Academic literature on the topic 'Plasmon surface polariton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmon surface polariton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmon surface polariton"

1

COELLO, VICTOR. "SURFACE PLASMON POLARITON LOCALIZATION." Surface Review and Letters 15, no. 06 (December 2008): 867–79. http://dx.doi.org/10.1142/s0218625x08011974.

Full text
Abstract:
Localization of surface plasmons polariton is reviewed in the context of experiments and modeling of near-field optical images. Near-field imaging of elastic (in-plane) surface plasmon scattering is discussed, and approaches for the correct image interpretation are outlined. Nonlinear effects related to localized surface plasmons are pressented. Surface plasmon localization opens up numerous possibilities for application in biosensing, nanophotonics, and in general in the area of surface optics properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang Lin, 杨琳, 段智勇 Duan Zhiyong, 马刘红 Ma Liuhong, and 李梦珂 Li Mengke. "Surface Plasmon Polariton Nanolasers." Laser & Optoelectronics Progress 56, no. 20 (2019): 202409. http://dx.doi.org/10.3788/lop56.202409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurilkina, S., V. Belyi, and N. Kazak. "Surface Plasmon-Polaritons at the Interface of Magnetoelectric Hyperbolic Metamaterial." Nonlinear Phenomena in Complex Systems 23, no. 3 (October 28, 2020): 327–31. http://dx.doi.org/10.33581/1561-4085-2020-23-3-327-331.

Full text
Abstract:
In this paper, we investigated the features of plasmon-polaritons excited at the interface of a magnetoelectric hyperbolic metamaterial and a dielectric for the case when the optical axis is arbitrary oriented under the normal to the boundary. Expressions are obtained for the complex electric and magnetic vectors as well as for the decay constants of the fields on both sides of the interface. The possibility is shown and the conditions are determined for localization of plasmon-polariton at the boundary of metamaterial of different types. It is shown that the wave vector of plasmon-polariton has the component oriented perpendicular to the boundary. It is established that for metamaterials of different types changing the orientation of the optical axis one can realize the conditions when the phase velocity of plasmon-polariton is directed from the boundary inside a metamaterial or a dielectric.
APA, Harvard, Vancouver, ISO, and other styles
4

Echtermeyer, T. J., S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A. C. Ferrari. "Surface Plasmon Polariton Graphene Photodetectors." Nano Letters 16, no. 1 (December 21, 2015): 8–20. http://dx.doi.org/10.1021/acs.nanolett.5b02051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yoo, Hae-Wook, Lee J. Richter, Hee-Tae Jung, and Chris A. Michaels. "Surface plasmon polariton Raman microscopy." Vibrational Spectroscopy 60 (May 2012): 85–91. http://dx.doi.org/10.1016/j.vibspec.2011.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melikyan, A., N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, et al. "Surface plasmon polariton absorption modulator." Optics Express 19, no. 9 (April 21, 2011): 8855. http://dx.doi.org/10.1364/oe.19.008855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ding, Chengyuan, Xiaoyong Hu, Ping Jiang, and Qihuang Gong. "Tunable surface plasmon polariton microcavity." Physics Letters A 372, no. 24 (June 2008): 4536–38. http://dx.doi.org/10.1016/j.physleta.2008.04.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vasa, Parinda. "Exciton-surface plasmon polariton interactions." Advances in Physics: X 5, no. 1 (January 1, 2020): 1749884. http://dx.doi.org/10.1080/23746149.2020.1749884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Devender, D. P. Pulsifer, and A. Lakhtakia. "Multiple surface plasmon polariton waves." Electronics Letters 45, no. 22 (2009): 1137. http://dx.doi.org/10.1049/el.2009.2049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kéna-Cohen, Stéphane, Paul N. Stavrinou, Donal D. C. Bradley, and Stefan A. Maier. "Confined Surface Plasmon–Polariton Amplifiers." Nano Letters 13, no. 3 (February 25, 2013): 1323–29. http://dx.doi.org/10.1021/nl400134v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasmon surface polariton"

1

Gazzaz, Kholoud Khalid. "Biosensing Performance of Surface Plasmon Polariton Bragg Gratings." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31293.

Full text
Abstract:
Surface plasmon biosensors have raised much interest over the past few decades for their potential in biosensing applications. This thesis investigates the plasmon-polariton Bragg grating, which is a novel structure that supports surface plasmon modes. Plasmon-polariton Bragg gratings PPBGs consist of metal stripes embedded in Cytop. A number of designs were investigated to evaluate the biosensing capabilities of the device. The biosensing performance was studied for both bulk and surface sensitivities via wavelength interrogation. The biosensing study was conducted by observing changes in the effective refractive indices of the supported modes by changing the index of the sensing solution for bulk sensitivity, and by changing the thickness of the adlayer that represents the binding of the target analyte to the sensing surface for surface sensitivity. A theoretical assessment of the achievable sensitivity and detection limit for PPBGs is conducted via two approaches, wavelength and output power interrogation.
APA, Harvard, Vancouver, ISO, and other styles
2

Oleksiy, Krupin. "Biosensing Using Long-Range Surface Plasmon-Polariton Waveguides." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34210.

Full text
Abstract:
Specific detection of biological matter is one of the key elements in a wide range of modern fields such as food industry, medicine, environmental and pharmaceutical industries. Generally, current common methods of detection (e.g. ELISA) involve molecular labelling, requirements for well-trained personnel and lengthy experimental procedures such as bacteria culture. All of the above issues result in high costs for biological analysis, and consequently, high costs for medical service, therapeutic drugs and various food products. Biosensors, on the other hand, can provide quick and cheap solutions to these problems. The field of optical biosensors is dominated by the method of surface plasmon resonance, which so far has attracted a lot of attention in the pharmaceutical industry. Investigation of long-range surface plasmon-polariton waveguides as an application for biosensing is still very novel, and most of it exists in the venue of theoretical discussions and modelling. The objective of this thesis is to demonstrate the capability of the novel optical biosensor based on plasmonic waveguides to selectively detect various biological entities in solutions. The experiments were conducted on photolithographically fabricated sensors consisting of straight gold waveguides embedded in low-refractive index fluoropolymer CYTOP and a microfluidic channel. As a proof-of-concept, a demonstration of basic sensing experiments such as detection of change in refractive index of bulk solution and non-specific adsorption of bovine serum albumin is provided. Further investigation of the sensor capabilities involved specific detection of human red blood cells and leukemia markers. Red blood cell detection was based on ABO blood grouping and included the estimation of limit of detection and signal-to-noise ratio for single cell detection. Finally, a clinically relevant problem of B-cell leukemia marker detection was targeted. The sensor demonstrated the ability to detect the relative abundance of similar proteins (immunoglobulin kappa and lambda) in a complex fluid (human serum). In addition, an experimental study on the optimization of the sensor for sensitivity was conducted.
APA, Harvard, Vancouver, ISO, and other styles
3

Wedge, Stephen. "Surface plasmon-polariton mediated emission of light through thin metal films." Thesis, University of Exeter, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cilwa, Katherine Elizabeth. "Surface Plasmon Polaritons and Single Dust Particles." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301074124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heidel, Timothy David. "Surface plasmon polariton mediated energy transfer from external antennas into organic photovoltaic cells." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41608.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Includes bibliographical references (leaves 47-52).
Despite significant improvements in the performance of organic photovoltaic devices in recent years, the tradeoff between light absorption and charge separation efficiency remains pervasive; increasing light absorption by increasing the device thickness leads to a decrease in exciton diffusion efficiency and vice versa. In this thesis, I demonstrate organic solar cells with an external light absorbing antenna. Light is absorbed by the external antenna and subsequently transferred into the photovoltaic cell via surface plasmon polariton modes in an interfacial thin silver contact. By decoupling the optical and electrical functions of the cell, this new architecture has the potential to circumvent the tradeoff between light absorption and charge separation efficiency. Non-radiative energy transfer is discussed and modeling finds that efficient energy transfer is mediated by surface plasmon polaritons. Devices with two very different antenna systems are demonstrated experimentally. Antennas with high photoluminescence efficiency are found to exhibit energy transfer efficiencies of approximately 50% while strongly absorbing antennas exhibit increases in photocurrent as high as 700% when compared to devices with non-functioning antennas even with very low photoluminescence efficiencies near 4%. These results suggest that this new device architecture could lead to significantly higher power conversion efficiencies by allowing the independent optimization of the optical and electrical components of organic photovoltaic cells.
by Timothy David Heidel.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
6

Abbott, Stephen Barnes. "Energy transfer between surface plasmon polariton modes with hybrid photorefractive liquid crystal cells." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/210379/.

Full text
Abstract:
In this thesis, a hybrid photorefractive liquid crystal cell structure with the addition of a thin 40nm Gold layer is proposed that demonstrates significant photorefractive control of Surface Plasmon Polaritons (SPP). The photorefractive effects are generated through optically controlling the conductivity of a ~100nm photoconducting poly-N-vinyl-carboxyl (PVK) layer. Therefore, when a potential is applied across the cell, the liquid crystal alignment and the SPP wavevector is able to be controlled with light. The aim for developing this device is for the eventual demonstration of SPP gain to offset the high optical losses and increase the characteristically short propagation length of SPP. The mechanism we intend to use to demonstrate gain is analogous to the asymmetric energy transfer in a wave mixing system for two laser beams used to typically characterise photorefractive materials. We first characterise the electrical and optical behaviour of the novel photorefractive plasmonic structure proposed with uniform illumination. Our system demonstrates a good photorefractive wavevector shift of 0.207μm-1 for a 1.24eV SPP; this shift is in excess of the FWHM of the SPP resonance in the attenuated total reflection spectrum (0.154μm-1). However, the electric behaviour of the system is found to be highly complex and cannot be fully characterised by an equivalent electrical circuit. In addition, due to electronic stability issues, we require a slow AC potential to demonstrate consistent photorefractive effects. In a step towards realising SPP gain, we then consider the SPP interaction with a refractive index grating written into the liquid crystal layer with the interference pattern of crossed laser beams. We find that a SPP is diffracted into additional SPP modes. Our investigation then determines the ideal parameters that maximise the energy transfer by examining the diffraction efficiency dependence of each variable of the system. The maximum energy transfer observed is 25.3±2.3% for a 1.05eV SPP from a 4μm grating. With the assistance of a numerical simulation of our system we present a series of qualitative and semi-analytical descriptions to describe the mechanisms behind the observed trends. We discover that the diffraction efficiency is dependent of three important effects; the orientation of the grating, the penetration depth of the SPP into the liquid crystal and the magnitude of the periodic electric field in the liquid crystal. In addition, to fully describe the quantitative values observed we must also consider the presence of a thin 100nm region of the liquid crystal near the photoconductor interface that does not strongly respond to the applied electric field due to anchoring forces
APA, Harvard, Vancouver, ISO, and other styles
7

Renger, Jan. "Excitation, Interaction, and Scattering of Localized and Propagating Surface Polaritons." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153478195966-65404.

Full text
Abstract:
Surface polaritons, i.e., collective oscillations of the surface charges, strongly influence the optical response at the micro- and nanoscale and have to be accounted for in modern nanotechnology. Within this thesis, certain basic phenomena involving surface polaritons are investigated by means of the semianalytical multiple-multipole (MMP) method. The results are compared to experiments. In the first part, the surface plasmon resonance (SPR) of metal nanoparticles is analyzed. This resonant collective oscillation of the free electrons in a metallic nanoparticle leads to an enhancement and confinement of the local electric field at optical frequencies. The local electric field can be further increased by tailoring the shape of the particle or by using near-field-interacting dimers or trimers of gold nanospheres. The hot spots found under such conditions increase the sensitivity of surface-enhanced Raman scattering by several orders of magnitude and simultaneously reduce the probed volume, thereby providing single-molecule sensitivity. The sub-wavelength-confined strong electromagnetic field associated with a SPR provides the basis for scattering-type near-field optical microscopy or tip-enhanced Raman spectroscopy, where the metal particle serves as a probe that is scanned laterally in the vicinity of a substrate. The presence of the latter causes a characteristic shift of the SPR towards lower frequencies. This effect originates in the near-field interaction of the surface charges on the objects. Furthermore, the excitation of higher-order modes becomes possible in case of an excitation by a strongly inhomogeneous wave, such as an evanescent wave. These modes may significantly contribute to the near field but have only very little influence on the far-field signature. Instead of using resonant probes, one may place a nonresonant probe in the vicinity of a substrate having a high density of electromagnetic surface states. This also produces a resonance of the light scattering by the system. Especially polar crystals, such as the investigated silicon carbide, feature such a high density of surface phonon polariton states in the mid-infrared spectral region, which can be excited due to the near-field interaction with a polarized particle. Thereby, a resonance is created leading to a strong increase of the electric field at the interface. In the second part of the thesis, special emphasis is put on surface plasmon polaritons (SPPs). Such propagating surface waves can be excited directly by plane waves only at patterned interfaces. This process is studied for the case of a groove. The groove breaks the translational invariance, so that the SPPs can be launched locally at the edges of the groove. Additionally, the mode(s) inside the groove are excited. These modes can basically be understood as metal-insulator-metal cavity modes. Their dispersion strongly depends on the groove width. The cavity behavior caused by the finite depth provides another degree of freedom for optimizing the SPP excitation by plane waves. Thin metallic films deposited on glass offer two different SPP waveguide modes, each of which can be addressed preferentially by a proper choice of the width of the groove. The reflection, transmission, scattering, and the conversion of the modes at discontinuities such as edges, steps, barriers, and grooves can be controlled by appropriately designing the geometry at the nanoscale. Furthermore, the excitation of SPPs at single and multiple slits in thin-film metal waveguides on glass and their propagation and scattering is shown by scanning near-field optical experiments. Such waveguide structures offer a means for transporting light in a confined way. Especially triangularly shaped waveguides can be used to guide light in sub-wavelength spaces
Die Wechselwirkung von elektromagnetischer Strahlung mit subwellenlängenkleinen Teilchen bzw. Oberflächenstrukturen ermöglicht nicht nur eine Miniaturisierung optischer Geräte, sondern erlaubt sehr interessante Anwendungen, beispielsweise in der Sensorik und Nahfeldoptik. In der vorliegenden Arbeit werden die zu Grunde liegenden Effekte im Rahmen der klassischen Elektrodynamik mit Hilfe der semianalytischen Methode der multiplen Multipole (MMP) analysiert, und die Ergebnisse werden mit Experimenten verglichen. Im ersten Teil werden Oberflächenplasmonenresonanzen (engl. surface plasmon resonance - SPR) einzelner und wechselwirkender Metallteilchen untersucht. Die dabei auftretende resonante kollektive Schwingung der freien Elektronen des Partikels bewirkt eine deutliche Erhöhung und Lokalisierung des elektromagnetischen Feldes in seiner Umgebung. Die spektrale Position und die Stärke der SPR eines Nanoteilchens, die von dessen geometrischer Form, Permittivität und Umgebung abhängen, können nur im Grenzfall sehr kleiner Teilchen elektrostatisch beschrieben werden, wohingegen der verwendete semianalytische MMP-Ansatz weitaus flexibler ist und insbesondere auch auf größere Partikel, Teilchen mit komplizierterer Form bzw. Ensembles von Partikeln anwendbar ist. Die betrachteten einzelnen kleinen (< Wellenlänge) Goldkügelchen und Silberellipsoide besitzen eine stark ausgeprägte SPR im sichtbaren optischen Bereich. Diese ist auf eine dipolartige Polarisierung des Teilchens zurückzuführen. Höhere Moden der Polarisation können entweder als Folge von Retardierungseffekten an größeren (mit der Wellenlänge vergleichbaren) Teilchen oder bei der Verwendung inhomogener (z.B. evaneszenter) Wellen angeregt werden. Partikel, die sich in der Nähe eines Substrates befinden, unterliegen der Nahfeldwechselwirkung zwischen den (lichtinduzierten) Oberflächenladungen auf der Oberfläche des Teilchens und des Substrats. Dies führt zu einer Verschiebung der SPR zu niedrigeren Frequenzen und einer Erhöhung des lokalen elektrischen Feldes. Letzteres bildet die Grundlage z.B. der spitzenverstärkten Raman-Spektroskopie und der optischen Nahfeldmikroskopie mit Streulichtdetektion. Dasselbe Prinzip bewirkt ein stark überhöhtes elektrisches Feld zwischen miteinander wechselwirkenden Nanopartikeln, welches z.B. die Sensitivität der oberflächenverstärkten Raman-Mikroskopie um mehrere Größenordnungen steigern kann. Im Gegensatz zur SPR einzelner Nanopartikel kann die Resonanz der Lichtstreuung im Fall eines Partikels in der Nähe eines Substrats aus der durch die Nahfeldwechselwirkung induzierten Anregung elektromagnetischer Oberflächenzustände entstehen. Diese wirken ihrerseits auf das Nanopartikel zurück, wobei eine resonante Lichtstreuung beobachtbar ist. Dieser, am Beispiel einer metallischen Nahfeldsonde über einem Siliziumcarbid-Substrat analysierte, Effekt ermöglicht bei einer ganzen Klasse von polaren Kristallen interessante Anwendungen in der Mikroskopie und Sensorik basierend auf der hohen Dichte von Oberflächenphononpolaritonen dieser Kristalle im mittleren infraroten Spektralbereich und deren nahfeldinduzierten Anregung. Im zweiten Teil der Arbeit werden kollektive Anregungen von Elektronen an Metalloberflächen untersucht. Die dabei auftretenden plasmonischen Oberflächenwellen (engl. surface plasmon polaritons - SPPs) weisen einen exponentiellen Abfall der Intensität senkrecht zur Grenzfläche auf. Diese starke Lokalisierung der Energie an der Oberfläche bildet die Grundlage vieler Anwendungen, z.B. im Bereich der hochempfindlichen Detektion (bio)chemischer Verbindungen oder für eine zweidimensionale Optik (engl. plasmonics). Das Aufheben der Translationsinvarianz längs der Oberfläche ermöglicht die direkte Anregung von SPPs durch ebene Wellen. Die Abhängigkeit dieser Kopplung von der Geometrie wird am Beispiel eines Nanograbens untersucht. Dabei werden neben den SPPs ebenfalls eine oder mehrere Moden im Graben angeregt. Folglich ermöglicht die geeignete Wahl der Grabengeometrie die Optimierung der Umwandlung von ebenen Wellen in SPPs. Im - in der Praxis weit verbreiteten - Fall asymmetrisch eingebetteter metallischer Dünnschichtwellenleiter existieren zwei Moden. In Abhängigkeit von der Grabenbreite kann die eine oder die andere Mode bevorzugt angeregt werden. Die Analyse der Wechselwirkung von SPPs mit Oberflächenstrukturen, z.B. Kanten, Stufen, Barrieren und Gräben, zeigt die Möglichkeit der Steuerung der Reflexions-, Transmissions- und Abstrahleigenschaften durch die gezielte Wahl der Geometrie der "Oberflächendefekte" auf der Nanoskala und deckt die zu Grunde liegenden Mechanismen und die daraus resultierenden Anforderungen bei der Herstellung neuer plasmonischer Komponenten auf. Exemplarisch wird das Prinzip der SPP-Anregung an einzelnen und mehreren Gräben in dünnen metallischen Filmen sowie der subwellenlängen Feldlokalisierung an sich verjüngenden metallischen Dünnschichtwellenleitern unter Verwendung der optischen Nahfeldmikroskopie experimentell gezeigt
APA, Harvard, Vancouver, ISO, and other styles
8

Achlan, Moustafa. "Surface Plasmon Polariton and Wave Guide Modes in a Six Layer Thin Film Stack." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS109.

Full text
Abstract:
Dans cette thèse, nous étudions les propriétés optiques d'un système multicouche (air-Au-SiO₂-Au-Ti-verre). Les interfaces sont planes et la modélisation est réalisée en utilisant les coefficients de Fresnel à l'interface et la propagation d'ondes planes dans les couches. Deux modèles sont utilisés où l'échantillon est : i) excité par une source à l'infini ; ii) excité par une source locale. Dans l'expérience que nous avons modélisée l'empilement est excité par les électrons tunnel inélastiques dans un microscope à effet tunnel (STM). Dans le modèle, le courant tunnel inélastique est remplacé par un dipôle oscillant vertical. En utilisant ces modèles, nous avons calculé les flux réfléchis (reflectance) et transmis (transmittance) d'une source de lumière à l'infini et le flux transmis de l'excitation locale. La reflectance, transmittance et le flux transmis montrent des modes plasmoniques (surface plasmon polaritons (SPP)) et photoniques (guide d'onde (WG)). A des longueurs d'onde particulières, les courbes de dispersion des SPP et WG présentent un croisement évité. Le choix des épaisseurs d'or et de silice a deux contraintes: une amplitude importante des observables et une large dépendance en longueurs d'onde du vecteur d'onde dans le plan. Nous étudions aussi l'influence des épaisseurs sur les observables. Nous avons trouvé que les observables ont des amplitudes importantes à pour une épaisseur d'or de [10, 90 nm] pour l'empilement de trois couches et de [10, 50 nm] pour celui de six couches. Les modes de guide d'onde apparaissent pour une épaisseur de la couche de silice de >190 nm. Afin de caractériser la localisation du champ dans l'empilement et déterminer la nature du mode, nous avons calculé le champ électrique en fonction de la coordonnée de pénétration z. Nous avons trouvé que pour le mode SPP le champ est localisé à l'interface Au-air, tandis que le champ électrique du guide d'onde est confiné dans la couche de silice. Les résultats théoriques présentés sont en bon accord avec les résultats des études expérimentales menées dans notre groupe
In this thesis, we investigate the optical properties of a six-layer stack (air-Au-SiO₂-Au-Ti-glass). The interfaces are flat and the modeling is performed using elementary Fresnel expressions at the interface and plane wave propagation in the layers. Two models are used where the sample is: i) excited by a source at infinity (excitation by source at infinity (ESI)); ii) excited by a local source. In the experiments we are modeling this source consists of the inelastic tunneling electrons from a scanning tunneling microscope (STM). In our modeling this source is replaced by a vertical oscillating dipole. Using these two models one calculates the reflected (reflectance) and the transmitted (transmittance) flux from a source at infinity and the transmitted flux of a local source. Surface plasmon polariton (SPP) and wave guide (WG) modes may be identified in the reflectance, transmittance and transmitted flux. In a particular wavelength domain the SPP and WG repel each other giving rise to an avoided crossing. The choice of the gold (Au) and silica (SiO₂) thicknesses of the six-layer stack is guided by two requirements: high amplitude of the observable and wide wavelength dependence of the in-plane wave vector. We also study the influence of the gold and silica thicknesses on the observables. We find that the observables are significant for dAu[10, 90 nm] for the three and dAu[10, 50 nm] for six layer stacks and this predictive study guided the choice of the experimental sample thicknesses. The wave guide mode appears for dSiO₂ >190 nm. The electric field as a function of the penetration coordinate z is calculated in order to characterize the location of the field in the stack and to assign the nature of the modes. We observe that for the SPP the electric field is confined at the Au-air interface whereas, the electric fields corresponding to the WG mode are confined inside SiO₂ layer. Our calculations presented in this work are in good agreement with the experimental measurements performed in our group
APA, Harvard, Vancouver, ISO, and other styles
9

Hassan, Sa'ad. "Microfabrication of Plasmonic Device: PPBG BIosensor in Cytop, Reflection Itensity Modulator and Atomically Flat Nanohole Array." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32324.

Full text
Abstract:
This thesis details the fabrication of three different plasmon-polariton based devices: a plasmon-polariton Bragg grating (PPBG) biosensor, an intensity modulator incorporating grating couplers, and optically separated electrical contact, and finally an array of nanoholes in an ultrasmooth Au film. The biosensor involves a 35 nm Au stripe, lithographically stepped in width to produce a Bragg reflector. The waveguide is embedded in symmetric, Cytop claddings 8 µm thick. Channels are etched into the top cladding, exposing the waveguides and allowing for the integration of fluidics. The modulator involves a 20 nm Au pad, overlaid with 80 nm Au diffraction gratings, supported by an ultrathin (~3 nm) SiO2 insulator, on a p-doped Silicon wafer backed by an Al Ohmic contact. Electrical contact pads are separated from the waveguide by a thick dielectric (700 nm PMMA), and 2.5 µm vias in-filled with Au allow for electrical connection between the contact pads and waveguides. The nanohole array is machined by focused ion beam into an ultrasmooth Au film revealed by template stripping. The Au film is stacked on a thick film of Cytop between ~5 µm thick.
APA, Harvard, Vancouver, ISO, and other styles
10

Fan, Hui. "Passive and Thermo-Optic Characterization of Long-Range Surface Plasmon-Polariton Structures in CYTOP." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19807.

Full text
Abstract:
Long-range surface plasmon-polariton waveguides fabricated of gold, cladded with CYTOP, designed to be 5μm wide and 35nm thick, were modelled and fabricated by other researchers and tested by the author. In passive measurements, cutback curves were drawn and S-bends, Y-junctions, Mach-Zehnder interferometers, and couplers were tested. Results show that the fabricated waveguide thicknesses are inconsistent and thinner than designed, and improvement of their fabrication quality is necessary. In thermo-optic measurements, electric currents were injected heating the waveguides and changing the refractive index of the claddings. Electromigration were characterized and the conclusion was that the waveguides can work under the current density 70GA/m2. Mode extinction experiments were made and as one waveguide was repeatedly tested its mode extinction threshold gradually decreased due to heat accumulation and CYTOP glass-transition. 2.5mA was safe to prevent mode extinction in the first 12 experiments. The optical response time was also measured and discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasmon surface polariton"

1

Stepanov, Andrey L. Surface plasmon polariton nanooptics. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sandtke, Marijn. Surface plasmon polariton propagation in straight and tailored waveguides. Enschede: University of Twente [host], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4663-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kawata, Satoshi, ed. Near-Field Optics and Surface Plasmon Polaritons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44552-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

France, C. M. Evanescent field and surface plasmon polaritons in opticalsensors. Manchester: UMIST, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moghaddam, Abolghasem Mobaraki. Advanced methods of observing surface plasmon polaritons and magnons. Salford: University of Salford, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Glass, Nathaniel E. A perturbation theory for light diffraction from a bigrating with multiple surface-polariton excitation. Monterey, Calif: Naval Postgraduate School, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Gillian. The Use and applications of a novel apparatus for the detection of surface plasmon polaritons. Salford: University of Salford, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Lin. Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Plasmon surface polariton"

1

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Surface Plasmon-Polariton Photodetectors." In Encyclopedia of Nanotechnology, 2591. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maier, Stefan A. "Imaging Surface Plasmon Polariton Propagation." In Plasmonics: Fundamentals and Applications, 53–64. New York, NY: Springer US, 2007. http://dx.doi.org/10.1007/0-387-37825-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berini, Pierre. "Surface Plasmon-Polariton-Based Detectors." In Encyclopedia of Nanotechnology, 3967–76. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Surface Plasmon-Polariton-Based Detectors." In Encyclopedia of Nanotechnology, 2591–99. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Physical Features of the Surface Plasmon Polariton." In Surface Plasmon Resonance Sensors, 11–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17486-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maystre, Daniel. "Survey of Surface Plasmon Polariton History." In Plasmonics, 3–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28079-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oliveira, Leiva Casemiro, Antonio Marcus Nogueira Lima, Carsten Thirstrup, and Helmut Franz Neff. "Physical Features of the Surface Plasmon Polariton." In SpringerBriefs in Physics, 11–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14926-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Lin. "Experimental Basics of Surface Plasmon Polaritons." In Manipulation of Near Field Propagation and Far Field Radiation of Surface Plasmon Polariton, 7–32. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4663-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Jin Hyoung, Jiuzhi Xue, Wounjhang Park, and Alan Mickelson. "Surface Plasmon Polariton Waveguides in Nonlinear Optical Polymer." In Organic Thin Films for Photonic Applications, 67–83. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1039.ch005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fitio, V., O. Vernyhor, I. Yaremchuk, and Y. Bobitski. "Surface Plasmon Polariton Resonance Grating-Based Sensors Elements." In Springer Proceedings in Physics, 309–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52268-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmon surface polariton"

1

Zhu, Wenqi, Cheng Zhang, Ting Xu, Amit Agrawal, and Henri J. Lezec. "Low-Threshold Surface-Plasmon-Polariton Laser Pumped by Surface Plasmon Polaritons." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.jw4g.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suarez, I., E. P. Fitrakis, P. Rodriguez-Canto, R. Abargues, I. Tomkos, and J. Martinez-Pastor. "Surface plasmon-polariton amplifiers." In 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, 2012. http://dx.doi.org/10.1109/icton.2012.6254467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kashyap, Raman, and Galina Nemova. "Guidewave surface plasmon-polariton sensors." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Jean-Emmanuel Broquin and Christoph M. Greiner. SPIE, 2009. http://dx.doi.org/10.1117/12.812072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grandidier, J., S. Massenot, A. Bouhelier, G. Colas des Francs, J. C. Weeber, L. Markey, and A. Dereux. "Surface plasmon routing in dielectric-loaded surface plasmon polariton waveguides." In NanoScience + Engineering, edited by Satoshi Kawata, Vladimir M. Shalaev, and Din Ping Tsai. SPIE, 2008. http://dx.doi.org/10.1117/12.794574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Yu-Bin, and Chien-Jing Chen. "Interaction Between the Magnetic Polariton and Surface Plasmon Polariton." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63333.

Full text
Abstract:
This work numerically investigated the interaction between two resonances: the magnetic polariton (MP) and surface plasmon polariton (SPP). A reflectance contour plot of deep silver slit arrays quantitatively identified the MP mode and the SPP excitation’s dependence on the period. Five arrays were selected for their SPP excitation wavenumber that approached and then diverged from that of an MP mode. Reflectance spectra from arrays showed dips associated with the two resonances between 10000 cm−1 and 25000 cm−1. Both the magnitude and corresponding wavenumber of nearby dips were modified by the interaction. Moreover, a third dip might appear or two dips might merge into a wider valley when two resonance excitation wavenumbers are close enough. The interaction was further elucidated with electromagnetic fields, Poynting vectors, and the energy density corresponding to representative reflectance dips.
APA, Harvard, Vancouver, ISO, and other styles
6

Genevet, Patrice, Daniel Wintz, Antonio Ambrosio, Alan She, and Federico Capasso. "Surface plasmon polariton control with Metasurfaces." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.ftu1c.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ginzburg, Pavel, and Meir Orenstein. "Metal-less optical surface plasmon polariton." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leuthold, J., W. Freude, C. Koos, A. Melikyan, and N. Lindenmann. "A surface plasmon polariton absorption modulator." In 2011 13th International Conference on Transparent Optical Networks (ICTON). IEEE, 2011. http://dx.doi.org/10.1109/icton.2011.5970773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Melikyan, Argishti, Thomas Vallaitis, Nicole Lindenmann, Thomas Schimmel, Wolfgang Freude, and Juerg Leuthold. "A Surface Plasmon Polariton Absorption Modulator." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.jthe77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melikyan, Argishti, Luca Alloatti, Alban Muslija, David Hillerkuss, Philipp C. Schindler, Jingshi Li, Robert Palmer, et al. "Surface Plasmon Polariton High-Speed Modulator." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_si.2013.cth5d.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography