Academic literature on the topic 'Plasma sintering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma sintering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma sintering"

1

Ayodele, Olusoji Oluremi, Mxolisi Brendon Shongwe, Peter Apata Olubambi, Babatunde Abiodun Obadele, and Thabiso Langa. "Hybrid Spark Plasma Sintering of Materials: A Review." International Journal of Materials, Mechanics and Manufacturing 6, no. 6 (2018): 360–64. http://dx.doi.org/10.18178/ijmmm.2018.6.6.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Young-Hwan, and Toshiyuki Nishimura. "Spark Plasma Sintering." Advances in Applied Ceramics 113, no. 2 (2014): 65–66. http://dx.doi.org/10.1179/1743675314z.000000000184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamaoglu, Ridvan, and Eugene A. Olevsky. "Consolidation of Al-nanoSiC Composites by Spark Plasma Sintering." International Journal of Materials, Mechanics and Manufacturing 4, no. 2 (2015): 119–22. http://dx.doi.org/10.7763/ijmmm.2016.v4.237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De La Iglesia, P. G., O. García-Moreno, R. Torrecillas, and J. L. Menéndez. "Sinterización reactiva de Hexaluminato de Calcio mediante “Spark Plasma Sintering”." Boletín de la Sociedad Española de Cerámica y Vidrio 51, no. 4 (2012): 217–21. http://dx.doi.org/10.3989/cyv.312012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Wen Xia, Toyonobu Yoshida, and Kazuo Akashi. "Study on Plasma Sintering." Journal of the Ceramic Society of Japan 96, no. 1111 (1988): 317–22. http://dx.doi.org/10.2109/jcersj.96.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mamedov, V. "Spark plasma sintering as advanced PM sintering method." Powder Metallurgy 45, no. 4 (2002): 322–28. http://dx.doi.org/10.1179/003258902225007041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MUHAMMAD, WAN NUR AZRINA BINTI WAN, Y. Mutoh, Y. Miyashita, and Y. Otsuka. "G0400-1-4 Microstructure and Mechanical Properties of Magnesium prepared by Spark Plasma Sintering and Conventional Pressureless Sintering." Proceedings of the JSME annual meeting 2010.1 (2010): 353–54. http://dx.doi.org/10.1299/jsmemecjo.2010.1.0_353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, J. H., J. K. Lee, and T. S. Kim. "Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering." Journal of Korean Powder Metallurgy Institute 14, no. 1 (2007): 32–37. http://dx.doi.org/10.4150/kpmi.2007.14.1.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Batista, V. J., M. Mafra, J. L. R. Muzart, Aloísio Nelmo Klein, and N. Back. "Plasma Sintering: A Novel Process for Sintering Metallic Components." Materials Science Forum 299-300 (December 1998): 249–53. http://dx.doi.org/10.4028/www.scientific.net/msf.299-300.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Jae-Ki, Soon-Mok Choi, Hong-Lim Lee, and Won-Seon Seo. "Effect of n-type Dopants on CoSb3Skutterudite Thermoelectrics Sintered by Spark Plasma Sintering." Korean Journal of Materials Research 20, no. 6 (2010): 326–30. http://dx.doi.org/10.3740/mrsk.2010.20.6.326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasma sintering"

1

Cipitria, Amaia. "Sintering of plasma-sprayed thermal barrier coatings." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peng, Hong. "Spark Plasma Sintering of Si3N4-based Ceramics : Sintering mechanism-Tailoring microstructure-Evaluationg properties." Doctoral thesis, Stockholms universitet, Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129.

Full text
Abstract:
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation rati
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Hong. "Spark plasma sintering of Si₃N₄-based ceramics : sintering mechanism - tailoring microstructure - evaluating properties /." Stockholm : Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luke, Matthew Thomas. "Microstructural evolution of nickel during spark plasma sintering." [Boise, Idaho] : Boise State University, 2010. http://scholarworks.boisestate.edu/td/81/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Jin-Goo 1961. "Microwave induced plasma sintering of nuclear waste calcines." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276916.

Full text
Abstract:
The microwave induced plasma was used to sinter synthetic Idaho Chemical Processing Plant (ICPP) alumina and zirconia based high level nuclear waste calcines in a nitrogen atmosphere. The sintering behavior of these nuclear waste calcines was observed with identification of the phases formed. A sintered density of higher than 3.20 g/cm3 was obtained within 10 minutes of plasma sintering of pure calcines. The addition of frit in pure calcines to form glass-ceramics resulted in a decrease of density to less than 2.0 g/cm3. This was attributed to the reaction between frit and volatile substances
APA, Harvard, Vancouver, ISO, and other styles
6

Salem, Raphael Euclides Prestes. "Desenvolvimento de ZrO2/Al2O3 e ZrO2/Al2O3-NbC usando sinterização convencional e não convencional." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/74/74133/tde-26022018-094441/.

Full text
Abstract:
Os compósitos cerâmicos de alto desempenho têm sido objeto de frequentes estudos nas últimas décadas, visando à melhora das propriedades mecânicas e ao aumento da sua gama de aplicações em produtos tecnológicos. Este trabalho consistiu em estudar a preparação, a sinterização convencional e não convencional e as propriedades mecânicas e tribológicas resultantes de dois sistemas compósitos: t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC. No sistema t-ZrO2/Al2O3 foram estudadas as composições de 0, 5 e 15% em volume de Al2O3 usando pós comerciais. No sistema t-ZrO2/Al2O3-NbC, foi usado um pó nanocristalino de A
APA, Harvard, Vancouver, ISO, and other styles
7

Eriksson, Mirva. "Spark plasma sintering and deformation behaviour of Titanium and Titanium/TiB2Spark plasma sintering and deformation behaviour of Titanium and Titanium/TiB2 composites." Licentiate thesis, Stockholms universitet, Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-26122.

Full text
Abstract:
Titanium has been used as a model substance to study how it behaves in a SPS apparatus when heating rate and/or pressure were varied during the sintering and deformation process. The sintering and deformation of Ti in SPS were compared with that occurring in the conventional hot pressing (HP) in order to reveal if there are any positive effects added by the use of SPS. The ductility of Ti was explored in order to understand the sintering and deformation of (Ti) x (TiB2)1-x composites with x = 0.05, 0.1, and 0.2, respectively, expressed in mol ratio. The temperature difference (DT) between the
APA, Harvard, Vancouver, ISO, and other styles
8

Barančíková, Miriama. "Vysoce porézní keramické materiály připravené metodou Spark Plasma Sintering." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442603.

Full text
Abstract:
Porous ceramic materials are an interesting group of materials due to a wide range of physical properties, low density, and good permeability. Production of a monolith with a shape stability that would also have a high specific surface area and high porosity is a common problem with porous ceramics. The goal of this work was to maintain the high specific surface area and to produce a monolith with a shape stability. Two forms of porous silica nanofibers (as prepared and milled) were used and partially sintered using the Spark Plasma Sintering method (SPS). Different sintering times and tempera
APA, Harvard, Vancouver, ISO, and other styles
9

Prasad, R. Anil. "Spark plasma sintering of cerium dioxide and its composites." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62930.

Full text
Abstract:
Cerium dioxide (CeO₂) is an important electroceramic material with a wide array of applications in the fuel cell industry. Recently, cerium dioxide was also found to have similar thermophysical properties as common nuclear fuel materials such as uranium dioxide, thorium dioxide and plutonium dioxide. Thus, it can be used as a surrogate material for simulating the processing of nuclear fuel materials, without the risks associated with radioactivity. However, similar to other ceramic materials, processing of cerium dioxide is challenging, due to its high melting point and low ductility. Co
APA, Harvard, Vancouver, ISO, and other styles
10

Knittel, Susan Means 1961. "Sintering of aluminum-nitride in a microwave induced plasma." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276877.

Full text
Abstract:
The sintering of aluminum nitride in a microwave induced plasma was investigated. The plasma furnace consisted of a quartz tube inserted into a waveguide connected to a 2450 MHz microwave generator. After evacuating the tube to about 1.33 mbar, nitrogen gas was introduced, generating a steady plasma. Processing parameters such as gas pressure, power level, and time were optimized to yield maximum densification of aluminum nitride. Sintering of pure and doped AlN compacts was performed in the nitrogen plasma at temperatures up to 2000 S C. Undoped specimens reached densities of only 81% theoret
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasma sintering"

1

Cavaliere, Pasquale, ed. Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schulz, Oliver. Synthese sinteraktiver Siliciumnitridpulver im induktiven, thermischen Plasma. S. Roderer, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pacific Rim Conference on Ceramic and Glass Technology (6th 2005 Kapalua, Hawaii). Pulse electric current synthesis and processing of materials. Edited by Zuhair A. Munir and International Symposium on Spark Plasma Synthesis and Processing (5th : 2005 : Kapalua, Hawaii). American Ceramic Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pacific Rim Conference on Ceramic and Glass Technology (6th 2005 Kapalua, Hawaii). Pulse electric current synthesis and processing materials: Proceedings of the 6th Pacific Rim Conference on Ceramics and Glass Technology (PacRim6), September 11-16, Maui, Hawaii. John Wiley & Sons, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spark Plasma Sintering. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02428-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cavaliere, Pasquale. Spark Plasma Sintering of Materials: Advances in Processing and Applications. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spark-Plasma Sintering and Related Field- Assisted Powder Consolidation Technologies. MDPI, 2017. http://dx.doi.org/10.3390/books978-3-03842-383-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Miller Robert, and Lewis Research Center, eds. Sintering and creep behavior of plasma-sprayed zirconia and hafnia based thermal barrier coatings. National Aeronautics and Space Administration, Lewis Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Conference on Gears 2017. VDI Verlag, 2017. http://dx.doi.org/10.51202/9783181022948.

Full text
Abstract:
Talking about the design of modern high-performance power train applications, one of the essential components to focus on are the gears. Gears convert torque and speed in a very wide power range, at low cost and with minimal losses and noise emission. However, the demands regarding cost, power density, NVH-behavior and efficiency are steadily increasing. Demands, which can only be met using modern gearing technologies that allow combining individual materials, heat treatment and manufacturing processes. Particularly in the industrial sector, the requirements for the reliability and service lif
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasma sintering"

1

Pan, W. X., T. Yoshida, and K. Akashi. "Plasma Sintering." In Sintering ’87. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Johnson, D. Lynn. "Plasma Sintering of Ceramics." In Sintering ’87. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cavaliere, Pasquale, B. Sadeghi, and A. Shabani. "Spark Plasma Sintering: Process Fundamentals." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiong, Yan, and Zhijian Shen. "Nanoceramics by Spark Plasma Sintering." In Encyclopedia of Nanotechnology. Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100918-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michalski, Andrzej, and Marcin Rosiński. "Pulse Plasma Sintering and Applications." In Ceramic Transactions Series. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470599730.ch22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiong, Yan, and Zhijian Shen. "Nanoceramics by Spark Plasma Sintering." In Encyclopedia of Nanotechnology. Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Webb, Jonathan A., Indrajit Charit, and Darryl P. Butt. "Microstructural Evolution and Related Kinetics During Pulsed Electric Current Sintering of Tungsten." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perrière, Loïc, Yannick Champion, and Frédéric Bernard. "Spark Plasma Sintering of Metallic Glasses." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nokhrin, Aleksey, Vladimir Chuvil’deev, Maksim Boldin, et al. "Impact of High-Energy Mechanical Activation on Sintering Kinetics and Mechanical Properties of UFG Heavy Tungsten Alloys: SPS Versus Sintering in Hydrogen." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maity, T. N., N. K. Gopinath, Krishanu Biswas, and Bikramjit Basu. "Spark Plasma Sintering of Ultrahigh Temperature Ceramics." In Spark Plasma Sintering of Materials. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05327-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma sintering"

1

FOURMONT, A., S. LE GALLET, O. POLITANO, and F. BARAS. "SPARK PLASMA SINTERING OF ALCOCRFENI." In СИНТЕЗ И КОНСОЛИДАЦИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ. TORUS PRESS, 2018. http://dx.doi.org/10.30826/scpm2018007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albarody, Thar M. Badri, Husam Kareem Mohsin Al-Jothery, Alaa Raad Hussein, Loh Zi Teng, Ali Samer Muhsan, and Faiz Ahmad. "Ultrafast-contactless plasma arc sintering." In 6TH INTERNATIONAL CONFERENCE ON PRODUCTION, ENERGY AND RELIABILITY 2018: World Engineering Science & Technology Congress (ESTCON). Author(s), 2018. http://dx.doi.org/10.1063/1.5075607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doja, S., L. Bichler, and A. Prasad. "Spark Plasma Sintering of Pure Cadmium." In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018mst/2018/mst_2018_1447_1453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ng, H. B., C. Shearwood, T. J. White, L. G. Yu, and K. A. Khor. "Spark plasma sintering of silver nanopowder." In Microelectronics, MEMS, and Nanotechnology, edited by Dan V. Nicolau, Derek Abbott, Kourosh Kalantar-Zadeh, Tiziana Di Matteo, and Sergey M. Bezrukov. SPIE, 2007. http://dx.doi.org/10.1117/12.759383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fu, Yongqing, Shabbir Moochhala, and Christopher Shearwood. "Spark plasma sintering of TiNi nanopowders." In Microelectronics, MEMS, and Nanotechnology, edited by Dan V. Nicolau, Uwe R. Muller, and John M. Dell. SPIE, 2004. http://dx.doi.org/10.1117/12.521420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doja, S., L. Bichler, and A. Prasad. "Spark Plasma Sintering of Pure Cadmium." In MS&T18. MS&T18, 2018. http://dx.doi.org/10.7449/2018/mst_2018_1447_1453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Jianhua, Huayu Zhao, Shunyan Tao, Xiaming Zhou, and Chuanxian Ding. "Sintering Behavior of Plasma-Sprayed Sm2Zr2O7 Coating." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23809.

Full text
Abstract:
Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure s
APA, Harvard, Vancouver, ISO, and other styles
8

Levush, B., A. Birman, Y. Carmel, M. Rosen, and D. Abe. "Multi-frequency microwave sintering of ceramics." In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Byung-Nam. "Fabrication of Transparent Ceramics Using Spark Plasma Sintering." In Advances in Optical Materials. OSA, 2011. http://dx.doi.org/10.1364/aiom.2011.aiwa1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thoř, Tomáš, Kateřina Rubešová, Vít Jakeš, et al. "Eu:Lu2O3 transparent ceramics prepared by spark-plasma-sintering." In Optics and Measurement 2019 International Conference, edited by Jana Kovačičinová. SPIE, 2019. http://dx.doi.org/10.1117/12.2544573.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma sintering"

1

Hill, Curtis W., Lynn A. Boatner, Dennis Tucker, James A. Kolopus, and Zhongyang Cheng. Spark Plasma Sintering of Ultracapacitors. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1236598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fletcher, Timothy D., and D. L. Johnson. Plasma Synthesis and Sintering of Advanced Ceramics. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada227932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Taya, Minoru. Spark Plasma Sintering (SPS) for Nanostructured Smart Materials. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada443838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Charit, Indrajit, Darryl Butt, Megan Frary, and Mark Carroll. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1054226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Subhash, Ghatu, Kuang-Hsi Wu, and James Tulenko. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1128531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lissenden, Cliff, Tasnim Hassan, and Vijaya Rangari. Development of a Innovative High Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1183653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!