Academic literature on the topic 'Plasmoni'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmoni.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plasmoni"
Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Full textMoskovits, Martin. "Canada’s early contributions to plasmonics." Canadian Journal of Chemistry 97, no. 6 (June 2019): 483–87. http://dx.doi.org/10.1139/cjc-2018-0365.
Full textBhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films." Processes 8, no. 1 (January 16, 2020): 115. http://dx.doi.org/10.3390/pr8010115.
Full textYou, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (April 17, 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.
Full textLaw, Stephanie, Viktor Podolskiy, and Daniel Wasserman. "Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics." Nanophotonics 2, no. 2 (April 1, 2013): 103–30. http://dx.doi.org/10.1515/nanoph-2012-0027.
Full textHuang, Shenyang, Chaoyu Song, Guowei Zhang, and Hugen Yan. "Graphene plasmonics: physics and potential applications." Nanophotonics 6, no. 6 (October 18, 2016): 1191–204. http://dx.doi.org/10.1515/nanoph-2016-0126.
Full textOgawa, Shinpei, Shoichiro Fukushima, and Masaaki Shimatani. "Graphene Plasmonics in Sensor Applications: A Review." Sensors 20, no. 12 (June 23, 2020): 3563. http://dx.doi.org/10.3390/s20123563.
Full textMarinica, Dana Codruta, Mario Zapata, Peter Nordlander, Andrey K. Kazansky, Pedro M. Echenique, Javier Aizpurua, and Andrei G. Borisov. "Active quantum plasmonics." Science Advances 1, no. 11 (December 2015): e1501095. http://dx.doi.org/10.1126/sciadv.1501095.
Full textTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Full textSebek, Matej, Ahmed Elbana, Arash Nemati, Jisheng Pan, Ze Xiang Shen, Minghui Hong, Xiaodi Su, Nguyen Thi Kim Thanh, and Jinghua Teng. "Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications." Journal of Molecular and Engineering Materials 08, no. 01n02 (March 2020): 2030001. http://dx.doi.org/10.1142/s2251237320300016.
Full textDissertations / Theses on the topic "Plasmoni"
Peca, Alessandro. "Fondamenti e applicazioni della plasmonica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7686/.
Full textMontanari, Luca. "Surface Plasmon Induced Luminescence as a Tool for Study of the Ageing of Polymeric Materials." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13361/.
Full textRamirez, Francisco. "Surface Plasmon Hybridization in Novel Plasmonic Phenomena." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/917.
Full textKvapil, Michal. "Lokalizované povrchové plazmony: principy a aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229109.
Full textDurach, Maxim. "Giant Plasmonic Energy and Momentum Transfer on the Nanoscale." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/phy_astr_diss/42.
Full textLupetti, Mattia. "Plasmonic generation of attosecond pulses and attosecond imaging of surface plasmons." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183678.
Full textAttosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik eines ultraschnellen Prozesses durch die ``Attosecond Streaking'' Technik zu messen, mit einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mittels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz mit einer externen Quelle entstehen. Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Generation (HHG) in plasmonisch erhöhten Feldern durch numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon, das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonische Strahlung zu generieren. Es wird nachgewiesen, dass die Herstellung von isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in Experimenten mit fokussierten Laserpulsen erreicht werden kann. Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer Oberflächenanregungen vorgeschlagen, wobei Attosekundenpulse verwendet werden, um das Feld an der Oberfläche mittels ``Momentum Streaking'' der photoionisierten Elektronen zu messen. Dieses Konzept ist eine Erweiterung der ``Attosecond Streak Camera'', welches ich ``Attosecond Photoscopy'' nenne. Es ermöglicht die Abbildung eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von numerischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können. Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen diskutiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden vorgestellt.
Ning, Ding. "Analytical and Numerical Models of Multilayered Photonic Devices." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1207712683.
Full textIyer, Srinivasan. "Effects of surface plasmons in subwavelength metallic structures." Doctoral thesis, KTH, Optik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103613.
Full textQC 20121017
Lin, Ling. "Optical Manipulation Using Planar/Patterned Metallo-dielectric Multilayer Structures." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1249.
Full textLamowski, Simon [Verfasser]. "Theory of Plasmonic Nanostructures : Plasmon-Polaritons and Light-Induced Transport / Simon Lamowski." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1233203231/34.
Full textBooks on the topic "Plasmoni"
Zayats, Anatoly V., and Stefan A. Maier, eds. Active Plasmonics and Tuneable Plasmonic Metamaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.
Full textPlasmonics and plasmonic metamaterials: Analysis and applications. Singapore: World Scientific Pub., 2012.
Find full textSönnichsen, Carsten. Plasmons in metal nanostructures. Göttingen: Cuvillier, 2001.
Find full textMartín Becerra, Diana. Active Plasmonic Devices. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48411-2.
Full textBecker, Jan. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0.
Full textservice), SpringerLink (Online, ed. Plasmons as Sensors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textEnoch, Stefan, and Nicolas Bonod, eds. Plasmonics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28079-5.
Full textMol, Nico J., and Marcel J. E. Fischer, eds. Surface Plasmon Resonance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-670-2.
Full textBook chapters on the topic "Plasmoni"
Rocca, Mario. "Surface Plasmons and Plasmonics." In Springer Handbook of Surface Science, 531–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46906-1_18.
Full textTatsuma, Tetsu. "Plasmonic Electrochemistry (Surface Plasmon Effect)." In Encyclopedia of Applied Electrochemistry, 1591–94. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_496.
Full textSTOCKMAN, MARK I. "Spaser, Plasmonic Amplification, and Loss Compensation." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 1–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch1.
Full textISHII, SATOSHI, XINGJIE NI, VLADIMIR P. DRACHEV, MARK D. THORESON, VLADIMIR M. SHALAEV, and ALEXANDER V. KILDISHEV. "Active and Tuneable Metallic Nanoslit Lenses." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 289–316. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch10.
Full textGINZBURG, PAVEL, and MEIR ORENSTEIN. "Nonlinear Effects in Plasmonic Systems." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 41–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch2.
Full textWURTZ, GREGORY A., WAYNE DICKSON, ANATOLY V. ZAYATS, ANTONY MURPHY, and ROBERT J. POLLARD. "Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 69–104. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch3.
Full textAUBRY, ALEXANDRE, and JOHN B. PENDRY. "Transformation Optics for Plasmonics." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 105–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch4.
Full textBERINI, PIERRE. "Loss Compensation and Amplification of Surface Plasmon Polaritons." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 153–70. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch5.
Full textYU, NANFANG, MIKHAIL A. KATS, PATRICE GENEVET, FRANCESCO AIETA, ROMAIN BLANCHARD, GUILLAUME AOUST, ZENO GABURRO, and FEDERICO CAPASSO. "Controlling Light Propagation with Interfacial Phase Discontinuities." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 171–217. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch6.
Full textNEUTENS, PIETER, and PAUL VAN DORPE. "Integrated Plasmonic Detectors." In Active Plasmonics and Tuneable Plasmonic Metamaterials, 219–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118634394.ch7.
Full textConference papers on the topic "Plasmoni"
Srituravanich, W., N. Fang, C. Sun, S. Durant, M. Ambati, and X. Zhang. "Plasmonic Lithography." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46023.
Full textWei, Jianjun, Hongjun Song, Sameer Singhal, Matthew Kofke, Madu Mendis, and David Waldeck. "An In-Plane Nanofluidic Nanoplasmonics-Based Platform for Biodetection." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75206.
Full textRono, Vincent, Matthew LePain, Rabia Hussain, David Keene, Maxim Durach, and Natalia Noginova. "Plasmon drag effect in plasmonic metasurfaces." In SPIE Nanoscience + Engineering, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2015. http://dx.doi.org/10.1117/12.2190304.
Full textGiessen, Harald. "Topological plasmonics: watching plasmonic skyrmions." In Smart Photonic and Optoelectronic Integrated Circuits XXIII, edited by Sailing He and Laurent Vivien. SPIE, 2021. http://dx.doi.org/10.1117/12.2591235.
Full textVo, Thanh Phong, Alireza Maleki, James E. Downes, David W. Coutts, and Judith M. Dawes. "Focusing surface plasmons by a plasmonic lens." In SPIE NanoScience + Engineering, edited by Allan D. Boardman. SPIE, 2014. http://dx.doi.org/10.1117/12.2060618.
Full textSuarez, I., E. P. Fitrakis, P. Rodriguez-Canto, R. Abargues, I. Tomkos, and J. P. Martinez-Pastor. "Photon plasmon coupling in nanocomposite plasmonic waveguides." In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876431.
Full textYu, L. Y., C. Y. Lin, J. C. Hsu, and S. J. Chen. "Surface plasmon resonance biosensors with plasmonic nanostructures." In SPIE BiOS: Biomedical Optics, edited by Tuan Vo-Dinh and Joseph R. Lakowicz. SPIE, 2009. http://dx.doi.org/10.1117/12.809152.
Full textRinge, Emilie, Sean M. Collins, Christopher J. DeSantis, Sara E. Skrabalak, and Paul A. Midgley. "Plasmon and compositional mapping of plasmonic nanostructures." In SPIE/COS Photonics Asia, edited by Xing Zhu, Satoshi Kawata, David J. Bergman, Peter Nordlander, and Francisco Javier García de Abajo. SPIE, 2014. http://dx.doi.org/10.1117/12.2073886.
Full textQuandt, Alexander, and Robert Warmbier. "About plasmons and plasmonics in graphene." In 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193345.
Full textRosenblatt, Gilad, Boris Simkhovich, Guy Bartal, and Meir Orenstein. "Brewster Plasmons – The Second Plasmonic Degree of Freedom." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.ftu1h.3.
Full textReports on the topic "Plasmoni"
Passmore, Brandon Scott, Eric Arthur Shaner, and Todd A. Barrick. Plasmonic filters. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973849.
Full textMirkin, Chad. Plasmonic Encoding. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada614625.
Full textAlivisatos, A. P., Gabor A. Somorjai, and Peidong Yang. Plasmonic-Enhanced Catalysis. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada576759.
Full textPeale, Robert E. Plasmonic-Electronic Transduction. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada566284.
Full textPolyakov, Aleksandr. Plasmon Enhanced Photoemission. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1182733.
Full textJin, Rongchao. On the Evolution from Non-Plasmonic Metal Nanoclusters to Plasmonic Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611094.
Full textAtwater, Harry A. Plasmonic Devices and Materials. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada442370.
Full textHasselbeck, M. P., L. A. Schlie, and D. Stalnaker. Coherent Plasmons in InSb. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada430825.
Full textNing, Cun-Zheng, Shun-Lien Chuang, Peidong Yang, Ming Wu, and Connie Chang-Hasnain. Plasmonic Bowtie Antenna Nanolaser. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada605323.
Full textSubramania, Ganapathi Subramanian, John Louis Reno, Brandon Scott Passmore, Tom Harris, Eric Arthur Shaner, and Todd A. Barrick. Plasmonic enhanced ultrafast switch. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973847.
Full text