Academic literature on the topic 'Plasma sources'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasma sources.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasma sources"

1

Sysoiev, Yu A. "Metallic films for triggering vacuum-arc plasma sources." Functional materials 21, no. 1 (March 30, 2014): 47–51. http://dx.doi.org/10.15407/fm21.01.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conrads, H., and M. Schmidt. "Plasma generation and plasma sources." Plasma Sources Science and Technology 9, no. 4 (October 31, 2000): 441–54. http://dx.doi.org/10.1088/0963-0252/9/4/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sugawara, Minoru, Shigeru Ono, Noriyoshi Sato, Tuginori Inaba, Akio Matsuoh, and Chobei Yamabe. "Process Plasma Sources." IEEJ Transactions on Fundamentals and Materials 118, no. 9 (1998): 909–15. http://dx.doi.org/10.1541/ieejfms1990.118.9_909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Büttgenbach, S., N. Lucas, and P. Sichler. "Microstructured Plasma Sources." Contributions to Plasma Physics 49, no. 9 (November 2009): 624–30. http://dx.doi.org/10.1002/ctpp.200910066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weltmann, Klaus Dieter, Eckhard Kindel, Thomas von Woedtke, Marcel Hähnel, Manfred Stieber, and Ronny Brandenburg. "Atmospheric-pressure plasma sources: Prospective tools for plasma medicine." Pure and Applied Chemistry 82, no. 6 (April 20, 2010): 1223–37. http://dx.doi.org/10.1351/pac-con-09-10-35.

Full text
Abstract:
Plasma-based treatment of chronic wounds or skin diseases as well as tissue engineering or tumor treatment is an extremely promising field. First practical studies are promising, and plasma medicine as an independent medical field is emerging worldwide. While during the last years the basics of sterilizing effects of plasmas were well studied, concepts of tailor-made plasma sources which meet the technical requirements of medical instrumentation are still less developed. Indeed, studies on the verification of selective antiseptic effects of plasmas are required, but the development of advanced plasma sources for biomedical applications and a profound knowledge of their physics, chemistry, and parameters must be contributed by physical research. Considering atmospheric-pressure plasma sources, the determination of discharge development and plasma parameters is a great challenge, due to the high complexity and limited diagnostic approaches. This contribution gives an overview on plasma sources for therapeutic applications in plasma medicine. Selected specific plasma sources that are used for the investigation of various biological effects are presented and discussed. Furthermore, the needs, prospects, and approaches for its characterization from the fundamental plasma physical point of view will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

AKHMADEEV, YU H., S. V. GRIGORIEV, N. N. KOVAL, and P. M. SCHANIN. "Plasma sources based on a low-pressure arc discharge." Laser and Particle Beams 21, no. 2 (April 2003): 249–54. http://dx.doi.org/10.1017/s0263034603212131.

Full text
Abstract:
This article presents two types of a hollow-cathode plasma source based on an arc discharge where the electrons emitted either by a hot filament or by a surface-discharge-based trigger system initiate a gas arc discharge. The sources produce gas plasmas of densities 1010–1012 cm−3 in large volumes of up to 0.5 m3 at a discharge current of 100–200 A and at a pressure of 10−1–10−2 Pa. Consideration is given to some peculiarities of the operation of the plasma sources with various working gases (Ar, N2, O2). The erosion rate of the cold hollow cathode in the designed plasma sources is shown to be 10 times lower than that found in an ordinary one. The sources are employed for plasma-assisted surface modification of solids.
APA, Harvard, Vancouver, ISO, and other styles
7

Rat, Vincent, and Tony Murphy. "Editorial: [Thermal Plasma Sources]." Open Plasma Physics Journal 2, no. 2 (October 6, 2009): 87–88. http://dx.doi.org/10.2174/1876534300902020087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miernik, Krzysztof. "VACUUM ARC PLASMA SOURCES." High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 5, no. 3 (2001): 5. http://dx.doi.org/10.1615/hightempmatproc.v5.i3.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hooper, E. B. "Plasma based neutron sources." Nuclear Fusion 37, no. 7 (July 1997): 1033–35. http://dx.doi.org/10.1088/0029-5515/37/7/410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Westerman, Maxwell, Arnold Pizzey, Jocelyn Hirschman, Mario Cerino, Yonit Well-Weiner, Prya Ramotar, Ada Eze, et al. "Plasma Hemoglobin: Potential Sources." Blood 108, no. 11 (November 16, 2006): 3814. http://dx.doi.org/10.1182/blood.v108.11.3814.3814.

Full text
Abstract:
Abstract Plasma hemoglobin(Hb) is a measure of circulating red blood cell(RBC) destruction and is considered to be the basic indicator of intravascular hemolysis. We have examined the effects of splenectomy on levels of plasma Hb and circulating RBC-derived vesicles in patients with thalassemia intermedia (TI) and compared the results to patients with sickle cell anemia (SCA). Plasma Hb levels in splenectomized patients with TI were 48.5 ± 3.7 mg/ml (5)(Mn ± SEM)(No.of patients) and vesicle levels were 11.29 ± 1.12 x 10 3 /ul blood (9). In contrast, plasma Hb levels in patients with SCA were (14.52 ± 3.29)(21) and vesicle levels were 13.2 ± 2.57)(34). Plasma Hb levels and vesicle levels are closely associated in TI and SCA (r=0.79, p=0.01[9]; r=0.58, p=0.006[21] respectively). The finding that plasma Hb levels in patients with TI and SCA, both asplenic, differ in their relationships to corresponding and similar vesicle levels, suggests that other hemolytic factors may contribute to plasma Hb levels. Of importance would be intramedullary hemolysis which is considerable in TI. Vesiculation, which may occur with intramedullary hemolysis does not appear to contribute to circulating vesicle levels. The ratio of plasma Hb levels to vesicle counts would be a marker to distinguish intramedullary hemolysis from intravascular hemolysis. Similar considerations may apply to measures of lactic dehydrogenase (LDH) which is also an indicator of RBC destruction and intravascular hemolysis. The findings suggest that the contribution of intramedullary hemolysis as well as the contribution of intravascular hemolysis should be considered in measurements of plasma Hb.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasma sources"

1

Stevenson, Paul. "Novel plasma sources for the plasma opening switch." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/13632.

Full text
Abstract:
The plasma opening switch (POS) is used in pulsed power systems where a fast opening and very high current switch is required. Plasma is injected into the switch, which carries a large conduction current before it opens in a process that lasts for a few nanoseconds and transfers the current to a parallel-connected load The conduction and opening times of the switch are dependent on the plasma parameters such as distribution, speed, temperature and species, which are all determined by the plasma source. This thesis begins with a description of the POS, with its conduction and opening mechanisms and the techniques of plasma generation all being considered, before it concentrates on the simple and inexpensive carbon gun. Plasma is normally produced by a pulsed discharge that evolves plasma from the evaporation and ionisation of a carbon based insulator. The first prototype carbon gun discussed in the thesis uses a classical coaxial arrangement that successfully produces dense, fast and hot plasma, although this is only capable of filling a small region with plasma. A number of plasma diagnostic techniques are described, before details are provided of the electrical probes that were used to characterise the plasma In a large POS a well-distributed plasma is obtained by combining a large number of guns in a complex and large system. This restncts the compactness of the POS resulting in a problem for any future commercial applications. A succession of developments to the prototype gun has led to a novel ring-shaped version that produces a much improved distribution of plasma, without the need for additional guns. In this, a pulsed discharge is initiated at a single point and the self-generated magnetic field forces the discharge to spread and to travel around the gun, whilst continuously ejecting plasma into the POS. The ideas and theories that explain how a discharge can be forced to move are described, together with details of the prototype designs. Results are given to confirm the operation of the gun, using high speed photography and electrical probes.
APA, Harvard, Vancouver, ISO, and other styles
2

Déchard, Jérémy. "Sources térahertz produites par des impulsions laser ultra-intenses." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS358/document.

Full text
Abstract:
Les impulsions laser femtosecondes produisent des phénomènes non linéaires extrêmes dans la matière, conduisant à une forte émission de rayonnement secondaire qui couvre un domaine en fréquence allant du terahertz (THz) aux rayons X et gamma. De nombreuses applications utilisent la bande de fréquences terahertz (0.1-100 THz) afin de sonder la matière (spectroscopie, médecine, science des matériaux). Ce travail est dédié à l'étude théorique et numérique du rayonnement THz généré par interaction laser-plasma. Comparé aux techniques conventionnelles, ces impulsions laser permettent de créer des sources THz particulièrement énergétiques et à large bande. Notre objectif a donc été d'étudier ces régimes d'interaction relativiste, encore peu explorés, afin d'optimiser l'efficacité de conversion du laser vers les fréquences THz. L'étude de l'interaction laser-gaz en régime classique nous permet, d'abord, de valider un modèle de propagation unidirectionnelle prenant en compte la génération d'impulsion THz et de le comparer à la solution exacte des équations de Maxwell. Ensuite, en augmentant l'intensité laser au-delà du seuil relativiste, nous simulons à l'aide d'un code PIC une onde plasma non linéaire dans le sillage du laser, accélérant ainsi des électrons à plusieurs centaines de MeV. Nous montrons que le mécanisme standard des photocourrants est dominé par le rayonnement de transition cohérent induit par les électrons accélérés dans l'onde de sillage. La robustesse de ce rayonnement est ensuite observée grâce à une étude paramétrique faisant varier la densité du plasma sur plusieurs ordres de grandeur. Nous démontrons également la pertinence des grandes longueurs d'ondes laser qui sont à même de déclencher une forte pression d'ionisation, ce qui augmente la force pondéromotrice du laser. Enfin, les rayonnements THz émis à partir d'interactions laser-solide sont examinés dans le contexte de cibles ultra fine, mettant en lumière les différents processus impliqués
Femtosecond laser pulses trigger extreme nonlinear events inmatter, leading to intense secondary radiations spanning the frequency rangesfrom terahertz (THz) to X and gamma-rays.This work is dedicated to the theoretical and numerical study of THz radiationgenerated by laser-driven plasmas. Despite the inherent difficulty in accessingthe THz spectral window (0.1-100 THz), many coming applications use theability of THz frequencies to probe matter (spectroscopy, medicine, materialscience). Laser-driven THz sources appear well-suited to provide simultaneouslyan energetic and broadband signal compared to other conventional devices. Ourgoal is to investigate previously little explored interaction regimes in orderto optimize the laser-to-THz conversion efficiency.Starting from classical interactions in gases, we validate a unidirectionalpropagation model accounting for THz pulse generation, which we compare to theexact solution of Maxwell's equations. We next increase the laser intensityabove the relativistic threshold in order to trigger a nonlinear plasma wave inthe laser wake, accelerating electrons to a few hundreds of MeV. We show thatthe standard photocurrent mechanisms is overtaken by coherent transitionradiation induced by wakefield-accelerated electron bunch. Next, successivestudies reveal the robustness of this latter process over a wide range of plasmaparameters. We also demonstrate the relevance of long laser wavelengths inaugmenting THz pulse generation through the ionization-induced pressure thatincreases the laser ponderomotive force. Finally, THz emission from laser-solidinteraction is examined in the context of ultra-thin targets, shedding light onthe different processes involved
APA, Harvard, Vancouver, ISO, and other styles
3

Hansson, Björn. "Laser-Plasma Sources for Extreme-Ultraviolet Lithography." Doctoral thesis, KTH, Physics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3677.

Full text
Abstract:

This thesis describes the development and characterizationof a liquidxenon- jet laser-plasma source forextreme-ultraviolet (EUV) radiation. It is shown how thissource may be suitable for production-scale EUV lithography(EUVL).

EUVL is one of the main candidates to succeeddeep-ultraviolet (DUV) lithography for large-scalemanufacturing of integrated circuits (IC). However, a majorobstacle towards the realization of EUVL is the currentunavailability of a source meeting the tough requirements onespecially power and cleanliness for operation in an EUVLstepper. The liquid-xenon-jet laser-plasma concept has keyadvantages that may make it suitable for EUVL since, e.g., itsplasma consists only of the inert noble gas xenon and since theliquidjet target technology enables plasma operation at largedistances from the source-hardware thereby reducing sputteringand to allowing for high-power operation.

At the beginning of the work described in this thesis, aspatial instability of the liquid-xenon-jet made stableoperation of a plasma at practical distances from the nozzleorifice dicult. However, an invention of a stabilization methodbased on applying localized heating to the tip of thejet-forming nozzle, resulted in stable jet operation. Thelongitudinal droplet stability of a liquid-droplet laser-plasmasource has also been investigated and improved.

Continuous improvements of especially the laser-power toEUV-radiation conversion eciency (CE) and the stability oflaser-plasma operation at large distances (several centimeter)from the nozzle are reported for the liquidxenon- jet laserplasma source. Furthermore, this source is characterizedregarding many parameters relevant for EUVL operationincluding, ion emission from the plasma and related sputteringof nearby components, source size and shape, therepetition-rate limit of the source and non-EUV emission fromthe plasma.

Although the main focus of the thesis has been thedevelopment and characterization of a liquid-xenon-jetlaser-plasma source for production-scale EUVL, the source mayalso be suitable for small field applications that benefit fromthe high potential brightness of the source. A method to scanthe plasma and thus minimize the photon losses whilemaintaining the object plane uniformity was developed.Furthermore, the first operation of a liquidtin- jet laserplasma is reported. Quantitative EUV flux measurements yieldrecord CE, but quantitative contamination measurements alsoindicate that a liquid-tin-jet laser plasma is not likely to beapplicable as a source for EUVL.

APA, Harvard, Vancouver, ISO, and other styles
4

Mynors, Diane Julie. "Modelling of volume ion sources." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gallacher, Jordan G. "Relativistic electrons and radiation from intense laser-plasma sources." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=15481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gerst, Jan Dennis. "Investigation of magnetized radio frequency plasma sources for electric space propulsion." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-00977801.

Full text
Abstract:
The PEGASES thruster (Plasma Propulsion with Electronegative Gases) is a novel type of electric thruster for space propulsion. It uses negative and positive ions produced by an inductively coupled radio frequency discharge to create the thrust by electrostatically accelerating the ions through a set of grids. A magnetic filter is used to increase the amount of negative ions in the cavity of the thruster. The PEGASES thruster is not only a source to create a strongly negative ion plasma or even an ion-ion plasma but it can also be used as a classical ion thruster. This means that a plasma is created and only the positive ions are extracted and accelerated making it necessary to neutralize the plasma behind the acceleration stage like in other ion thrusters. The performances of the PEGASES thruster have been investigated mainly in xenon in order to compare the obtained results with RIT-type ion thrusters. The thruster has been investigated with the help of a variety of probes such as a Langmuir probe, a planar probe, a capacitive probe and a RPA (Retarding Potential Analyzer). In addition, an ExB probe has been developed to measure the velocity of the ions leaving the thruster and to differentiate between the ion species present in the plasma.
APA, Harvard, Vancouver, ISO, and other styles
7

Fritzler, Sven. "Particle sources with high-intensity lasers : a tool for plasma diagnostics and an innovative source for applications." Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baële, Pierre. "Étude des sources plasma micro-onde à structure coaxiale pour la conception amont d'applicateurs à transformateur d'impédance intégré. Influence de la pression, de la géométrie et de la fréquence d'excitation." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI088/document.

Full text
Abstract:
Le travail effectué dans le cadre de cette thèse porte sur l’étude des plasmas magnétisés et nonmagnétisés produits par des structures coaxiales qui font office à la fois de propagateur d’onde et de coupleur à impédance adaptée au plasma, mais aussi de sonde d’investigation et de caractérisation de la décharge. Une attention particulière est accordée à l’efficacité de couplage entre l’onde électromagnétique et la décharge et de production d’espèces, et ce pour différentes conditions opératoires : fréquence d’excitation (352 et 2450 MHz),configuration magnétique, géométrie de l’applicateur. L’analyse quantitative et comparative présentée dans ce travail s’appuie aussi bien sur une approche expérimentale que théorique. Les modèles analytiques développés etla simulation électromagnétique réalisée permettent d’extraire à partir des mesures expérimentales, d’une partl ’impédance du plasma décorrélée de celle de la structure de propagation de l’onde, et d’autre part, l’absorption globale et locale de l’onde. Du point de vue expérimental, des techniques et méthodes appropriées ont donc été développées et mises en oeuvre comme, par exemple la méthode de changement de plan d’impédance, ou encore l’auto-interférométrie. L’étude paramétrique, menée sur un domaine de pression étendu sur plusieurs décades(10-4 – 10 Torr) et pour une gamme de puissances allant de un à plusieurs centaines de watts, a permis une investigation minutieuse du type de couplage (capacitif, inductif, résistif) qui est fortement dépendant des caractéristiques de la décharge et donc des paramètres opératoires. Leur mise en corrélation, associée à l’analyse des modes de propagation dans un plasma magnétisé, a permis de localiser avec plus de précision les zones de couplage et d’identifier les principaux mécanismes d’absorption de l’onde mis en jeu. Les principaux résultats obtenus confirment une meilleure efficacité de production d’espèces chargées à une fréquence plus élevée (2450MHz), et la présence d’une population d’électrons chauds plus conséquente ainsi qu’une extension spatiale du plasma lorsque la fréquence est plus faible (352 MHz). Comme la technologie 352 MHz à état solide est plus avantageuse du point de vue du coût des composants, comparée à 2450 MHz, elle pourrait s’avérer intéressante pour des procédés visant la production d’espèces chimiquement actives. Toutefois, le couplage, peu efficace, de type capacitif induit par la diminution de la fréquence, requiert une attention accrue au niveau de la configuration du coupleur. Pour le développement en amont des coupleurs, les résultats issus de ce travail de thèse et les modèles analytiques développés devraient constituer un outil déterminant dans la conception de sources plasma micro-onde performantes
The work done within the framework of this thesis focuses on the study of magnetized and nonmagnetizedplasmas produced by coaxial structures that serve both as wave propagator and as plasma matchedimpedance coupler but also as investigation and characterization probe of the discharge. Special attention isgiven to the efficiency of coupling between the electromagnetic wave and the discharge and of speciesproduction, for different operating conditions: excitation frequency (352 and 2450 MHz), magnetic configurationand geometry of the applicator. Quantitative and comparative analysis presented in this work is based both on anexperimental and a theoretical approach. Developed analytical models and conducted electromagnetic simulationare set in connection with the experimental measurements in order to determine, on the one hand, the plasmaimpedance de-embedded of the wave propagation structure and, on the other hand, the global and localabsorption of the wave. From the experimental point of view, appropriate techniques and methods have thereforebeen developed and implemented such as, for example, the impedance plane shift method, or autointerferometry.The parametric study, conducted on a pressure range extended over several decades (10-4 - 10Torr) and power ratings from one to several hundred watts, led to a thorough investigation of the coupling type(capacitive, inductive, resistive ) which is highly dependent on the discharge characteristics and thus of theoperating parameters. Their correlation, combined with the analysis of propagation modes in a magnetizedplasma, has helped locate more accurately the areas of coupling and to identify the main power absorptionmechanisms involved. The main results obtained for the two frequencies confirm a better production efficiencyof charged species at a higher frequency (2450 MHz), the presence of a more substantial hot electron populationand a spatial expansion of the plasma when the frequency is low (352 MHz). As the solid state 352 MHztechnology is more advantageous compared to that at 2450 MHz from the viewpoint of the cost of thecomponents, it could be interesting for processes aiming to produce active chemical species. However itsinefficient coupling, of capacitive type induced by frequency reduction, requires an increased attention at thelevel of coupler configuration. For upstream development of couplers, the analytical models and theexperimental results obtained in this thesis should be a key tool in the design of high-performance microwaveplasma sources
APA, Harvard, Vancouver, ISO, and other styles
9

Möller, Cecilia. "High Power Microwave Sources : design and experiments." Licentiate thesis, KTH, Rymd- och plasmafysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34072.

Full text
Abstract:
High-Power Microwaves (HPM) can be used to intentionally disturb or destroy electronic equipment at a distance by inducing high voltages and currents. This thesis presents results from experiments with a narrow band HPM source, the vircator. The high voltages needed to generate HPM puts the vircator under great stress, especially the electrode materials. Several electrode materials have been tested for endurance and their influence on the characteristics of the microwave pulse. With the proper materials the shot-to-shot variations are small and the geometry can be optimized in terms of e.g. output power or frequency content. Experiments with a resonant cavity added to the vircator geometry showed that with proper tuning of the cavity, the frequency content of the microwave radiation is very narrow banded and the highest radiated fields are registred. Since HPM pulses are very short and have high field strengths, special field probes are needed. An HPM pulse may shift in frequency during the pulse so it is very important to be able to compensate for the frequency dependence of the entire measurement system. The development and use of a far-field measurement system is described.
QC 20110616
APA, Harvard, Vancouver, ISO, and other styles
10

Wetzel, William C. "Overcoming interferences in plasma source mass spectrometry alternative ionization sources, novel correction methods, and new instrumentation /." [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223057.

Full text
Abstract:
Thesis (Ph. D.)--Indiana University, Dept. of Chemistry, 2006.
"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3109. Adviser: Gary M. Hieftje.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasma sources"

1

Plasma-aided nanofabrication: From plasma sources to nanoassembly. Weinheim, DE: Wiley-VCH, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hultqvist, Bengt, Marit Øieroset, Goetz Paschmann, and Rudolf A. Treumann, eds. Magnetospheric Plasma Sources and Losses. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4477-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nagy, Andrew F., Michel Blanc, Charles R. Chappell, and Norbert Krupp, eds. Plasma Sources of Solar System Magnetospheres. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3544-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Edelson, MC, and J. Leland Daniel, eds. Plasma Spectroscopy for the Analysis of Hazardous Materials: Design and Application of Enclosed Plasma Sources. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1987. http://dx.doi.org/10.1520/stp951-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Electron cyclotron resonance ion sources and ECR plasmas. Bristol: Institute of Physics Pub., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jaroszynski, D. A. Harnessing relativistic plasma waves as novel radiation sources from terahertz to x-rays and beyond: 21-23 April 2009, Prague, Czech Republic. Edited by SPIE Europe, Akademie věd České republiky. Fyzikální ústav, and SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Europe, SPIE, Akademie věd České republiky. Fyzikální ústav, and SPIE (Society), eds. Harnessing relativistic plasma waves as novel radiation sources from terahertz to x-rays and beyond: 21-23 April 2009, Prague, Czech Republic. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guest, Gareth. Electron cyclotron heating of plasmas. Weinheim: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Japan-U.S. Workshop P-119 on 14 MeV Neutron Source for Material R&D Based on Plasma Devices (1988 Institute of Plasma Physics). Proceedings of the Japan-U.S. Workshop P-119 on 14 MeV Neutron Source for Material R&D Based on Plasma Devices: June 7-10, 1988. Nagoya, Japan: Institute of Plasma Physics, Nagoya University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ojik, Robert van. Gas in distant radio galaxies: Probing the early universe. [Leiden, Netherlands]: Sterrewacht Leiden, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Plasma sources"

1

Wilhelm, Rolf. "ECR Plasma Sources." In Microwave Discharges, 161–79. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Born, M., and T. Markus. "Research on Modern Gas Discharge Light Sources." In Plasma Physics, 399–423. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11360360_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zakrzewski, Zenon, Michel Moisan, and Gaston Sauvé. "Surface-Wave Plasma Sources." In Microwave Discharges, 117–40. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Francis F., and Jane P. Chang. "Introduction to Plasma Sources." In Lecture Notes on Principles of Plasma Processing, 25–30. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0181-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Ian G. "Plasma Physics." In The Physics and Technology of Ion Sources, 7–28. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603956.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Francis F., and Jane P. Chang. "ECR Sources." In Lecture Notes on Principles of Plasma Processing, 47–49. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0181-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Helmke, Andreas, Torsten Gerling, and Klaus-Dieter Weltmann. "Plasma Sources for Biomedical Applications." In Comprehensive Clinical Plasma Medicine, 23–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67627-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cole, K. D. "‘Dead’ Pulsars: Cosmic-Ray Sources." In Plasma and the Universe, 549–56. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3021-6_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Khacef, Ahmed, and Patrick Da Costa. "Plasma-Catalytic Removal of NOx in Mobile and Stationary Sources." In Plasma Catalysis, 115–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05189-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boulos, Maher I., Pierre Fauchais, and Emil Pfender. "Electrode Phenomena in Plasma Sources." In Handbook of Thermal Plasmas, 1–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12183-3_13-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasma sources"

1

Stevenson, P. "Plasma sources for plasma opening switches." In IEE Symposium Pulsed Power 2001. IEE, 2001. http://dx.doi.org/10.1049/ic:20010150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dudnikov, Vadim, Galina Dudnikova, and J. Paul Farrell. "Surface Plasma Sources with Helicon Plasma Generators." In PRODUCTION AND NEUTRALIZATION OF NEGATIVE IONS AND BEAMS: 11th International Symposium on the Production and Neutralization of Negative Ions and Beams. AIP, 2007. http://dx.doi.org/10.1063/1.2773656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paunska, Tsvetelina V., Antonia P. Shivarova, Khristo Ts Tarnev, Tsanko V. Tsankov, Elizabeth Surrey, and Alain Simonin. "Spatial Distribution of the Plasma Characteristics of a Tandem Plasma Source." In NEGATIVE IONS, BEAMS AND SOURCES: Proceedings of the 1st International Symposium on Negative Ions, Beams and Sources. AIP, 2009. http://dx.doi.org/10.1063/1.3112554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teubner, U., U. Wagner, D. Oberschmidt, P. Gibbon, E. Förster, A. A. Andreev, T. Wilhein, and U. Vogt. "High Brightness X-Radiation and Plasma Frequency Emission from Femtosecond Laser Plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/hfsw.1999.wa3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kundrapu, Madhusudhan, Sergey Averkin, Peter Stoltz, and Michael Keidar. "Software for plasma device simulations: Arc plasma sources." In 2018 Plasmadynamics and Lasers Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maier, Andreas R., Niels Delbos, Irene Dornmair, Timo Eichner, Björn Hubert, Lars Hübner, Sören Jalas, et al. "LUX - A Plasma-Driven Undulator Beamline." In Compact EUV & X-ray Light Sources. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/euvxray.2018.et1b.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tarvainen, O. "Plasma Potential Measurements With A New Instrument." In ELECTRON CYCLOTRON RESONANCE ION SOURCES: 16th International Workshop on ECR Ion Sources ECRIS'04. AIP, 2005. http://dx.doi.org/10.1063/1.1893367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andreev, N. E., L. M. Gorbunov, V. I. Kirsanov, and A. S. Sakharov. "Self-modulation of high-intensity laser pulses in underlense plasmas and plasma channels." In New modes of particle acceleration: Techniques and sources. AIP, 1997. http://dx.doi.org/10.1063/1.52974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mizeraczyk, J., M. Jasinski, M. Dors, Z. Zakrzewski, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok, and Marek J. Sadowski. "Microwave Plasma Sources for Gas Processing." In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DAVIS, V., I. KATZ, and M. MANDELL. "Plasma sources for spacecraft neutralization." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1556.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Plasma sources"

1

Scharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada377833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yadlowsky, Edward J., Eric Carlson, Farid Barakat, and Robert C. Hazelton. Density Imaging Diagnostic for Plasma Radiation Sources. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada437521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parasad, Rahul R., Alexander C. Crisman, Steven Gensler, Niansheng Qi, and Mahadevan Krishnan. Radiation Imaging Diagnostic for Plasma Radiation Sources. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada423998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ji, Lili. Plasma ion sources and ion beam technology inmicrofabrications. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/924801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scharer, John. Advanced Laser and RF Plasma Sources and Diagnostics. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada580392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bakshi, P., and K. Kempa. Plasma Instability Based Compact Coherent Terahertz Radiation Sources. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada421700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

A. Dunaevsky and N.J. Fisch. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/827681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schill, Jr, and Robert A. Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland). Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada564082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, V., and B. Rusnak. Review of Dense Plasma Focus Technology for Intense and Directional Neutron Sources. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/926396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography