. 3 (2023): 033504. http://dx.doi.org/10.1063/5.0132612.

Full text
Abstract:
A large family of plasmas has collisional mean-free-path much longer than the non-neutral sheath width, which scales with the plasma Debye length. The plasmas, particularly the electrons, assume strong temperature anisotropy in the sheath. The temperature in the sheath flow direction ([Formula: see text]) is lower and drops toward the wall as a result of the decompressional cooling by the accelerating sheath flow. The electron temperature in the transverse direction of the flow field ([Formula: see text]) not only is higher but also spikes up in the sheath. This abnormal behavior of [Formula:
APA, Harvard, Vancouver, ISO, and other styles
3

Fan, Kaixuan, Xueqiao Xu, Ben Zhu, and Pengfei Li. "Kinetic Landau-fluid closures of non-Maxwellian distributions." Physics of Plasmas 29, no. 4 (2022): 042116. http://dx.doi.org/10.1063/5.0083108.

Full text
Abstract:
New kinetic Landau-fluid closures, based on the cutoff Maxwellian distribution, are derived. A special static case is considered (the frequency [Formula: see text]). In the strongly collisional regime, our model reduces to Braginskii's heat flux model, and the transport is local. In the weak collisional regime, our model indicates that the heat flux is non-local and recovers the Hammett–Perkins model while the value of the cutoff velocity approaches to infinity. We compare the thermal transport coefficient [Formula: see text] of Maxwellian, cutoff Maxwellian and super-Gaussian distribution. Th
APA, Harvard, Vancouver, ISO, and other styles
4

Bret, Antoine, and Ramesh Narayan. "Density jump for parallel and perpendicular collisionless shocks." Laser and Particle Beams 38, no. 2 (2020): 114–20. http://dx.doi.org/10.1017/s0263034620000117.

Full text
Abstract:
AbstractIn a collisionless shock, there are no binary collisions to isotropize the flow. It is therefore reasonable to ask to which extent the magnetohydrodynamics (MHD) jump conditions apply. Following up on recent works which found a significant departure from MHD in the case of parallel collisionless shocks, we here present a model allowing to compute the density jump for collisionless shocks. Because the departure from MHD eventually stems from a sustained downstream anisotropy that the Vlasov equation alone cannot specify, we hypothesize a kinetic history for the plasma, as it crosses the
APA, Harvard, Vancouver, ISO, and other styles
5

YANG, Wei, Fei GAO, and Younian WANG. "Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas." Plasma Science and Technology 24, no. 5 (2022): 055401. http://dx.doi.org/10.1088/2058-6272/ac56ce.

Full text
Abstract:
Abstract A numerical model is developed to study the conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled argon plasmas at pressures of 0.1–20 Pa. The model consists of electron kinetics module, electromagnetics module, and global model module. It allows for self-consistent description of non-local electron kinetics and collisionless electron heating in terms of the conductivity of homogeneous hot plasma. Simulation results for non-local conductivity case are compared with predictions for the assumption of local conductivity ca
APA, Harvard, Vancouver, ISO, and other styles
6

McCubbin, Andrew J., Gregory G. Howes, and Jason M. TenBarge. "Characterizing velocity–space signatures of electron energization in large-guide-field collisionless magnetic reconnection." Physics of Plasmas 29, no. 5 (2022): 052105. http://dx.doi.org/10.1063/5.0082213.

Full text
Abstract:
Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field–particle correlation signatures of electron energizatio
APA, Harvard, Vancouver, ISO, and other styles
7

Hong, Young-Hun, Tae-Woo Kim, Ju-Ho Kim, Yeong-Min Lim, Moo-Young Lee, and Chin-Wook Chung. "Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge." Physics of Plasmas 29, no. 9 (2022): 093506. http://dx.doi.org/10.1063/5.0092091.

Full text
Abstract:
A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-
APA, Harvard, Vancouver, ISO, and other styles
8

Kaganovich, I. D., V. I. Demidov, S. F. Adams, and Y. Raitses. "Non-local collisionless and collisional electron transport in low-temperature plasma." Plasma Physics and Controlled Fusion 51, no. 12 (2009): 124003. http://dx.doi.org/10.1088/0741-3335/51/12/124003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alharbi, A., I. Ballai, V. Fedun, and G. Verth. "Waves in weakly ionized solar plasmas." Monthly Notices of the Royal Astronomical Society 511, no. 4 (2022): 5274–86. http://dx.doi.org/10.1093/mnras/stac444.

Full text
Abstract:
ABSTRACT Here, we study the nature and characteristics of waves propagating in partially ionized plasmas in the weakly ionized limit, typical for the lower part of the solar atmosphere. The framework in which the properties of waves are discussed depends on the relative magnitude of collisions between particles, but also on the relative magnitude of the collisional frequencies compared to the gyro-frequency of charged particles. Our investigation shows that the weakly ionized solar atmospheric plasma can be divided into two regions, and this division occurs, roughly, at the base of the chromos
APA, Harvard, Vancouver, ISO, and other styles
10

Haggerty, Colby C., Antoine Bret, and Damiano Caprioli. "Kinetic simulations of strongly magnetized parallel shocks: deviations from MHD jump conditions." Monthly Notices of the Royal Astronomical Society 509, no. 2 (2021): 2084–90. http://dx.doi.org/10.1093/mnras/stab3110.

Full text
Abstract:
ABSTRACT Shocks waves are a ubiquitous feature of many astrophysical plasma systems, and an important process for energy dissipation and transfer. The physics of these shock waves are frequently treated/modelled as a collisional, fluid magnetohydrodynamic (MHD) discontinuity, despite the fact that many shocks occur in the collisionless regime. In light of this, using fully kinetic, 3D simulations of non-relativistic, parallel propagating collisionless shocks comprised of electron-positron plasma, we detail the deviation of collisionless shocks form MHD predictions for varying magnetization/Alf
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasma non collisionels"

1

Granier, Camille. "Nouveaux développements sur la théorie des instabilités des feuilles de courant dans les plasmas non-collisionels." Electronic Thesis or Diss., Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4109.

Full text
Abstract:
La reconnexion magnétique est une modification de la topologie du champ magnétique, responsable de la libération explosive d'énergie magnétique dans les plasmas astrophysiques, comme dans le cas des orages magnétosphériques et des éjections de masse coronale, ainsi que dans les plasmas de laboratoire, comme dans le cas des crashs en dents de scie dans les tokamaks. Dans les plasmas sans collisions comme, par exemple, la magnétosphère et le vent solaire, l'inertie des électrons devient particulièrement pertinente pour provoquer la reconnexion dans les régions de courant localisé intense, appelé
APA, Harvard, Vancouver, ISO, and other styles
2

Ruyer, Charles. "Kinetic instabilities in plasmas : from electromagnetic fluctuations to collisionless shocks". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112370/document.

Full text
Abstract:
Les chocs non-collisionnels jouent un rôle majeur dans de nombreux événements astrophysiques à haute densité d'énergie (sursauts gamma, restes de supernovæ, vents de pulsar...), et seraient responsables de la génération de particules supra-thermiques et de radiations. Les simulations ont démontré qu'en l’absence de champs magnétiques externes, des instabilités électromagnétiques peuvent prendre place lors de la collision de plasmas à haute vitesse. Les instabilités du type Weibel sont en effet capables de faire croître, dans ces milieux, une turbulence électromagnétique potentiellement en mesu
APA, Harvard, Vancouver, ISO, and other styles
3

Capdessus, Rémi. "Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR15268/document.

Full text
Abstract:
L'interaction d'un plasma avec une impulsion laser-intense suscite de plus en plus d'intérêt du fait des progrès en matière de technologie laser d'outils numériques. La réaction du rayonnement affecte la dynamique des électrons, celle du rayonnement synchrotron, ainsi que celle des ions via le champ de séparation de charge, pour des intensités laser supérieures à 10puissance22 W/CM2. les équations cinétiques régissant le transport de particules à ultra-haute intensité ont été obtenues. La réaction du rayonnement implique la contraction du volum de l'epace des phases des électrons A l'aide de s
APA, Harvard, Vancouver, ISO, and other styles
4

Figua, Habiba. "Contribution des codes euleriens en physique des plasmas non collisionnels." Orléans, 1999. http://www.theses.fr/1999ORLE2037.

Full text
Abstract:
Ce travail rentre dans le cadre de la simulation numerique des problemes fortement nonlineaires en physique des plasmas non collisionnels. A cet effet, nous avons etudie trois aspects differents de ces problemes. Le premier chapitre traite l'expansion d'un plasma constitue de trois especes (electrons, ions positifs et ions negatifs). Les equations de bases sont ecrites dans une nouvelle echelle en espace et en temps a l'aide des transformations du redimensionnement qui absorbent analytiquement l'expansion. Dans ce plasma, la temperature decroit en t - 2 et le nouveau temps est une compression
APA, Harvard, Vancouver, ISO, and other styles
5

Grassi, Anna. "Collisionless shocks in the context of Laboratory Astrophysics." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066483/document.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre de l'astrophysique de laboratoire. Nous abordons divers aspects de la physique des chocs non-collisionels en présence de flots de plasma relativistes dans des configurations d'intérêt pour les communautés astrophysique et de l’interaction laser-plasma (ILP). Notre approche repose sur la modélisation analytique et la simulation cinétique haute-performance, outil central pour décrire les processus d'ILP et la physique non linéaire à l'origine des chocs étudiés. Le code Particle-in-Cell SMILEI a été largement utilisé et développé au cours ce travail. Trois conf
APA, Harvard, Vancouver, ISO, and other styles
6

Moreno-Gelos, Quentin. "Non-relativistic collisionless shocks in Laboratory Astrophysics." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0427/document.

Full text
Abstract:
Les chocs sans collision sont omniprésents dans l'Univers, notamment dans les restes de supernova, et sont formés via diverses instabilités plasmas dépendant essentiellement de la vitesse et de la magnétisation des flux de plasmas. La description de tels chocs nécessite une approche cinétique, tant analytique que numérique.Dans cette thèse, nous avons étudié, au travers de simulations Particle-In-Cell (PIC), les processus sous-jacents par lesquels les instabilités rentrent en compétition les unes avec les autres. Nous avons montré que la diminution du rapport des masses entre ions et électrons
APA, Harvard, Vancouver, ISO, and other styles
7

Saussede, Florence. "Simulation numérique d'un choc non collisionnel en physique des plasmas." Bordeaux 1, 1993. http://www.theses.fr/1993BOR10546.

Full text
Abstract:
Un modele de representation hybride, adoptant une description cinetique des ions et hydrodynamique des electrons est mis en place pour simuler le probleme unidimensionnel d'un choc non collisionnel en physique des plasmas. Les modeles hybrides standards tiennent compte de certaines hypotheses simplificatrices (masse electronique nulle, quasi-neutralite, approximation de darwin) qui reduisent le systeme d'equations initial et facilitent ainsi l'analyse numerique du probleme. Afin d'elargir le domaine d'application du modele, nous levons ces hypotheses et considerons le systeme d'equations compl
APA, Harvard, Vancouver, ISO, and other styles
8

Musatenko, Kateryna. "Analyse des caractéristiques d'ondes au voisinage des chocs dans des plasmas spatiaux : observations des satellites CLUSTER, modélisation et interprétation." Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00452683.

Full text
Abstract:
Cette thèse est consacrée à l'étude des processus d'ondes au voisinage des chocs dans les plasmas spatiaux. La propagation des ondes de Langmuir dans un plasma présentant des inhomogénéités aléatoires de densité a été modélisée numériquement; les résultats obtenus ont été comparés aux données des instruments WHISPER et WBD à bord des satellites CLUSTER. Les résultats de modélisation et l'étude statistique portant sur l'intensité des ondes de Langmuir observées dans le préchoc terrestre et le vent solaire ont montré que le théorème central limite n'est pas applicable aux statistiques sur l'inte
APA, Harvard, Vancouver, ISO, and other styles
9

Pantellini, Filippo. "Etude de la structure des chocs non collisionnels dans les plasmas spatiaux." Paris 7, 1992. http://www.theses.fr/1992PA077148.

Full text
Abstract:
Les resultats de simulations d'un choc non collisionnel supercritique en propagation quasi-parallele par rapport a un champ magnetostatique sont presentes. Un code particulaire bidimensionnel, avec des ions et des electrons se deplacant dans un champ electromagnetique autoconsistant, est utilise. Il est montre, par exemple, que la croissance d'ondes de sifflement en amont de la transition principale du choc est une des raisons de la non-stationnarite des chocs quasi-paralleles
APA, Harvard, Vancouver, ISO, and other styles
10

Melzani, Mickaël. "Reconnexion magnétique non-collisionelle dans les plasmas relativistes et simulations particle-in-cell." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0946/document.

Full text
Abstract:
L'objectif de cette thèse est l'étude de la reconnexion magnétique dans les plasmas non-collisionels et relativistes. De tels plasmas sont présents dans divers objets astrophysiques (MQs, AGNs, GRBs...), où la reconnexion pourrait expliquer la production de particules et de radiation de haute énergie, un chauffage, ou des jets. Une compréhension fondamentale de la reconnexion n'est cependant toujours pas acquise, en particulier dans les plasmas relativistes ion-électron. Nous présentons d'abord les bases de la reconnexion magnétique. Nous démontrons des résultats particuliers à la physique des
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasma non collisionels"

1

Morawetz, Klaus. Deep Impurities with Collision Delay. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0017.

Full text
Abstract:
The linearised nonlocal kinetic equation is solved analytically for impurity scattering. The resulting response function provides the conductivity, plasma oscillation and Fermi momentum. It is found that virial corrections nearly compensate the wave-function renormalizations rendering the conductivity and plasma mode unchanged. Due to the appearance of the correlated density, the Luttinger theorem does not hold and the screening length is influenced. Explicit results are given for a typical semiconductor. Elastic scattering of electrons by impurities is the simplest but still very interesting
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma non collisionels"

1

Takabe, Hideaki. "Introduction." In Springer Series in Plasma Science and Technology. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_1.

Full text
Abstract:
AbstractA brief overview of the fluid model to describe most of the plasmas is given. Assuming the velocity distributions of electrons and ions are shifted Maxwellian distribution, plasmas can be described with fluid approximation regardless they are collisional or collisionless. The time evolution of laser plasmas is described with the fluid model with non-ideal equation of state, non-local electron transport, radiation transport, and so on. Modeling atomic state of plasma, effective charge, spectral opacity, and emissivity are calculated to couple with the energy equation of the electron flu
APA, Harvard, Vancouver, ISO, and other styles
2

Tsytovich, Vadim N. "Fluctuations and Particle Collisions." In Lectures on Non-linear Plasma Kinetics. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78902-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Novikov, Vladimir G. "Average Atom Approximation in Non-LTE Level Kinetics." In Modern Methods in Collisional-Radiative Modeling of Plasmas. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27514-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.

Full text
Abstract:
AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short
APA, Harvard, Vancouver, ISO, and other styles
5

Ferland, G. J., and R. J. R. Williams. "Spectral Modeling in Astrophysics—The Physics of Non-equilibrium Clouds." In Modern Methods in Collisional-Radiative Modeling of Plasmas. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27514-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bykov, A. M., M. A. Malkov, J. C. Raymond, A. M. Krassilchtchikov, and A. E. Vladimirov. "Collisionless Shocks in Partly Ionized Plasma with Cosmic Rays: Microphysics of Non-thermal Components." In Microphysics of Cosmic Plasmas. Springer US, 2013. http://dx.doi.org/10.1007/978-1-4899-7413-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Korol, Andrey V., and Andrey V. Solov’yov. "PBrS in Non-Relativistic Collisions of Structural Particles with Atoms and Ions." In Springer Series on Atomic, Optical, and Plasma Physics. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45224-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, G. R. "Development of non-Maxwellian velocity distributions as a consequence of nonlocal Coulomb collisions." In Cross‐Scale Coupling in Space Plasmas. American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm093p0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ogoyski, A. I., and A. B. Blagoev. "Diffusion and Depopulation of the Metastable Cd 3 P0,2 States in Collisions with Neon Atoms." In Advanced Technologies Based on Wave and Beam Generated Plasmas. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Dynamics of Collisionless Plasma." In Field Theory of Non-Equilibrium Systems, 2nd ed. Cambridge University Press, 2023. http://dx.doi.org/10.1017/9781108769266.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma non collisionels"

1

Lau, Raymond, Nicolas Lee, and Sigrid Close. "Collisional Particle-In-Cell Investigations of RF Emissions in Hypervelocity Impact Plasmas." In 2022 16th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/hvis2022-30.

Full text
Abstract:
Hypervelocity impact plasmas are formed when projectiles greater than the speed of sound in a material (typically 5-10 km/s) strike an object. The high energy associated with this impact causes vaporization and ionization of both the projectile and the target material, forming a mixture of dust, gas, and plasma, or dusty plasma. During the initial expansion of plasma, the high plasma density leads to highly coupled physics and collisions. For hypervelocity impacts onto spacecraft, the latter stages of expansion into the surrounding vacuum are largely collision-less. It has been observed that u
APA, Harvard, Vancouver, ISO, and other styles
2

Quraishi, Qudsia. "Classical collisional diffusion in the annular Penning trap." In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bertsche, W. "Collisional Cooling of Pure Electron Plasmas Using CO2." In NON-NEUTRAL PLASMA PHYSICS V: Workshop on Non-Neutral Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1635180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zwicknagel, G. "Energy loss of ions by collisions with magnetized electrons." In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kabantsev, Andrey A., and C. Fred Driscoll. "Trapped-Particle-Mediated Collisional Damping of Non-Axisymmetric Plasma Waves." In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, M. W., T. M. O’Neil, James R. Danielson, and Thomas Sunn Pedersen. "Collisional Damping Of Plasma Waves On A Pure Electron Plasma Column." In NON-NEUTRAL PLASMA PHYSICS VII: Workshop on Non-Neutral Plasmas 2008. AIP, 2009. http://dx.doi.org/10.1063/1.3122272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coppa, Gianni G. M. "Non-collisional kinetic model for non-neutral plasmas in a Penning trap: General properties and stationary solutions." In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Driscoll, C. F., A. A. Kabantsev, D. H. E. Dubin, and Y. A. Tsidulko. "Transport, damping, and wave-couplings from chaotic and collisional neoclassical transport." In NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas. AIP, 2013. http://dx.doi.org/10.1063/1.4796057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zwicknagel, Günter. "Ion–electron collisions in a homogeneous magnetic field." In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hollmann, E. M., F. Anderegg, and C. F. Driscoll. "Measurement of cross-magnetic-field heat transport due to long range collisions." In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1303710.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma non collisionels"

1

Rosenberg, M., and Nicholas A. Krall. Collisional Relaxation of Non-Maxwellian Plasma Distribution in a Polywell (Tradename). Defense Technical Information Center, 1992. http://dx.doi.org/10.21236/ada257651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!