Academic literature on the topic 'Plasmonen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasmonen"
Aussenegg, Franz, and Harald Ditlbacher. "Plasmonen als Lichttransporter: Nanooptik." Physik in unserer Zeit 37, no. 5 (September 2006): 220–26. http://dx.doi.org/10.1002/piuz.200601102.
Full textTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Full textBrooks, James L., Christopher L. Warkentin, Dayeeta Saha, Emily L. Keller, and Renee R. Frontiera. "Toward a mechanistic understanding of plasmon-mediated photocatalysis." Nanophotonics 7, no. 11 (August 29, 2018): 1697–724. http://dx.doi.org/10.1515/nanoph-2018-0073.
Full textBalevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing." Coatings 10, no. 12 (December 5, 2020): 1187. http://dx.doi.org/10.3390/coatings10121187.
Full textCoello, Víctor, Cesar E. Garcia-Ortiz, and Manuel Garcia-Mendez. "Classical Plasmonics: Wave Propagation Control at Subwavelength Scale." Nano 10, no. 07 (October 2015): 1530005. http://dx.doi.org/10.1142/s1793292015300054.
Full textNishimura, Takuya, and Taiichi Otsuji. "TERAHERTZ POLARIZATION CONTROLLER BASED ON ELECTRONIC DISPERSION CONTROL OF 2D PLASMONS." International Journal of High Speed Electronics and Systems 17, no. 03 (September 2007): 547–55. http://dx.doi.org/10.1142/s0129156407004734.
Full textDong, Jun, Zhenglong Zhang, Hairong Zheng, and Mentao Sun. "Recent Progress on Plasmon-Enhanced Fluorescence." Nanophotonics 4, no. 4 (December 30, 2015): 472–90. http://dx.doi.org/10.1515/nanoph-2015-0028.
Full textGenç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (January 6, 2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.
Full textHu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Full textZhang, Xiaoyu, Chanda Ranjit Yonzon, and Richard P. Van Duyne. "Nanosphere lithography fabricated plasmonic materials and their applications." Journal of Materials Research 21, no. 5 (May 1, 2006): 1083–92. http://dx.doi.org/10.1557/jmr.2006.0136.
Full textDissertations / Theses on the topic "Plasmonen"
Benten, Wolfgang. "Plasmonen in einzelnen oxidgetragenen Edelmetallpartikeln." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979941954.
Full textLanger, Thomas [Verfasser]. "Niedrigdimensionale Plasmonen in epitaktischen Graphenlagen / Thomas Langer." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1021189049/34.
Full textKirste, Ronny [Verfasser], and Axel [Akademischer Betreuer] Hoffmann. "Gruppe-III-Nitride: Phononen, Plasmonen, Polarität / Ronny Kirste. Betreuer: Axel Hoffmann." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2012. http://d-nb.info/1018764992/34.
Full textKrieg, Ulrich [Verfasser]. "1D-Plasmonen in Ag-Nanodrähten auf vicinalem Si(557) / Ulrich Krieg." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1058240730/34.
Full textSprafke, Alexander Nicolas [Verfasser]. "Optische Nahfeld-Wechselwirkungen von Plasmonen mit ihrer Umgebung / Alexander Nicolas Sprafke." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1052254497/34.
Full textSprafke, Alexander [Verfasser]. "Optische Nahfeld-Wechselwirkungen von Plasmonen mit ihrer Umgebung / Alexander Nicolas Sprafke." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-50008.
Full textBomm, Jana. "Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6640/.
Full textIn this thesis, the synthesis and optical characterization of spherical gold nanoparticles (NP) with diameters larger than ~ 2 nm, gold quantum dots (QDs) with diameters smaller than ~ 2 nm and gold nanorods (NRs) with different lengths are presented. In addition, a novel one-pot synthesis for the preparation of thermosensitive gold QDs is introduced. Gold NP solutions appear red colored due to their strong absorption in the visible range at ~ 520 nm. This absorption band is a result of surface plasmon resonance, which is caused by the coherent oscillation of conduction band electrons induced by an electromagnetic field. In contrast to spherical gold NPs, gold NRs show two surface plasmon bands due to their anisotropic shape, a transverse plasmon band at ~ 520 nm and a longitudinal plasmon band depending on the aspect ratio (length-to-width-ratio) of the gold NRs. If the size of the gold NPs decreases to values below ~ 2 nm, quantum-size confinement occurs and the surface plasmon band disappears. Additionally, the overlap between conduction band and valence band disappears, discrete electronic levels arise and a band gap is created. As a consequence of quantum confinement, the gold QDs show photoluminescence (PL) upon UV-irradiation. The gold QDs synthesized via the one-pot synthesis exhibit a broadband luminescence between 500 nm and 800 nm. The luminescence properties (emission peak, quantum yield, lifetime) strongly depend on the synthetic parameters like reaction temperature, stoichiometry and the surface ligand. Gold NRs and gold QDs were incoroporated into different polymers (e.g. cellulose triacetate). Polymer nanocomposite films showing optical anisotropy are obtainded by stretching polymer films containing gold NRs uniaxial in a tensile test machine. In addition to the optical characterization of gold NRs and QDs, their thermal behavior in solution as well as in different nanocomposites is studied. A shortening of the gold NRs or a transformation into spherical gold NP is observed, if the polymer nanocomposites containing gold NRs are heated above a temperature of 200 °C. The PL of the synthesized gold QDs strongly depends on the ambient temperature. An increase of PL quantum yield (QY) and PL lifetime occur, if the solutions are cooled. The best PL QY of 16.6 % was observed for octadecyl mercaptan capped gold QDs at room temperature, which could be improved to 28.6 % when cooling the solutions to -7 °C. Furthermore, optically anisotropic security labels containing gold NRs and thermosensitive security devices containing gold QDs are developed. Due to their unique optical properties, gold NRs and QDs are interesting candidates for optoelectronical as well as data storage devices and medical applications like biomedical imaging or cancer therapy.
Seidel, Jan. "Propagation, Scattering and Amplification of Surface Plasmons in Thin Silver Films." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1117625135371-32372.
Full textSchertz, Florian [Verfasser]. "Nahfeld-induzierte Elektronenemissions-Mikrospektroskopie an stark gekoppelten Plasmonen und metallischen Mikrostrukturen / Florian Schertz." Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1044286954/34.
Full textEdelmann, André [Verfasser]. "Ausbreitung von optischen und THz-Plasmonen auf planaren und zylindrischen Wellenleitern / André Edelmann." Hagen : Fernuniversität Hagen, 2015. http://d-nb.info/1065828683/34.
Full textBooks on the topic "Plasmonen"
Sönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Find full textMartín Becerra, Diana. Active Plasmonic Devices. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48411-2.
Full textBecker, Jan. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0.
Full textservice), SpringerLink (Online, ed. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textWu, Bo, Nripan Mathews, and Tze-Chien Sum. Plasmonic Organic Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2021-6.
Full textMol, Nico J., and Marcel J. E. Fischer, eds. Surface Plasmon Resonance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2.
Full textBrongersma, Mark L., and Pieter G. Kik, eds. Surface Plasmon Nanophotonics. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-4333-8.
Full textSchötz, Johannes. Attosecond Experiments on Plasmonic Nanostructures. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13713-7.
Full textBook chapters on the topic "Plasmonen"
Weichert, Frank, Constantin Timm, Marcel Gaspar, Alexander Zybin, Evgeny L. Gurevich, Heinrich Müller, and Peter Marwedel. "GPGPU-basierte Echtzeitdetektion von Nanoobjekten mittels Plasmonen-unterstützter Mikroskopie." In Bildverarbeitung für die Medizin 2011, 39–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19335-4_10.
Full textLibuschewski, Pascal, Frank Weichert, and Constantin Timm. "Parameteroptimierte und GPGPU-basierte Detektion viraler Strukturen innerhalb Plasmonen-unterstützter Mikroskopiedaten." In Bildverarbeitung für die Medizin 2012, 237–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28502-8_42.
Full textTatsuma, Tetsu. "Plasmonic Electrochemistry (Surface Plasmon Effect)." In Encyclopedia of Applied Electrochemistry, 1591–94. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_496.
Full textDostalek, Jakub. "Plasmonic Amplification for Fluorescence Bioassays Utilizing Propagating Surface Plasmons." In Encyclopedia of Nanotechnology, 1–11. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100986-1.
Full textDostalek, Jakub. "Plasmonic Amplification for Fluorescence Bioassays Utilizing Propagating Surface Plasmons." In Encyclopedia of Nanotechnology, 3277–86. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100986.
Full textStöcker, W. "Plasmodien." In Springer Reference Medizin, 1903–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2464.
Full textStöcker, W. "Plasmodien." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2464-1.
Full textJunghanss, Thomas. "Plasmodien." In Lexikon der Infektionskrankheiten des Menschen, 637–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_851.
Full textCleaves, Henderson James, Antonio Lazcano, Ismael Ledesma Mateos, Alicia Negrón-Mendoza, Juli Peretó, and Ervin Silva. "Plasmogeny." In Herrera's 'Plasmogenia' and Other Collected Works, 163–75. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0736-6_3.
Full textBertolotti, Mario, Concita Sibilia, and Angela Guzman. "Plasmons." In Evanescent Waves in Optics, 127–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61261-4_5.
Full textConference papers on the topic "Plasmonen"
Srituravanich, W., N. Fang, C. Sun, S. Durant, M. Ambati, and X. Zhang. "Plasmonic Lithography." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46023.
Full textHwang, Hyunwoo, Won-Sup Lee, No-Cheol Park, Hyunseok Yang, Young-Pil Park, and Kyoung-Su Park. "Enhanced Air-Gap Control for High-Speed Plasmonic Lithography Using Solid Immersion Lens With Sharp-Ridge Nanoaperture." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63336.
Full textEscobedo, C., A. G. Brolo, R. Gordon, and D. Sinton. "Nanofluidics Meets Plasmonics: Flow-Through Surface-Based Sensing." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30176.
Full textChen, Chen, Zhidong Du, and Liang Pan. "Nanoscale Thermal Transport in Plasmonic Nanofocusing Structure With Strong Nonlocality." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37334.
Full textSamsonoff, Nathan, and David Sinton. "Optofluidics for Energy: Fuel and Electricity From Plasmonically-Excited Photosynthetic Bacteria." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66626.
Full textHan, Li-Hsin, Arvind Battula, and Shaochen Chen. "Surface Plasmons in Light Interaction With Metallic Nanostructures and Applications." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52289.
Full textZheng, Yue Bing, Bala Krishna Juluri, and Tony Jun Huang. "Fabrication and Applications of Long-Range Ordered Au Nanodisk Arrays." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67593.
Full textVasilevskiy, M. "MODELLING OF ENVIRONMENT SENSORS BASED ON THE SURFACE PLASMON RESONANCE EFFECT." In Mathematical modeling in materials science of electronic component. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1516.mmmsec-2020/50-51.
Full textRono, Vincent, Matthew LePain, Rabia Hussain, David Keene, Maxim Durach, and Natalia Noginova. "Plasmon drag effect in plasmonic metasurfaces." In SPIE Nanoscience + Engineering, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2015. http://dx.doi.org/10.1117/12.2190304.
Full textPalombo, Nola, Timothy Walsh, Jungchul Lee, and Keunhan Park. "Experimental Study of Enhancement and Quenching of Plasmon-Controlled Fluorescence Using Quantum Dot–Plasmonic Nanoparticle Mixtures in Aqueous Medium." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89642.
Full textReports on the topic "Plasmonen"
Passmore, Brandon Scott, Eric Arthur Shaner, and Todd A. Barrick. Plasmonic filters. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973849.
Full textMirkin, Chad. Plasmonic Encoding. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada614625.
Full textAlivisatos, A. P., Gabor A. Somorjai, and Peidong Yang. Plasmonic-Enhanced Catalysis. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada576759.
Full textPeale, Robert E. Plasmonic-Electronic Transduction. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada566284.
Full textJin, Rongchao. On the Evolution from Non-Plasmonic Metal Nanoclusters to Plasmonic Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611094.
Full textAtwater, Harry A. Plasmonic Devices and Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada442370.
Full textNing, Cun-Zheng, Shun-Lien Chuang, Peidong Yang, Ming Wu, and Connie Chang-Hasnain. Plasmonic Bowtie Antenna Nanolaser. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada605323.
Full textSubramania, Ganapathi Subramanian, John Louis Reno, Brandon Scott Passmore, Tom Harris, Eric Arthur Shaner, and Todd A. Barrick. Plasmonic enhanced ultrafast switch. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973847.
Full textPolyakov, Aleksandr. Plasmon Enhanced Photoemission. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1182733.
Full textHasselbeck, M. P., L. A. Schlie, and D. Stalnaker. Coherent Plasmons in InSb. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada430825.
Full text