To see the other types of publications on this topic, follow the link: Plasmoni.

Dissertations / Theses on the topic 'Plasmoni'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Plasmoni.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Peca, Alessandro. "Fondamenti e applicazioni della plasmonica." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7686/.

Full text
Abstract:
Questo lavoro ha l’obbiettivo di analizzare i principi che stanno alla base della plasmonica, partendo dallo studio dei plasmoni di superficie fino ad arrivare alle loro applicazioni. La prima parte di questa tesi riguarda l’aspetto teorico. Essendo essenzialmente eccitazioni collettive degli elettroni nell'interfaccia fra un conduttore ed un isolante, descritti da onde elettromagnetiche evanescenti, questi plasmoni superficiali, o polaritoni plasmonici di superficie (SPP), vengono studiati partendo dalle equazioni di Maxwell. Viene spiegato come questi SPP nascano dall’accoppiamento dei campi elettromagnetici con le oscillazioni degli elettroni del materiale conduttore e, utilizzando l’equazione dell’onda, si descrivono le loro proprietà in singola interfaccia e in sistemi multistrato. Il quinto capitolo analizza le metodologie di eccitazione di SPP. Sono descritte varie tecniche per l’accoppiamento di fase, per accennare poi a eccitazioni di SPP in guide d’onda, tramite fibra ottica. L’ultimo capitolo della prima parte è dedicato alla seconda tipologia di plasmoni: i plasmoni di superficie localizzati (LSP). Questi sono eccitazioni a seguito dell’accoppiamento fra elettroni di conduzione di nanoparticelle metalliche e il campo elettromagnetico ma che, a differenza dei SPP, non si propagano. Viene esplorata la fisica dei LSP trattando prima le interazioni delle nanoparticelle con le onde elettromagnetiche, poi descrivendo i processi di risonanza in una varietà di particelle differenti in numero, forma, dimensione e ambiente di appartenenza. La seconda parte della tesi riguarda invece alcune applicazioni. Vengono proposti esempi di controllo della propagazione di SPP nel contesto delle guide d’onda, analizzando l’indirizzamento di SPP su superfici planari e spiegando come le guide d’onda di nanoparticelle metalliche possano essere utilizzate per trasferire energia. Infine, viene introdotta la teoria di Mie per la diffusione e l’assorbimento della luce da parte di nanoparticelle metalliche, per quanto riguarda la colorazione apparente, con esempi sulla colorazione vitrea, come la famosa coppa di Licurgo.
APA, Harvard, Vancouver, ISO, and other styles
2

Montanari, Luca. "Surface Plasmon Induced Luminescence as a Tool for Study of the Ageing of Polymeric Materials." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13361/.

Full text
Abstract:
Lo scopo della presente tesi, svolta presso il Laboratorio LAPLACE di Tolosa, è quello di indagare sulle proprietà ottiche di campioni composti da un substrato di materiale polimerico (bi-axially oriented polyprophilene, BOPP) ricoperto con diversi tipi di elettrodi principalmente tramite misure di elettroluminescenza e di comprendere come queste siano legate al suo deterioramento e invecchiamento Nella prima parte della tesi, verranno illustrate le misure effettuate su due diverse strutture MIM (metal-insulator-metal), la prima ottenuta utilizzando oro e la seconda utilizzando ITO come elettrodi. Nella seconda parte, invece, le misure sono state effettuate su campioni multistrato contenenti nano compositi a base di argento, ricoperte con uno strato di ITO che fungerà da elettrodo. Le misure sulla prima tipologia di campioni hanno evidenziato la presenza di due componenti principali nelle emissioni dovute a elettroluminescenza, una prodotta dal materiale bulk (BOPP) e una scaturita dall’interazione tra il substrato e l’elettrodo metallico, grazie al coinvolgimento dei plasmoni di superficie. Lo scopo della seconda parte della tesi è quello di comprendere l’effetto che le particelle di argento potrebbero avere sui plasmoni superficiali e sulle emissioni luminose dovute a elettroluminescenza. I risultati ottenuti su questi campioni hanno evidenziato un livello di luce prodotto da elettroluminescenza incredibilmente maggiore rispetto ai campioni aventi ITO e oro come elettrodi. In conclusione l’impatto delle nano particelle di argento sulle emissioni per elettroluminescenza da BOPP possono essere molteplici e saranno necessari ulteriori studi per comprendere in modo dettagliato tale meccanismo. L’effetto mostrato qui potrebbe risultare molto utile per capire meglio l’elettroluminescenza nei materiali polimerici isolanti da un lato e dall’altro le proprietà foto-fisiche delle nanoparticelle metalliche.
APA, Harvard, Vancouver, ISO, and other styles
3

Ramirez, Francisco. "Surface Plasmon Hybridization in Novel Plasmonic Phenomena." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/917.

Full text
Abstract:
We explore the effects of surface plasmon hybridization in graphene nanostructures and silver nanoparticles as applied to novel plasmonic phenomena. The analysis is based on the theory of surface plasmon hybridization under the boundary charges method. This method, which is based in the electrostatic approximation, has been largely used to predict the resonant frequencies in strongly coupled nanoparticle clusters. Here, we extend this formalism to analyze novel plasmonic phenomena such as the blueshift of modes in graphene plasmonics, near-field radiation, thermal transport and plasmon-induced hot carrier generation in silver nanoparticles. Furthermore, we develop analytical solutions for graphene nanodisks and metallic spheres that allow for fast and accurate modeling. The analytic models provide the basis to derive a large number of results, including prediction of hybrid eigenmodes and bandstructures, far-field response, and near-field response under thermally induced fluctuations. We predict that the strong near-filed coupling in graphene nanodisk stacks can induce a blueshift in the resonant frequencies up to the near-infrared part of the spectrum. We find that the strong near-filed coupling between disks can also lead to large values of radiative thermal conductance when thermally induced fluctuations are included. In this regard, an enhancement over the blackbody limit of up to two and four orders of magnitude was observed for co-planar and co-axial disk configurations. The strong coupling between coplanar disks was also explored for the development of plasmonic waveguides by considering long co-planar disk arrays. It was observed that the array posseses great potential for plasmonic waveguiding, with a strong degree of confinement for disks smaller than 200 nm. Thermal activation of the guided modes showed a thermal conductivity of up to 4.5 W/m K and thermal diffusivity of up to 1:4 x 10-3 m2/s. The large values of thermal diffusivity suggest the potential of graphene disk waveguides for thermotronic interconnects. The plasmon-induced hot carrier generation in silver nanosphere dimers was also studied. The modeling considered analytical solution for metallic nanospheres, from which the electrostatic potential of each sphere was obtained. Using these results, the hot carrier generation was explored under the basis of the Fermi golden rule. The results show a large number of hot carriers at the low frequency modes. This values exceed the number of generated hot carriers on a single sphere. The energy distribution of photogenerated electrons and holes showed a large energy gap that can be explored in photocatalysis and photovoltaic energy conversion.
APA, Harvard, Vancouver, ISO, and other styles
4

Kvapil, Michal. "Lokalizované povrchové plazmony: principy a aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229109.

Full text
Abstract:
The diploma thesis deals with plasmonic nanostructures for visible eventually near-infrared region of electromagnetic spectrum. At first, there are discussed basic terms which are necessary for description of plasmonic nanostructures and their properties. Then the resonant properties of gold nanoantennas on a fused silica substrate and in proximity of nanocrystalline diamond are addressed. FDTD simulations are used for an assesment of resonant properties and local electric field enhancement of these nanostructures. Possible manufacturing methods of the antennas and techniques for the measurement of their properties are mentioned at the end of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Durach, Maxim. "Giant Plasmonic Energy and Momentum Transfer on the Nanoscale." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/phy_astr_diss/42.

Full text
Abstract:
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
APA, Harvard, Vancouver, ISO, and other styles
6

Lupetti, Mattia. "Plasmonic generation of attosecond pulses and attosecond imaging of surface plasmons." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183678.

Full text
Abstract:
Attosecond pulses are ultrashort radiation bursts produced via high harmonic generation (HHG) during a highly nonlinear excitation process driven by a near infrared (NIR) laser pulse. Attosecond pulses can be used to probe the electron dynamics in ultrafast processes via the attosecond streaking technique, with a resolution on the attosecond time scale. In this thesis it is shown that both the generation of attosecond (AS) pulses and the probing of ultrafast processes by means of AS pulses, can be extended to cases in which the respective driving and streaking fields are produced by surface plasmons excited on nanostructures at NIR wavelengths. Surface plasmons are optical modes generated by collective oscillations of the surface electrons in resonance with an external source. In the first part of this thesis, the idea of high harmonic generation (HHG) in the enhanced field of a surface plasmon is analyzed in detail by means of numerical simulations. A NIR pulse is coupled into a surface plasmon propagating in a hollow core tapered waveguide filled with noble gas. The plasmon field intensity increases for decreasing waveguide radius, such that at the apex the field enhancement is sufficient for producing high harmonic radiation. It is shown that with this setup it is possible to generate isolated AS pulses with outstanding spatial and temporal structure, but with an intensity of orders of magnitude smaller than in standard gas harmonic arrangements. In the second part, an experimental technique for the imaging of surface plasmonic excitations on nanostructured surfaces is proposed, where AS pulses are used to probe the surface field by means of photoionization. The concept constitutes an extension of the attosecond streak camera to ``Attosecond Photoscopy'', which allows space- and time-resolved imaging of the plasmon dynamics during the excitation process. It is numerically demonstrated that the relevant parameters of the plasmonic resonance buildup phase can be determined with subfemtosecond precision. Finally, the method used for the numerical solution of the Maxwell's equations is discussed, with particular attention to the problem of absorbing boundary conditions. New insights into the mathematical formulation of the absorbing boundary conditions for Maxwell's equations are provided.
Attosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik eines ultraschnellen Prozesses durch die ``Attosecond Streaking'' Technik zu messen, mit einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mittels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz mit einer externen Quelle entstehen. Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Generation (HHG) in plasmonisch erhöhten Feldern durch numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon, das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonische Strahlung zu generieren. Es wird nachgewiesen, dass die Herstellung von isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in Experimenten mit fokussierten Laserpulsen erreicht werden kann. Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer Oberflächenanregungen vorgeschlagen, wobei Attosekundenpulse verwendet werden, um das Feld an der Oberfläche mittels ``Momentum Streaking'' der photoionisierten Elektronen zu messen. Dieses Konzept ist eine Erweiterung der ``Attosecond Streak Camera'', welches ich ``Attosecond Photoscopy'' nenne. Es ermöglicht die Abbildung eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von numerischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können. Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen diskutiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden vorgestellt.
APA, Harvard, Vancouver, ISO, and other styles
7

Ning, Ding. "Analytical and Numerical Models of Multilayered Photonic Devices." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1207712683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iyer, Srinivasan. "Effects of surface plasmons in subwavelength metallic structures." Doctoral thesis, KTH, Optik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103613.

Full text
Abstract:
The study of optical phenomena related to the strong electromagnetic response of noble metals (silver (Ag) and gold (Au) being most popular) over the last couple of decades has led to the emergence of a fast growing research area called plasmonics named after 'surface plasmons' which are electron density waves that propagate along the interface of a metal and a dielectric medium. Surface plasmons are formed by the coupling of light to the electrons on the metal surface subject to the fulfillment of certain physical conditions and they are bound to the metal surface. Depending on whether the metallic medium is a continuous film or a structure having dimensions less than or comparable to the wavelength of the exciting light, propagating or localized surface plasmons can be excited. The structure can be either a hole or an arbitrary pattern in a metal film, or a metallic particle. An array of subwavelength structures can behave as an effective homogeneous medium to incident light and this is the basis of a new class of media known as metamaterials. Metallic metamaterials enable one to engineer the electromagnetic response to  incident light and provide unconventional optical properties like negative refractive index as one prominent example. Metamaterials exhibiting negative index (also called negative index materials (NIMs)) open the door for super resolution imaging  and development of invisibility cloaks. However, the only problem affecting the utilization of plasmonic media to their fullest potential is the intrinsic loss of the metal, and it becomes a major issue especially at visible-near infrared (NIR) frequencies. The frequency of the surface plasmon is the same as that of the exciting light but its wavelength could be as short as that of X-rays. This property allows light of a given optical frequency to be conned into very small volumes via subwave lengthmetallic structures, that can be used to develop ecient sensors, solar cells, antennas and ultrasensitive molecular detectors to name a few applications. Also, interaction of surface plasmons excited in two or more metallic subwavelength structures in close proximity inuences the far-eld optical properties of the overall coupled system. Some eects of plasmonic interaction in certain coupled particles include polarization conversion, optical activity and transmission spectra mimicking electromagnetically-induced transparency (EIT) as observed in gas based atomicsy stems. In this thesis, we mainly focus on the optical properties of square arrays of certain plasmonic structures popularly researched in the last decade. The structures considered are as follows: (1) subwavelength holes of a composite hole-shape providing superior near-eld enhancement such as two intersecting circles (called' double hole') in an optically thick Au/Ag lm, (2) double layer shnets, (3) subwavelength U-shaped particles and (4) rectangular bars. The entire work is based on electromagnetic simulations using time and frequency domain methods. Au/Ag lms with periodic subwavelength holes provide extraordinarily high transmission of light at certain wavelengths much larger than the dimension of the perforations or holes. The spectral positions of the maxima depend on the shape of the hole and the intra-hole medium, thereby making such lms function as a refractive index sensor in the transmission mode. The sensing performance of the double-hole geometry is analyzed in detail and compared to rectangular holes. Fishnet metamaterials are highly preferred when it comes to constructing a NIM at optical frequencies. A shnet design that theoretically oers a negative refractive index with least losses at telecommunication wavelengths (1.4 1.5 microns) is presented. U-shaped subwavelength metallic particles, in particular single-slit split-ring resonators (SSRRs), provide a large negative response to the magnetic eld of light at a specic resonance frequency. The spectral positions of the structural resonances of the U-shaped particle can be found from its array far field transmission spectrum at normal incidence. An effort is made to clarify our understanding of these resonances with the help of localized surface plasmon modes excited in the overall particle. From an application point of view, it is found that a planar square array of SSRRs eectively functions as an optical half-wave waveplate at the main resonance frequency by creating a polarization in transmission that is orthogonal to that of incident light. A similar waveplate eect can be obtained purely by exploiting the near-eld interaction of dierently oriented neighbouring SSRRs. The physical reasons behind polarization conversion in dierent SSRR-array systems are discussed. A rectangular metallic bar having its dipolar resonance in the visible-NIR is called a nanoantenna, owing to its physical length in the order of nanometers. The excitation of localized surface plasmons, metal dispersion and the geometry of the rectangular nanoantenna make an analytical estimation of the physical length of the antenna from the desired dipolar resonance dicult. A practical map of simulated resonance values corresponding to a variation in geometrical parameters of Au bar is presented. A square array of a coupled plasmonic system comprising of three nanoantennas provides a net transmission response that mimicks the EIT effect. The high transmission spectral window possesses a peculiar dispersion profile that enables light with frequencies in that region to be slowed down. Two popular designs of such plasmonic EIT systems are numerically characterized and compared.

QC 20121017

APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Ling. "Optical Manipulation Using Planar/Patterned Metallo-dielectric Multilayer Structures." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1249.

Full text
Abstract:
Tailoring surface plasmon (SP) resonances using metallic nanostructures for optical manipulation has been widely investigated in recent years; and there are many puzzles yet to be solved in this relatively new area. This thesis covers the study of the interaction of light with SP-supporting planar/patterned metallo-dielectric multilayer structures. Two separate, but closely related subjects were investigated using such structures, which are: SP-assisted optical transmission and optical metamaterials. The physical mechanisms of the SP-assisted transmission phenomenon were studied using planar/grating and planar/hole-array multilayer structures. Extraordinary light transmission has been demonstrated through experimental work and simulations for both arrangements; and the effects of different structural parameters on the transmission efficiencies of the structures were analyzed systematically. The interplays of the surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) in the extraordinary optical transmission (EOT) phenomenon were identified. The potential of the planar/hole-array multilayer structures as optical magnetic metamaterials was evaluated using two independent electromagnetic simulation techniques. The ability of such structures to produce strong magnetic resonances from infrared down to visible side of spectrum was revealed. The methods of tuning the magnetic response of the structures were suggested. A novel design of optical metamaterial based on high-order multipolar resonances in a single-layer plasmonic structure was also proposed. Numerical results from two different computation methods indicate that a simultaneously negative permittivity and permeability can be achieved in such a structure.
APA, Harvard, Vancouver, ISO, and other styles
10

Lamowski, Simon [Verfasser]. "Theory of Plasmonic Nanostructures : Plasmon-Polaritons and Light-Induced Transport / Simon Lamowski." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1233203231/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rahbany, Nancy. "Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures." Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0003/document.

Full text
Abstract:
L'objectif de ce travail de thèse est d'étudier le couplage plasmon-émetteur dans des structures plasmoniques hybrides, visant à renforcer l’interaction lumière-matière à l'échelle nanométrique. Contrairement aux cavités optiques dont le volume de modes est limité par la diffraction, les cavités plasmoniques offrent un unique avantage d’efficacité du confinement sub-longueur d'onde. Cela peut conduire à l’accroissement de la fluorescence des émetteurs placés dans leur voisinage. Pour cela, nous proposons comme dispositif de focalisation une structure intégrée d’un réseau annulaire avec des nanoantennes afin de garantir une meilleure efficacité. Ce dispositif bénéficie du couplage entre des plasmons polaritons de surface (SPP) qui se propagent à partir du réseau et des plasmons localisés de surface (LSP) localisés aux niveaux des nanoantennes afin de parvenir à une augmentation de champ plus élevée. Nous présentons une étude de caractérisation de la plate-forme plasmonique constitué du réseau de diffraction métallique annulaire, d’une nanoantenne en étoile, et la structure intégrée réseau/nanoantenne. Nous montrons comment cette structure peut conduire à une plus grande émission des molécules de colorants ainsi que de centre SiV du diamant. La combinaison du confinement sub-longueur d'onde des LSP et l'énergie élevé des SPP dans notre structure conduit à une focalisation précise qui peut être mis en œuvre pour étudier le couplage plasmon-émetteur dans les régimes de couplage faibles et forts
There is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
APA, Harvard, Vancouver, ISO, and other styles
12

Abid, Ines. "Plasmonique hybride : propriétés optiques de nanostructures Au-TMD, couplage plasmon-exciton." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30333/document.

Full text
Abstract:
Récemment, la famille des dichalcogénures de métaux de transition (TMDs) (MoS2, WS2, MoSe2...) a suscité l'intérêt de nombreuses équipes de recherche en raison de leurs propriétés optiques, électroniques et spintroniques exceptionnelles. Ma thèse est centrée sur l'association de monocouches de TMDs à des nano-structures plasmoniques. Ces dernières apportent une exaltation des propriétés d'absorption, de diffusion et d'émission optiques qui peuvent être mises à profit dans divers domaines d'applications tels que l'opto-électronique, la photo-catalyse ou les capteurs. Dans une première partie je me suis intéressée à l'interaction plasmon-exciton dans des systèmes hybrides constitués de couches de MoSe2 élaborés par dépôt chimique en phase vapeur (CVD) et transférées sur les nanodisques d'or. La résonance plasmon est contrôlée par le diamètre et la séparation entre les nano-disques. Grâce à des mesures de transmission optique et de photoluminescence, et à une analyse détaillée des réponses spectrales basée sur un modèle analytique et des simulations numériques, j'ai mis en évidence un couplage de type Fano entre les plasmons de surface des nanodisques et les transitions excitoniques de MoSe2. J'ai étudié la dépendance de ce couplage en fonction de la taille des disques, du nombre de monocouches de MoSe2 déposées et aussi en fonction de la température. Une analyse quantitative des résultats a été menée en simulant numériquement non seulement le champ local plasmonique mais aussi son couplage avec le moment dipolaire des transitions excitoniques. Pour compléter l'exploration des propriétés optiques du système MoSe2@Au, je me suis intéressée à la diffusion Raman dans des conditions d'excitation résonante et non-résonante de la transition hybride plasmon-exciton. L'idée principale étant que la résonance plasmonique apporte une exaltation de la diffusion Raman par effet SERS (Surface Enhanced Raman Scattering) tandis que les transitions excitoniques contribuent par l'effet Raman résonnant. Cette combinaison des résonances plasmonique et excitonique conduit à un effet SERS résonant. J'ai ainsi pu distinguer les contributions relatives de ces deux résonances, notamment grâce à l'imagerie confocale de la diffusion Raman. J'ai également montré que, dans ces conditions d'excitation résonnante de la transition plasmon-exciton, un phénomène d'hyperthermie a lieu. la modélisation par simulation numérique du champ proche optique et de la diffusion Raman a été utile pour comprendre les principaux facteurs limitatifs de l'exaltation Raman. Ensuite, la couche de MoSe2 a été utilisée comme substrat de nanoparticules d'Au. Les mesures de photoluminescence ont révélé une extinction quasi-totale de l'émission de la photoluminescence. Afin d'expliquer ce phénomène, deux possibilités ont été discutés : (i) le passage de la structure de bande électronique de la couche de TMD d'un semiconducteur à gap direct à indirect à cause de la contrainte imposée par les nanoparticules d'Au (ii) le désordre structural dû au dépôt des nanoparticules d'Au (iii) le transfert des porteurs photo- générés du semiconducteur vers le métal. Grâce aux mesures Raman, et à l'émission radiative des nanoparticules d'Au, j'ai mis en évidence un phénomène de transfert de charges entre le semi conducteur et le métal. Pour compléter les interprétations proposées, j'ai mené une étude comparative avec les propriétés optiques de couche de TMD couvertes \nolinebreak de silice. Ce travail de thèse a été mené au sein du groupe NeO du CEMES et dans le cadre d'une collaboration avec le groupe du Professeur Jun Lou de l'université de Rice à Houston
Transition metal dichalcogenide materials (TMDs) are increasingly gaining attention, due to their unique optical, spintronic, and electronic properties. These properties result from the ultimate confinement in 2D monolayers of a direct band-gap semiconductor and the lack of inversion symmetry in the crystallographic structure. To control and enhance the optical response of these materials, it is interesting to integrate them with plasmonic nano-resonators. The TMDs/plasmonic hybrid systems have been extensively studied for plasmon-enhanced optical signals, photocatalysis, photodetectors, and solar cells. In this context, this thesis deals with the interaction between TMD monolayers and gold nanostructures. In a first part, an hybrid system composed of CVD grown MoSe2 monolayers transferred on gold nanodisks was studied. Surface plasmon resonance was tuned by controlling the nanodisks size and the inter-disks separation. The optical properties of the nanostructures are probed by means of spatially resolved optical transmission and photoluminescence spectroscopies. Fano-type coupling regime between the surface plasmon of the gold nanodisks and the MoSe2 exciton was evidenced by a quantitative analysis of the optical extinction spectra based on an analytical model. Our interpretations were supported by numerical simulations. The number of MoSe2 monolayer dependence as well as the Temperature dependence of the plasmon-exciton interaction was investigated. Our results were quantatively analysed on the nanometric scale by studying the local electromagnetic near-field and the excitonic transition dipole momentum interaction. Furthermore, the Raman scattering of MoSe2@Au system was carried out. A particular situation was investigated where a resonant interaction between the surface plasmon of nanodisks and A exciton of v occur. The contribution of these two resonances leads to a resonant surface enhanced Raman scattering (SERRS) effect. The Raman Scattering excitation is selected to resonantly excite the Surface Plasmon resonance and MoSe2 excitonic transition simultaneously. The relative contribution of the surface Plasmon and the confined exciton to the resonant Raman scattering signal is pointed out. In this resonant condition, a hyperthermia effect was detected. Numerical simulations of the SERS gain were useful to figure out the main factors affecting the SERS intensity enhancement in MoSe2@Au. In a second part, the TMD monolayer was used as a substrate of Au nanoparticles. Au nanoislands were deposited on mono- and few-layered MoSe2 flakes. Photoluminescence (PL) measurements revealed a net quenching of the MoSe2 photoluminescence. To figure out the origin of this quenching three possibilities were discussed (i) the charge transfer between the TMD monolayer and the Au particles (ii) the direct to indirect gap transition of the TMD electronic band structure caused by the strain induced by the metal deposition (iii) structural disorder imparted by the nanoparticles in the TMD/metal interface. Owing to the Raman scattering measurements and using the radiative emission of the gold nanoparticles, we evidenced a charge transfetrt between the metallic nanostructures and the semiconductor. In order to complement our interpretations a comparative study with respect to optical properties of TMD covered by a silica film was carried out. The present work was held within the NeO group in CEMES, in a frame of a collaboration with the group of thr Pr. Jun Lou from Rice university, Houston
APA, Harvard, Vancouver, ISO, and other styles
13

Hou, Xue. "Nano-objets photo-activés pour le ciblage cellulaire et l’hyperthermie." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC011/document.

Full text
Abstract:
Les nanoparticules plasmoniquespossèdent des propriétés intéressantes grâce àla résonance de plasmon de surface localisé. Enplus de leur grande efficacité de conversionphotothermique due au plasmon, leconfinement de l’échauffement peut êtremodulé par le type de source lumineuseutilisée (impulsionnelle ou continue). Cespropriétés font des nanoparticulesplasmoniques une solution potentielle pour lathérapie contre le cancer par hyperthermie.Afin de développer une telle applicationbiomédicale, il est nécessaire d'optimiserl'absorption de l'énergie lumineuse et le ciblagedes nanoparticules sur la tumeur considérée.Dans cette thèse, l'influence des électronschauds photo-générés sur l'absorptiond’impulsions laser ultracourtes par lesnanoparticules est d'abord étudiée. Ensuite, untravail effectué avec des chimistes, biologisteset médecins pour l'application desnanoparticules d’or irradiées par impulsionslaser ultracourtes à la thérapie contre le cancerest présenté. Enfin, nous présentons une étudepréliminaire sur la photoluminescence denanoparticules plasmoniques, dont l'origine estencore controversée, en appliquant un modèleprenant en compte la nature non thermale dela distribution d’électrons chauds
Plasmonic nanoparticles possessinteresting properties thanks to the localizedsurface plasmon resonance. In addition totheir high photothermal conversion efficiency,the heat release confinement can bemodulated by the type of light source used(pulsed or continuous laser). These propertiesmake the plasmonic nanoparticles a potentialsolution for cancer therapy by hyperthermia.In order to develop such a biomedicalapplication, it is necessary to optimize theabsorption of light energy and the targeting ofnanoparticles on the tumor considered.In this thesis, the influence of the photogeneratedhot electrons on the absorption ofultrashort laser pulses by nanoparticles is firststudied. Then, a work carried out withchemists, biologists and physicians for theapplication of gold nanoparticles irradiated byultrashort laser pulses to cancer therapy isdescribed. Finally, we present a preliminarystudy on the photoluminescence of plasmonicnanoparticles, the origin of which is stillcontroversial, by applying a model accountingfor the non-thermal nature of the hot electrondistribution
APA, Harvard, Vancouver, ISO, and other styles
14

Prabhu, G. Radhakrishna. "Studies On Surface Plasmon Resonance And Related Experimental Methods Using Fixed Plasmon Angle." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/205.

Full text
Abstract:
Surface plasmon waves are transverse magnetic electromagnetic waves propagating along a dielectric-metal interface. These waves can be excited by resonant absorption of electromagnetic radiation leading to surface plasmon resonance (SPR) at the interface. The resonance is characterised by a reduction in the intensity of the reflected light at the interface due to strong coupling of incident optical radiation to surface plasmons. This gives rise to a minimum at a sharply defined angle of incidence, referred to as SPR angle or plasmon angle. The phenomenon of SPR has been extensively used in the past to develop reflective type optical devices for sensing applications on account of the high dielectric function dependent sensitivity of the SPR angle. Basically, devices which exhibit this phenomenon have a structure consisting of a metal film sandwiched between two dielectrics. The reflectivity of such a device is theoretically modelled based on either theory of thin films (Fresnel's model) or theory of resonance (Lorentzian model). These models have very effectively predicted the behaviour of such devices based on the shift in SPR angle due to the dielectric function variations. We have been investigating the SPR device for intensity based metrological applications utilising its high angular sensitive reflectivity, with fixed SPR angle. In these intensity based applications or measurements, direct and simple expressions connecting intensity variation to angular change are unavailable in the literature and quantitative estimation or data inversion is based on either curve fitting or iterative methods. Fresnel and Lorentzian models have commonly been used in the experiments but data inversion through the Fresnel model is computationally complex and the Lorentzian model, although less complicated, gives erroneous results due to its approximate nature. In order to obtain a simple expression between intensity variation and the angular change, we have re-looked at the two existing models in order to derive an expression which has the simplicity of the Lorentzian model and the accuracy of the Fresnel model in the experiments with fixed plasmon angles. These efforts have been particularly directed to understand the relationship between intensity variation and meteorologically important properties of such devices. This thesis is an attempt to summarize the computational results which have led us to some novel experimental methodologies which have been used to exploit these devices for inverse type, illumination specific, SPR based applications. The work presented in this thesis is organised in six chapters. Chapter 1, gives an overview of optical sensing, theory of surface plasmons, excitation schemes for surface plasmons, development of the SPR device and its characterisation. It also includes a brief literature review in the area of surface plasmon resonance, covering both the theoretical and experimental aspects. The objectives of the work and the scope of the thesis are also presented. Chapter 2 presents the existing models of SPR device, based on Fresnel's and the Lorentzian models. These models allow reflectance calculations from knowledge of either the optical parameters that describe the layers or the parameters of the waves that propagate through them. Using these models, the inverse problem of estimating either the angle of incidence or the optical constants of the layers of the sensors utilizing the intensity based measurements is generally difficult. In order to solve this problem where the plasmon angles are fixed, a modified formalism for the angle scanned SPR spectrum of a three-layered SPR sensor is presented in this chapter. The new formalism regroups the wave vector parameters of Lorentzian resonance theory into a set of non-dimensional parameters 1, 4K and R. The new reflectivity index (1), which is the ratio of reflectance to the absorptance, has been introduced to help explain the physical processes underlying the device operation in the high sensitivity region of the characteristics. The parameter 4Kis a constant of the device and it depends on the dielectric constants of the device. This is a new SPR index and is identified at a point where reflectance and absorptance match. Parameter R is related to the loss mechanisms in the device and will be explained in detail in Chapter 3. This simple model links the new reflectivity index (1) to the angular detune from SPR angle (ΔƟ) and it brings out a parabolic variation of ΔƟ with 1. In this chapter the mathematical derivation of the proposed model is presented and the significance of the new parameters 1, 4Kand Rare discussed. Chapter 3 evaluates the characteristic nature of errors associated with the predictions from the proposed model and presents methods for neutralizing them. It is demonstrated with the help of the function K which is linearly dependant on 1, that the proposed model predicts the reflectance from the wave vector parameters as accurately as the Fresnel's model. This R parameter explains the slowly varying nature of the radiative loss with the angle of incidence and this variation contributes significantly to the SPR characteristics. As a consequence, it is found that the SPR characteristics can be represented as a sum of two primary functions which are parabolic and linear, respectively, and this leads to the easy explanation of the SPR characteristics. The present chapter also discusses a new observation that the angle-scanned SPR spectrum can be accurately described using a straight line in intercept form. The intercept value depends on 4Kand the slope depends on K. In addition to this, this chapter discusses practical methods for estimation of the intercept and the slope of such a straight line which are functions of the key wave vector parameters. A detailed discussion on the proposed model highlighting its advantages for inverse type, illumination specific, SPR-based applications with fixed SPR angle is also presented. Chapter 4 describes the applications of the proposed model for optical constant measurements. The first part highlights a new approach for the determination of the dielectric constants of the metal film used for the optimised- or nearly-optimised SPR sensors using the proposed model. In the complex dielectric constant, the real part is calculated from the SPR angle and the imaginary part from 4K. A discussion on the dielectric constant study of silver and gold metal film is presented. The advantages of the proposed approach such as its simplicity and direct methodology are then discussed. The second part of the chapter also proposes a new approach to carry out measurements on the absorbance of the medium with enhanced sensitivity utilising the parameter 4K It describes a computational study on the variation of 4K values with the dielectric function and highlights the relationship of 4K variation due to the imaginary part of the dielectric function (absorption) of the samples. The physical processes causing a change in the value of 4Kdue to absorption is also discussed along with some computational results. Chapter 5 reports the study carried out to bring out the importance of the new index,4K in metrological applications. Based on the new model, the effect of the laser beam divergence on SPR curve is studied. This chapter first of all discusses the design of the SPR device and the new methods for the development and characterisation of such a device. Details of the experimental procedure for laser divergence evaluation are proposed along with some of the significant computational results. Furthermore, a few applications such as focal length measurement of optical lenses, micro-displacement measurement based on the divergence of the laser beam are also reported. Since the SPR characteristics can be represented easily using the new model, the angular dependent intensity variation can be utilised for some metrological applications with simple data processing. In this context, the high angular sensitivity of the SPR device is studied and some applications such as micro-displacement measurement, pressure measurement and optical wedge angle measurement are included to highlight the above advantages. The last chapter, Chapter 6, gives a summary and conclusions of the work presented in the thesis. The scope for future investigations is also included in this chapter.
APA, Harvard, Vancouver, ISO, and other styles
15

Huber, Jana. "Plasmonic resonances in metallic nanoarrays." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262269.

Full text
Abstract:
The optical and magneto-optical response of plasmonic resonances in metallic nanoarrays out of square structures, either in holes or islands, were investigated. The excitation of the Bragg Plasmons takes place within a grating. Significant differences in the excited plasmon modes were seen by using p- or s-polarized light as well between the holes and islands sample. In order to investigate magneto-optical response from the magnetic nanostrucures, transverse magneto-optical Kerr effect (TMOKE) measurements were done with the result that there is a difference in holes and islands sample. Contrary to what is generally expected for the polarization dependence of TMOKE, a TMOKE signal for s-polarized light on the holes sample was measured.
APA, Harvard, Vancouver, ISO, and other styles
16

Katzmann, Julia. "Untersuchungen zur effizienten Herstellung von Substraten für die oberflächenverstärkte Infrarotspektroskopie." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-193518.

Full text
Abstract:
Metallische Nanostäbe mit einer Länge im Mikrometer-Bereich wirken als Antennen für infrarotes Licht: Indem unter Lichteinfall eine kollektive Schwingung der Leitungselektronen angeregt wird (ein sogenanntes Plasmon), wird das elektrische Feld an den Stabenden stark konzentriert. Besonders starke Feldkonzentrationen treten auf, wenn zwei Antennenarme durch eine schmale Lücke getrennt sind (Dimerantenne). Somit können die Antennen Licht-Materie-Wechselwirkungen -- wie beispielsweise die Absorption infraroten Lichtes von Molekülen -- verstärken. Dieses als oberflächenverstärkte Infrarotabsorption (SEIRA) bezeichnete Phänomen ist sehr nützlich, um Signale in der Infrarotspektroskopie zu verstärken. Diese Arbeit widmet sich der effizienten Herstellung von metallischen Nanostäben für SEIRA. Im ersten Schwerpunktthema werden Dimerantennen, die per Elektronenstrahllithographie (EBL) hergestellt wurden und eine auflösungsbegrenzte Lücke aufweisen, durch eine photochemische Reduktion von Metallsalzkomplexen nachträglich vergrößert. Dadurch verringert sich die Lückengröße und erreicht Werte deutlich unter der Auflösungsgrenze der EBL. Es wird gezeigt, dass diese photochemische Abscheidung die IR-optischen Eigenschaften der Dimerantennen durch plasmonische Kopplung entscheidend verändert. Zudem steigt die Infrarotabsorption von in der Lücke befindlichen Molekülen mit sinkender Lückengröße. Im zweiten Schwerpunktthema liegt der Fokus auf der günstigen Fabrikation einer Vielzahl von IR-Antennen in einem parallelen Prozess. Dabei werden poröse Template aus anodisiertem Aluminiumoxid (AAO) als Negativ für die herzustellenden Metallstäbe benutzt. Es wird zuerst gezeigt, dass die Poren des Templates durch die photochemische Reduktion von Goldsalzkomplexen befüllt werden können. Für eine gezielte Einstellung der Stäbchenlänge und die Generierung einer nanoskaligen Lücke wird weiterhin die elektrochemische Befüllung der Template untersucht. Die hiermit hergestellten IR-Antennen werden vereinzelt, auf ein Substrat aufgetragen und hinsichtlich ihrer Struktur und ihrer IR-optischen Eigenschaften charakterisiert. Die Vor- und Nachteile der untersuchten Herstellungsmethoden und ihre Eignung für die Fabrikation von IR-Antennen für SEIRA werden diskutiert
Metallic nanorods with lengths in the micrometer regime act as antennas for infrared light: As incident light excites a collective oscillation of the conduction electrons (a so-called plasmon), the electric field is concentrated at the rod ends. In case two antenna arms are separated by a small gap (dimer antenna), a particularly high field concentration occurs. Thereby the antennas are capable of enhancing light-matter-interaction -- for example the absorption of infrared light by molecules. This phenomenon, termed as surface enhanced infrared absorption (SEIRA), is very useful to enhance absorption signals in infrared spectroscopy. This thesis attends to the efficient fabrication of metallic nanorods for SEIRA. The first topic in focus is the manipulation of dimer antennas fabricated by electron beam lithography (EBL), featuring a gap of resolution-limited size. By applying a photochemical reduction of metal salt complexes in solution, the dimer arms are subsequently enlarged. Thereby the gap size is reduced and reaches values clearly below the resolution limit of EBL. It is shown that the IR optical properties of dimer antennas dramatically change during photochemical metal deposition. This is due to plasmonic coupling. Additionally, the absorption of infrared light by molecules located in the gap increases with decreasing gap size. The second topic in focus is the cheap fabrication of a large number of IR antennas in a parallel process. Here, porous templates of anodized aluminum oxide (AAO) are used as a negative for the metal rods to be fabricated. Firstly, it is shown that the pores of the template can be filled by photochemical reduction of gold salt complexes. For a targeted adjustment of the rod lengths and the generation of a nanoscale gap, secondly, the electrochemical filling of acsu AAO is investigated. The IR antennas prepared by this method are extracted from the template, transferred to a substrate, and individually characterized in terms of their structure and IR optical properties. Advantages and drawbacks of the fabrication methods investigated in this work as well as their applicability to the fabrication of IR antennas for SEIRA are being discussed
APA, Harvard, Vancouver, ISO, and other styles
17

Bartholomew, Richard John. "Dynamic plasmonic metasurfaces in the visible spectrum." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274755.

Full text
Abstract:
As visual display technologies move closer to producing true three dimensional displays, pixel technologies need to be ever smaller and more functional to keep pushing the boundaries. Plasmonic metasurfaces have been shown to control the phase, amplitude and/or polarisation of incoming electromagnetic radiation. Nano-fabrication advancements have resulted in the fabrication of the building blocks of such metasurfaces at nano-scale dimensions, allowing the surfaces to interact with visible light, opening up applications in visual displays. As pixel sizes shrink, smaller colour filters will be required. The excitation of plasmonic resonances in metallic nano-structure arrays have resulted in colour filters an order of magnitude smaller than what is currently commercially available. As colour filters, plasmonic metasurfaces offer numerous advantages over pigment-based colour filters used in modern commercial liquid crystal (LC) displays, including environmental, size and longevity factors. Furthermore, exploiting the wavelength and polarisation dependant scattering of nano-structures, optical components, including lenses, waveplates and holograms containing sub-wavelength pixels have been demonstrated in the visible wavelength spectrum. The metasurfaces are able to mould optical wavefronts into arbitrary shapes with sub-wavelength resolution by introducing spatial variations in the optical response of the light scatterers. The applications demonstrated so far are, on the whole, static devices, that is to say their optical properties may not be altered post fabrication. To realise the full potential of plasmonic metasurfaces to visual applications the devices must be made active. By activating structural colour surfaces, not only may pixel densities potentially be increased simply by removing the need for separate red, green and blue filters, but a new class of high definition ultra-thin display devices may be accessible, whilst the dynamic manipulation of the wavelength and polarisation properties of nano-scattering elements would open up the possibilities to create sub-wavelength holographic pixels. This thesis investigates ways to activate static metasurfaces for colour, flat optic, and holographic applications. First, methods of dynamic control of the structural colour of plasmonic nano-hole arrays are investigated. By combining nano-hole arrays with liquid crystals, transmissive electrically tunable LC-nanohole pixels operating across the visible spectrum with un-polarised input light are experimentally demonstrated. An output analyser in combination with a nematic LC layer enables pixel colour to be electronically controlled through an applied voltage across the device, where LC re-orientation leads to tunable mixing of the relative contributions from the plasmonic colour input. Furthermore, exploiting the strong surface anchoring effects between an aluminium surface and LC molecules a twisted nematic LC cell, using a metallic grating as a combined colour filter, electrode and alignment layer, was shown to act a variable amplitude colour filter. The colour of these pixels was improved greatly utilising a grating-insulator-grating structure unique to this work. Second, a new process for fabricating aluminium nano-rod structures embedded in an elastomeric medium, with high spatial accuracy, is presented. The process is used to create nano-rod plasmonic resonator arrays whose optical properties may be altered by mechanical deformation. The pattern transfer process is further utilised to create dynamic optical elements, including nano-rod arrays for colour filters, tunable focal length Fresnel zone plates and photon sieves, and stretchable holograms with dynamic replay fields.
APA, Harvard, Vancouver, ISO, and other styles
18

Rodrigues, Marcos Renan Flores. "Estudo e caracterização de nanopartículas de Fe3O4, Fe2O3, Fe3O4/ Aunanop E Fe2O3/Aunanop." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/184573.

Full text
Abstract:
Nanopartículas de Fe3O4 e Fe2O3 foram sintetizadas a partir da rota de coprecipitação, em atmosfera de N2, mantendo-se o pH entre 9 e 14 na temperatura ambiente e utilizando como precursores o FeCl2 e FeCl3. Após a síntese, as nanopartículas foram tratadas termicamente a 250, 500 e 800 oC. Para obtenção de um sistema híbrido, foram sintetizadas nanopartículas de ouro sobre as nanopartículas de óxido previamente tratadas em diferentes temperaturas. As amostras foram caracterizadas por UV-Vis, difratometria de Raios-X (DRX), microscopia eletrônica de transmissão (MET), microscopia eletrônica de transmissão de alta resolução (MET-AR), espectroscopia no na região do infravermelho (FTIR), magnometria de amostra vibrante (VSM) e espectroscopia Mossbauer (EM), e aplicadas para produção de hidrogênio promovendo a decomposição da hidrazina. Os resultados mostram a síntese de nanopartículas de óxido de ferro com diâmetro médio de cerca de 7 nm. Quando aquecidas a 250 oC o tamanho médio aumentou para ca. de 11 nm e foi observado uma pequena mudança no comportamento óptico e estrutural, mantendo o comportamento superparamagnetico. Quando aquecidas a 500 oC o tamanho médio aumenta para ca. de 50nm e são observadas mudanças significativas nas propriedades ópticas, morfológicas, estruturais. Adicionalmente observa-se transição de comportamento superparamagnetico para paramagnético. Quando aquecidas a 800 oC os efeitos nas propriedades dos materiais são ainda mais significativos; as partículas apresentam tamanho médio de 200 nm, o espectro de absorção no UV-Vis muda significativamente e as partículas passam a ter comportamento pagamagnético. Os resultados obtidos pelas diferentes técnicas e somadas ao Mossbauer sugerem que as amostras sintetizadas são uma mistura de Fe3O4 e -Fe2O3, quando aquecido a 250 e 500 oC uma mistura de -Fe2O3 e -Fe2O3 e a 800 oC somente -Fe2O3. As nanopartículas de ouro sintetizadas sobre as amostras de oxido de ferro apresentaram tamanho médio de 6,0 nm e não afetaram as propriedades magnéticas dos oxidos. As amostras de óxido com nanopartículas de ouro promoveram a decomposição da hidrazina por rota completa, levando a formação de hidrogênio com seletividade de até 33%.
Fe3O4 and Fe2O3 nanoparticles were synthesized by coprecipitation route carried out under N2 atmosphere, maintaining the pH between 9 and 14 at room temperature and using FeCl2 and FeCl3 as precursors. After synthesis the iron oxide nanoparticles were thermally treated at 250, 500 and 800 oC. To obtain a hybrid system, gold nanoparticles were synthesized on the thermally treated oxide nanoparticles. The samples were analyzed by UV-Vis, X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (MET-AR), spectroscopy in the region of Infrared (FTIR), vibrating sample magnitude (VSM) and Mossbauer, and applied to produce H2 through hydrazine decomposition. The results show the synthesis of Fe3O4 nanoparticles with average diameter of about 7 nm. When heated to 250 oC the average size increased to about 11 nm and a small change in the optical and structural behavior was observed, while the superparamegnetic behaviour was maintained. When heated to 500 °C, the average particle size increase to ca 51nm, significant changes in the optical, morphological and structural properties are observed, in addition to a transition from superparamegnetic to paramagnetic behaviour. When heated to 800 oC the effects on the properties are even more significant; the nanoparticles increase to ca. 200 nm, the absorption spectrum in UV-Vis changes significantly and the particles present paramagnetic behaviour. The results suggest that when heated to 250 and 500 oC a mixture of -Fe2O3 e -Fe2O3 is obtained, after heating at 800 oC only -Fe2O3 is observed. The gold nanoparticles synthesized on the iron oxides present average size of 6.0 nm, and did not affect the magnetic properties of the oxides. The iron oxides/gold nanoparticle samples were efficiently applied to produce hydrogen, promoting the decomposition of hydrazin. The selectivity to hydrogen reached up to 33%.
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Tao. "Excitation électrique de plasmons de surface avec un microscope à effet tunnel." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00868784.

Full text
Abstract:
Pour la première fois, en associant un microscope à effet tunnel (STM) et un microscope optique inversé,nous avons imagé les plasmons de surface excités électriquement sur un film d'or avec la pointe d'un STM.Par microscopie de fuite radiative, en observant l'image de l'interface air/or et celle du plan de Fourierassocié, nous avons distingué les plasmons propagatifs des plasmons localisés sous la pointe. Les plasmonspropagatifs sont caractérisés par une distance de propagation et une direction d'émission en accord aveccelles de plasmons propagatifs créés par excitation laser sur des films d'or de mêmes épaisseurs. Les fuitesradiatives des plasmons localisés s'étalent jusqu'à l'angle maximum d'observation. Plasmons propagatifs etlocalisés ont une large bande spectrale dans le visible. Si la pointe est plasmonique (en argent), lesplasmons localisés ont une composante supplémentaire due au couplage associé. Pour différents types depointe, nous avons déterminé les intensités relatives des plasmons localisés et propagatifs. Nous trouvonsque chaque mode plasmon (propagatif ou localisé) peut être préférentiellement sélectionné en modifiant lematériau de la pointe et sa forme. Une pointe en argent produit une intensité élevée de plasmons localisés,tandis qu'une pointe fine de tungstène (rayon de l'apex inférieur à 100 nm) produit essentiellement desplasmons propagatifs. Nous avons étudié la cohérence spatiale des plasmons propagatifs excités par la pointe du STM. Avec un film d'or opaque (épaisseur 200 nm) percé de paires de nanotrous nous avons réalisé une expérienceanalogue à celle des fentes d'Young. Des franges d'interférences sont observées. La mesure de leurvisibilité en fonction de la distance des nanotrous donne une longueur de cohérence des plasmons de 4.7±0.5 μm. Cette valeur, très proche de la valeur 3.7± 1.2 μm déduite de la largeur de la distribution spectraledes plasmons, indique que l'élargissement spectral des plasmons propagatifs est homogène.Nous avons aussi étudié la diffusion des plasmons propagatifs excités par la pointe du STM par desnanoparticules d'or déposées sur un film d'épaisseur 50 nm. Nous observons une diffusion élastique et unediffusion radiative. Des franges d'interférences sont observées dans la région d'émission lumineuseinterdite du plan de Fourier, dont la période est inversement proportionnelle à la distancepointe-nanoparticule d'or avec un facteur de proportionnalité égal à la longueur d'onde moyenne desplasmons. Il y a donc interférence entre la radiation des plasmons localisés et la radiation provenant de ladiffusion des plasmons propagatifs sur les nanoparticules d'or. Ceci indique que les plasmons localisés etpropagatifs excités électriquement par la pointe du STM sont différentes composantes du plasmon uniqueproduit par effet tunnel inélastique avec la pointe du STM. Ces résultats originaux sur les plasmons créés sur film d'or par un effet tunnel inélastique localisé à l'échelle atomique (i) élargissent la compréhension du processus et (ii) offrent des perspectives intéressantes pour une association de la nanoélectronique et de la nanophotonique.
APA, Harvard, Vancouver, ISO, and other styles
20

Jain, Prashant K. "Plasmons in assembled metal nanostructures." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28207.

Full text
Abstract:
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.
Committee Chair: El-Sayed, Mostafa A.; Committee Member: Lyon, L. Andrew; Committee Member: Sherrill, C. David; Committee Member: Wang, Zhong Lin; Committee Member: Whetten, Robert L.
APA, Harvard, Vancouver, ISO, and other styles
21

Ajib, Rabih. "Propagation of light in Plasmonic multilayers." Thesis, Université Clermont Auvergne‎ (2017-2020), 2017. http://www.theses.fr/2017CLFAC040/document.

Full text
Abstract:
La plasmonique vise à utiliser des nanostructures métalliques très petites devant la longueur d’onde pour manipuler la lumière. Les structures métalliques sont particulières parce qu’elles contiennent un plasma d’électrons libres qui conditionne complètement leur réponse optique. Notamment, lorsque la lumière se propage à proximité des métaux, sous forme de mode guidés comme les plasmons et les gap-palsmons, elle est souvent lente, présentant une vitesse de groupe faible. Dans ce travail, nous présentons une analyse physique qui permet de comprendre cette faible vitesse en considérant le fait que l’énergie se déplace à l’opposé de la lumière dans les métaux. Nous montrons que la vitesse de groupe est égale à la vitesse de l’énergie pour ces modes guidés, et proposons la notion de ralentissement plasmonique. Finalement, nous étudions comment cette « trainée plasmonique » rend une structure aussi simple qu’un coupleur à prisme sensible à la répulsion entre les électrons du plasma
The field of plasmonics aims at manipulating light using deeply subwavelength nanostructures. Such structures present a peculiar optical response because of the free electron plasma they contain. Actually, when light propagates in the vicinity of metals, usually under the form of a guided mode, it presents a low group velocity. Such modes, like plasmons and gap-plasmons, are said to be slow. In this work we present a general physical analysis of this phenomenon by studying how the energy propagates in metals in a direction that is opposite to the propagation direction of the mode. We show that the group velocity and the energy velocity are the same, and finally introduce the concept of plasmonic drag. Finally, we study how slow guided modes make structures as simple as prism couplers sensitive to the repulsion between electrons inside the plasma
APA, Harvard, Vancouver, ISO, and other styles
22

Seidel, Jan. "Propagation, Scattering and Amplification of Surface Plasmons in Thin Silver Films." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1117625135371-32372.

Full text
Abstract:
Plasmons, i.e. collective oscillations of conduction electrons, have a strong influence on the optical properties of metal micro- and nanostructures and are of great interest for novel photonic devices. Here, plasmons on metal-dielectric interfaces are investigated using near-field optical microscopy and differential angular reflectance spectroscopy. Emphasis is placed on the study of plasmon interaction with individual nanostructures and on the nonlinear process of surface plasmon amplification. Specifically, plasmon transmission across single grooves in thin silver films is investigated with the help of a near-field optical microscope. It is found that plasmon transmittance as a function of groove width shows a non-monotonic behavior, exhibiting certain favorable groove widths with strongly decreased transmittance values. Additionally, evidence of groove-mediated plasmon mode coupling is observed. Spatial beating due to different plasmon wave vectors produces distinct interference features in near-field optical images. A theoretical approach explains these observations and gives estimated coupling effciencies deduced from visibility considerations. Furthermore, stimulated emission of surface plasmons induced by optical pumping using an organic dye solution is demonstrated for the first time. For this a novel twin-attenuated-total-reflection scheme is introduced. The experiment is described by a theoretical model which exhibits very good agreement. Together they provide clear evidence of the claimed process.
APA, Harvard, Vancouver, ISO, and other styles
23

Břínek, Lukáš. "Plazmonické rezonanční antény." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228250.

Full text
Abstract:
Tato diplomová práce se zabývala plazmonickými anténami pro infračervenou oblast spektra elektromagnetického záření. K hledání zesílení pole bylo použito FDTD (Finite-Difference Time-Domain Method) simulací. Podle očekávání, byla shledána lineární závislost rezonanční vlnové délky na délce raménka platinové antény na křemíkovém povrchu. Diplomová práce se také zabývala výrobou antén pomocí fokusovaného iontového svazku (FIB) a následným měřením rezonančních vlastností pomocí mikroskopické metody FT-IR (Fourier Transform Infrared Spectroscopy). Posun rezonanční vlnové délky byla registrována pouze pro negativní antény. Nakonec se tato práce zabývala vysvětlením saturace křivky závislosti rezonanční vlnové délky na rozměru raménka platinové antény na substrátu ze SRONu (silicon-rich oxynitride).
APA, Harvard, Vancouver, ISO, and other styles
24

Břínek, Lukáš. "Application of Plasmon Polaritons in Nanophotonics." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234583.

Full text
Abstract:
Práce pojednává o vlastnostech plazmonických antén v infračervené a viditelné oblasti. Práce zahrnuje výrobu, měření a numerické modelování optických vlastností antén. Infračervené plazmonické antény na absorbujícím substrátu (SRON) jsou studovány pro jejich rezonanční a absorpční vlastnosti. Byla nalezena geometrie antény, která poskytuje maximální účinnost absorpce ve SRON vrstvě. Dále je studována možnost zesílení daného vibračního módu substrátu (obsahujícího 3-4 materiálové rezonance) pomocí plazmonické rezonance antény. Nakonec jsou prezentována měření katodoluminiscenčních spekter antén ve viditelném spektru.
APA, Harvard, Vancouver, ISO, and other styles
25

Habert, Benjamin. "Contrôle de la fluorescence par des nanoantennes plasmoniques." Phd thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://pastel.archives-ouvertes.fr/pastel-01023199.

Full text
Abstract:
Dans ce travail de these, nous étudions comment des nano-structures métalliques modifient le processus d'émission spontannée d'objets fluorescents et jouent ainsi un rôle d'antenne. Ces structures supportent des modes optiques confinés aux interfaces metal-diélectrique: ce sont des modes plasmoniques.De par leur fort confinement, ces modes modifient la densité locale d'états optiques et permettent notamment d'accélérer le processus d'émission spontannée (facteur de Purcell). Nous étudions le cas d'une structure planaire metal-isolant-métal de type patch couplée à un ensemble de nanocristaux colloïdaux fluorescents. Nos mesures, soutenues par des calculs numériques, montrent une acceleration de l'émission fluorescente d'un facteur 80 ainsi qu'une augmentation de la directivité de l'émission. Nous décrivons ensuite le procedé de fabrication d'une structure patch metal-semiconducteur-métal pour laquelle la source fluorescente est un puits quantique émettant dans le proche infra-rouge. Nous montrons que l'antenne permet d'augmenter l'extraction fluorescente d'un facteur 8. Enfin, nous considérons le cas d'une structure sphérique composée d'un unique nanocristal fluorescent au centre d'une bille de silice entourée par une fine coquille métallique. Cette structure plasmonique accélère l'émission d'une facteur 10 et permet de supprimer le scintillement caractéristique de l'émission des nanocristaux. La coquille métallique permet également d'isoler chimiquement le nanocristal de l'environnement, assurant ainsi une grande photostabilité et une toxicité réduite. L'émetteur ainsi obtenu est donc un candidat prometteur pour des applications de marquage de fluorescence in-vivo.
APA, Harvard, Vancouver, ISO, and other styles
26

See, Erich M. "Plasmon Directed Chemical Reactivity and Nanoparticle Self-Assembly." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85400.

Full text
Abstract:
Nanotechnology has advanced to the point that nanoparticles can now be fabricated in a broad variety of shapes from a wide range of materials, each with their own properties and uses. As the list of manufacturable particles continues to grow, a new frontier presents itself: assembling these existing nanoparticles into more complicated nanoscale structures. The primary objective of this thesis is to demonstrate and characterize one such method of nanoscale construction, the plasmonically directed self-assembly of gold nanospheres onto both silver nanospheroids and gold nanorods. At the heart of this research is a the use of a photocleavable ligand (1-(6-Nitrobenzo[d][1,3]dioxol-5-yl)ethyl(4-(1,2-Dithiolan-3-yl)butyl) carbamate), which is capable of forming a photoreactive self-assembly monolayer (SAM) on gold and silver surfaces. After photoactivation, this SAM becomes positively charged at low pH, allowing it to electrostatically bind with negatively charged gold nanospheres (or other negatively charged nanoparticles). In this thesis, I describe both a secondary photoreaction that this ligand is capable post-photocleavage, which removes the ligand's ability to bind to negatively charged gold nanospheres, allowing for, among other assembly methods, reverse photopatterning. I further show that this photocleavable ligand can be used in conjunction with gold nanospheres to create aligned, metal structures on silver nanospheroid surface by exposure to linearly polarized UV light. Similarly, I also demonstrate how the ligand can be used to preferentially bind gold nanospheres to the ends of gold nanorods with the use of ultrafast femtosecond pulsed 750 nm laser light, making use of multi-photon absorption. Both methods of self-assembly, as well as the secondary photoreaction, are dependent on the plasmonics of the metal nanoparticles. This thesis also goes into the backgrounds of plasmonics, plasmonically mediated catalysis, self-assembly, and photocleavable chemicals.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
27

Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Dalla scoperta del grafene, molte ricerche sono state condotte sui cosiddetti “materiali 2D”. Questo elaborato si focalizza sulle proprietà strutturali, elettroniche, ottiche ed eccitoniche di due materiali bidimensionali, ossia il grafene il disolfuro di molibdeno (MoS2-1H), quest’ultimo un importante semiconduttore. Le proprietà di questi materiali sono diverse rispetto alla loro controparte massiva (bulk) grafite e MoS2-2H, e un loro confronto è stato preso in considerazione. Come metodo di indagine sono state scelte simulazioni quanto- meccaniche ab initio dei sistemi in esame, un approccio che, negli ultimi decenni, sta avendo un impatto sempre più importante sulla fisica, sulla chimica dello stato solido e sulla scienza dei materiali, promuovendo non solo una comprensione più profonda, ma anche la possibilità di contribuire in modo significativo alla progettazione di materiali per nuove tecnologie. Questo importante passo avanti è stato possibile grazie a: (i) una descrizione migliorata ed efficiente degli effetti elettronici a molti corpi (many-body) nella teoria del funzionale della densità (DFT), nonché lo sviluppo di metodi post-DFT per lo studio di proprietà specifiche; (ii) un’accurata implementazione di questi metodi in software altamente efficienti, stabili e versatili, capaci di sfruttare il potenziale delle architetture informatiche moderne. Tra i possibili software ab initio basati su DFT, abbiamo scelto il pacchetto di simulazione di Vienna ab initio VASP, considerato un gold standard per questo tipo di indagini. I risultati ottenuti per le varie proprietà di bulk e di superficie (bidimensionale) dei materiali scelti sono in ottimo accordo con dati ottenuti in precedenza, sia a livello teorico, sia sperimentale. Questo elaborato getta quindi le basi per futuri studi nel campo dei materiali 2D per comprendere, analizzare, ingegnerizzare nuovi materiali con proprietà desiderabili e per sviluppare nuove applicazioni degli stessi.
APA, Harvard, Vancouver, ISO, and other styles
28

Schira, Romain. "Réponse optique d’agrégats d’argent : excitations plasmoniques et effets de l’environnement." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1162/document.

Full text
Abstract:
Les réponses optiques d'agrégats de métaux nobles sont caractérisées par une absorption intense, situées dans le domaine UV-Visible, et appelée plasmon de surface localisé. Pour des particules de plusieurs nanomètres de diamètre, le phénomène de plasmon peut être interprété par des modèles semi-classiques ou classiques comme la théorie de Mie, mais ces modèles trouvent leur limite lorsque la taille du système diminue. La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) est une approche entièrement quantique qui permet d'appréhender le phénomène de plasmon en reproduisant la réponse optique de petits agrégats d'argent, composés de quelques atomes à quelques centaines d'atomes. Dans ce contexte, nous avons réalisé des calculs TDDFT avec une fonctionnelle de type Range-Separated-Hybrid (RSH) sur des agrégats contenant entre 8 et 147 atomes d'argent. Les spectres obtenus sont en excellent accord avec les données expérimentales et les réponses optiques calculées perme ttent de retrouver les prédictions du modèle en couches. Nous présentons des outils permettant d'identifier et de caractériser les excitations plasmoniques dans le formalisme de la TDDFT. Les effets de l'environnement sur la réponse optique des agrégats sont également étudiés, avec notamment la présentation d'une méthodologie permettant de reproduire les spectres mesurés sur des agrégats d'argent piégés dans des matrices de gaz rare. Les effets de l'oxydation et les effets induits par une matrice de silice sur la réponse optique des agrégats sont également étudiés
Optical responses of noble metal clusters are characterized by a strong absorption in the UV-Visible range called localized surface plasmon. For clusters of several nanometers, the plasmon phenomenon can be interpreted by semi-classical or classical model, as the Mie theory, but those models can not describe the optical response of small-size clusters. The time dependent density functional theory (TDDFT) is a quantum method that allow to understand the plasmon phenomenon by reproducing the optical response of small silver cluster, made of a few tens or hundreds atoms. In this context, we performed TDDFT calculation using Range-Separated Hybrid (RSH) functionals over cluster containing between 8 and 147 silver atoms. The obtained spectra are in excellent agreement with the experimental ones and the calculated optical response allows to recover the shell model prediction. We present some tools that allow to identify and characterize plasmonic excitations within the TDDFT framework. The effect of the surrounding medium over the optical response of clusters are studied, in particular we will present a methodology that allow to reproduce spectra measured over clusters trapped in rare gas matrix. The effects of the oxidation and the effects induced by a silica matrix over the optical response of clusters are also studied
APA, Harvard, Vancouver, ISO, and other styles
29

Cleary, Justin. "Surface Plasmon Hosts for Infrared Waveguides and Biosensors, and Plasmons in Gold-Black Nano-Structured Films." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3562.

Full text
Abstract:
Applications of surface plasmon polaritons (SPPs) have thus far emphasized visible and near-infrared wavelengths. Extension into the long-wave infrared (LWIR) has numerous potential advantages for biosensors and waveguides, which are explored in this work. A surface plasmon resonance (SPR) biosensor that operates deep into the infrared (3-11 µm wavelengths) is potentially capable of biomolecule recognition based on both selective binding and characteristic vibrational modes. The goal is to operate such sensors at wavelengths where biological analytes are strongly differentiated by their IR absorption spectra and where the refractive index is increased by dispersion, which will provide enhanced selectivity and sensitivity. Potentially useful IR surface plasmon resonances are investigated on lamellar gratings formed from various materials with plasma frequencies in the IR wavelength range including doped semiconductors, semimetals, and conducting polymers. One outcome of this work has been the demonstration of a simple analytic formula for calculating the SPP absorption resonances in the angular reflectance spectra of gratings. It is demonstrated for Ag lamellar gratings in the 6-11 µm wavelength range. The recipe is semi-empirical, requiring knowledge of a surface-impedance modulation amplitude, which is found here by comparison to experiment as a function of the grating groove depth and the wavelength. The optimum groove depth for photon-to-SPP energy conversion was found by experiment and calculation to be ~10-15% of the wavelength. Hemicylindrical prism couplers formed from Si or Ge were investigated as IR surface plasmon couplers for the biosensor application. Strong Fabry-Perot oscillations in the angular reflectance spectra for these high index materials suggest that grating couplers will be more effective for this application in the LWIR. A variety of materials having IR plasma frequencies were investigated due to the tighter SPP mode confinement anticipated in the IR than for traditional noble metals. First doped-Si and metal silicides (Ni, Pd, Pt and Ti) were investigated due to their inherent CMOS compatibility. Rutherford backscattering spectroscopy, x-ray diffraction, scanning electron microscopy, secondary ion mass spectrometry and four point probe measurements complemented the optical characterization by ellipsometry. Calculation of propagation length and mode confinement from measured permittivities demonstrated the suitability for these materials for LWIR SPP applications. Semimetals were also investigated since their plasma frequencies are intermediate between those of doped silicon and metal silicides. The semimetal antimony, with a plasma frequency ~80 times less than that of gold was characterized. Relevant IR surface plasmon properties, including the propagation length and penetration depths for SPP fields, were determined from optical constants measured in the LWIR. Distinct resonances due to SPP generation were observed in angular reflection spectra of Sb lamellar gratings in the wavelength range of 6 to 11 µm. Though the real part of the permittivity is positive in this range, which violates the usual condition for the existence of bound SPP modes, calculations based on experimental permittivity showed that there is little to distinguish bound from unbound SPP modes for this material. The SPP mode decays exponentially away from the surface on both sides of the permittivity sign change. Water is found to broaden the IR plasmon resonances significantly at 9.25 micron wavelength where aqueous extinction is large. Much sharper resonances for water based IR SPR biosensor can be achieved in the 3.5 to 5.5 µm range. Nano-structured Au films (Au-black) were investigated as IR absorbers and possible solar cell enhancers based on surface plasmon resonance. The characteristic length scales of the structured films vary considerably as a function of deposition parameters, but the absorbance is found to be only weakly correlated with these distributions. Structured Au-black with a broad range of cluster length scales appear to be able to support multiple SPP modes with incident light coupling to the corrugated surface as seen by photoelectron emission microscopy (PEEM) and SPR experiments, supporting the hypothesis that Au-black may be a suitable material for plasmon-resonance enhancement solar-cell efficiency over the broad solar spectrum.
Ph.D.
Department of Physics
Sciences
Physics PhD
APA, Harvard, Vancouver, ISO, and other styles
30

Tetz, Kevin. "Plasmonics in the near-infrared spatial, spectral, and temporal studies of surface plasmon polaritons /." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3233747.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed December 4, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 131-139).
APA, Harvard, Vancouver, ISO, and other styles
31

Chamtouri, Maha. "Etude exhaustive de la sensibilité des Biopuces plasmoniques structurées intégrant un réseau rectangulaire 1D : effet de la transition des plasmons localisés vers les plasmons propagatifs." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112060/document.

Full text
Abstract:
Malgré leurs contribution dans plusieurs domaines, les biopuces à lecture plasmonique conventionnelles basées sur l'utilisation d’un film métallique plan d'or, sont limitées en terme de sensibilité surtout quand il s'agit de détecter des molécules de faible masse molaire à l’état de trace.Dans ce cadre, nous étudions numériquement et expérimentalement le potentiel de détection d’interactions biomoléculaires d’une nouvelle génération de biopuces à lecture plasmonique intégrant un film métallique micro-nano-structurée en réseau rectangulaire 1D. L’étude numérique développée met en œuvre une méthode hybride, basée sur la combinaison de deux méthodes classiques : la méthode des éléments finis et la méthode modale de Fourier. Grâce à ce nouvel outil numérique, nous présentons une cartographie exhaustive du potentiel de détection d’une couche biologique, en variant les paramètres de la structuration liés aux dimensions du réseau. La réponse de la biopuce à l’accrochage de biomolécules est ensuite interprétée théoriquement par les différents phénomènes plasmoniques notamment les «points chauds» et les bandes plasmoniques interdites. Nos calculs soulignent l'importance de l’exploitation du confinement de la lumière à travers la structuration sub-longueur d’onde des surfaces plasmoniques. Ceci permet non seulement d’optimiser les paramètres géométriques afin d’améliorer la sensibilité vis-à-vis de la réponse d’une biopuce conventionnelle, mais aussi de mettre en évidence la transition entre le régime où les plasmons propagatifs dominent et le régime où les plasmons localisés dominent. De nouvelles figures de mérite sont introduites pour évaluer les performances des biopuces structurées.Cette étude montre également que de nouvelles opportunités pour améliorer davantage la bio-sensibilité sont offertes, si la localisation de biomolécules peut être effectuée dans les régions où le champ électrique est amplifié et confiné
Surface plasmons resonance imaging with continuous thin metallic films have become a central tool for the study of biomolecular interactions. However, in order to extend the field of applications of surface plasmons resonance systems to the trace detection of biomolecules having low molecular weight, a change in the plasmonic sensing methodology is needed. In this study, we investigate theoretically and experimentally the sensing potential of 2D nano- and micro- ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance biosensors when they are used for detection of biomolecular binding events. Numerical simulations were carried out by employing a fast and novel model based on the hybridization of two classical methods, the Fourier Modal Method and the Finite Element Method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro- scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement, and associated figures of merit, compared with the response of the conventional surface plasmon resonance biosensor based on a flat surface, but it also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the nano- and micro- structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions. New figures of merit are introduced to evaluate the performance of the structured biosensors. The structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic fields. New opportunities for further improving the bio-sensitivity are offered if localization of biomolecules can be carried out in these regions of high electromagnetic fields enhancement and confined
APA, Harvard, Vancouver, ISO, and other styles
32

Renger, Jan. "Excitation, Interaction, and Scattering of Localized and Propagating Surface Polaritons." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1153478195966-65404.

Full text
Abstract:
Surface polaritons, i.e., collective oscillations of the surface charges, strongly influence the optical response at the micro- and nanoscale and have to be accounted for in modern nanotechnology. Within this thesis, certain basic phenomena involving surface polaritons are investigated by means of the semianalytical multiple-multipole (MMP) method. The results are compared to experiments. In the first part, the surface plasmon resonance (SPR) of metal nanoparticles is analyzed. This resonant collective oscillation of the free electrons in a metallic nanoparticle leads to an enhancement and confinement of the local electric field at optical frequencies. The local electric field can be further increased by tailoring the shape of the particle or by using near-field-interacting dimers or trimers of gold nanospheres. The hot spots found under such conditions increase the sensitivity of surface-enhanced Raman scattering by several orders of magnitude and simultaneously reduce the probed volume, thereby providing single-molecule sensitivity. The sub-wavelength-confined strong electromagnetic field associated with a SPR provides the basis for scattering-type near-field optical microscopy or tip-enhanced Raman spectroscopy, where the metal particle serves as a probe that is scanned laterally in the vicinity of a substrate. The presence of the latter causes a characteristic shift of the SPR towards lower frequencies. This effect originates in the near-field interaction of the surface charges on the objects. Furthermore, the excitation of higher-order modes becomes possible in case of an excitation by a strongly inhomogeneous wave, such as an evanescent wave. These modes may significantly contribute to the near field but have only very little influence on the far-field signature. Instead of using resonant probes, one may place a nonresonant probe in the vicinity of a substrate having a high density of electromagnetic surface states. This also produces a resonance of the light scattering by the system. Especially polar crystals, such as the investigated silicon carbide, feature such a high density of surface phonon polariton states in the mid-infrared spectral region, which can be excited due to the near-field interaction with a polarized particle. Thereby, a resonance is created leading to a strong increase of the electric field at the interface. In the second part of the thesis, special emphasis is put on surface plasmon polaritons (SPPs). Such propagating surface waves can be excited directly by plane waves only at patterned interfaces. This process is studied for the case of a groove. The groove breaks the translational invariance, so that the SPPs can be launched locally at the edges of the groove. Additionally, the mode(s) inside the groove are excited. These modes can basically be understood as metal-insulator-metal cavity modes. Their dispersion strongly depends on the groove width. The cavity behavior caused by the finite depth provides another degree of freedom for optimizing the SPP excitation by plane waves. Thin metallic films deposited on glass offer two different SPP waveguide modes, each of which can be addressed preferentially by a proper choice of the width of the groove. The reflection, transmission, scattering, and the conversion of the modes at discontinuities such as edges, steps, barriers, and grooves can be controlled by appropriately designing the geometry at the nanoscale. Furthermore, the excitation of SPPs at single and multiple slits in thin-film metal waveguides on glass and their propagation and scattering is shown by scanning near-field optical experiments. Such waveguide structures offer a means for transporting light in a confined way. Especially triangularly shaped waveguides can be used to guide light in sub-wavelength spaces
Die Wechselwirkung von elektromagnetischer Strahlung mit subwellenlängenkleinen Teilchen bzw. Oberflächenstrukturen ermöglicht nicht nur eine Miniaturisierung optischer Geräte, sondern erlaubt sehr interessante Anwendungen, beispielsweise in der Sensorik und Nahfeldoptik. In der vorliegenden Arbeit werden die zu Grunde liegenden Effekte im Rahmen der klassischen Elektrodynamik mit Hilfe der semianalytischen Methode der multiplen Multipole (MMP) analysiert, und die Ergebnisse werden mit Experimenten verglichen. Im ersten Teil werden Oberflächenplasmonenresonanzen (engl. surface plasmon resonance - SPR) einzelner und wechselwirkender Metallteilchen untersucht. Die dabei auftretende resonante kollektive Schwingung der freien Elektronen des Partikels bewirkt eine deutliche Erhöhung und Lokalisierung des elektromagnetischen Feldes in seiner Umgebung. Die spektrale Position und die Stärke der SPR eines Nanoteilchens, die von dessen geometrischer Form, Permittivität und Umgebung abhängen, können nur im Grenzfall sehr kleiner Teilchen elektrostatisch beschrieben werden, wohingegen der verwendete semianalytische MMP-Ansatz weitaus flexibler ist und insbesondere auch auf größere Partikel, Teilchen mit komplizierterer Form bzw. Ensembles von Partikeln anwendbar ist. Die betrachteten einzelnen kleinen (< Wellenlänge) Goldkügelchen und Silberellipsoide besitzen eine stark ausgeprägte SPR im sichtbaren optischen Bereich. Diese ist auf eine dipolartige Polarisierung des Teilchens zurückzuführen. Höhere Moden der Polarisation können entweder als Folge von Retardierungseffekten an größeren (mit der Wellenlänge vergleichbaren) Teilchen oder bei der Verwendung inhomogener (z.B. evaneszenter) Wellen angeregt werden. Partikel, die sich in der Nähe eines Substrates befinden, unterliegen der Nahfeldwechselwirkung zwischen den (lichtinduzierten) Oberflächenladungen auf der Oberfläche des Teilchens und des Substrats. Dies führt zu einer Verschiebung der SPR zu niedrigeren Frequenzen und einer Erhöhung des lokalen elektrischen Feldes. Letzteres bildet die Grundlage z.B. der spitzenverstärkten Raman-Spektroskopie und der optischen Nahfeldmikroskopie mit Streulichtdetektion. Dasselbe Prinzip bewirkt ein stark überhöhtes elektrisches Feld zwischen miteinander wechselwirkenden Nanopartikeln, welches z.B. die Sensitivität der oberflächenverstärkten Raman-Mikroskopie um mehrere Größenordnungen steigern kann. Im Gegensatz zur SPR einzelner Nanopartikel kann die Resonanz der Lichtstreuung im Fall eines Partikels in der Nähe eines Substrats aus der durch die Nahfeldwechselwirkung induzierten Anregung elektromagnetischer Oberflächenzustände entstehen. Diese wirken ihrerseits auf das Nanopartikel zurück, wobei eine resonante Lichtstreuung beobachtbar ist. Dieser, am Beispiel einer metallischen Nahfeldsonde über einem Siliziumcarbid-Substrat analysierte, Effekt ermöglicht bei einer ganzen Klasse von polaren Kristallen interessante Anwendungen in der Mikroskopie und Sensorik basierend auf der hohen Dichte von Oberflächenphononpolaritonen dieser Kristalle im mittleren infraroten Spektralbereich und deren nahfeldinduzierten Anregung. Im zweiten Teil der Arbeit werden kollektive Anregungen von Elektronen an Metalloberflächen untersucht. Die dabei auftretenden plasmonischen Oberflächenwellen (engl. surface plasmon polaritons - SPPs) weisen einen exponentiellen Abfall der Intensität senkrecht zur Grenzfläche auf. Diese starke Lokalisierung der Energie an der Oberfläche bildet die Grundlage vieler Anwendungen, z.B. im Bereich der hochempfindlichen Detektion (bio)chemischer Verbindungen oder für eine zweidimensionale Optik (engl. plasmonics). Das Aufheben der Translationsinvarianz längs der Oberfläche ermöglicht die direkte Anregung von SPPs durch ebene Wellen. Die Abhängigkeit dieser Kopplung von der Geometrie wird am Beispiel eines Nanograbens untersucht. Dabei werden neben den SPPs ebenfalls eine oder mehrere Moden im Graben angeregt. Folglich ermöglicht die geeignete Wahl der Grabengeometrie die Optimierung der Umwandlung von ebenen Wellen in SPPs. Im - in der Praxis weit verbreiteten - Fall asymmetrisch eingebetteter metallischer Dünnschichtwellenleiter existieren zwei Moden. In Abhängigkeit von der Grabenbreite kann die eine oder die andere Mode bevorzugt angeregt werden. Die Analyse der Wechselwirkung von SPPs mit Oberflächenstrukturen, z.B. Kanten, Stufen, Barrieren und Gräben, zeigt die Möglichkeit der Steuerung der Reflexions-, Transmissions- und Abstrahleigenschaften durch die gezielte Wahl der Geometrie der "Oberflächendefekte" auf der Nanoskala und deckt die zu Grunde liegenden Mechanismen und die daraus resultierenden Anforderungen bei der Herstellung neuer plasmonischer Komponenten auf. Exemplarisch wird das Prinzip der SPP-Anregung an einzelnen und mehreren Gräben in dünnen metallischen Filmen sowie der subwellenlängen Feldlokalisierung an sich verjüngenden metallischen Dünnschichtwellenleitern unter Verwendung der optischen Nahfeldmikroskopie experimentell gezeigt
APA, Harvard, Vancouver, ISO, and other styles
33

Stone, Edmund K. "Semiconductor surface plasmons : a route to terahertz waveguides and sensors." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3582.

Full text
Abstract:
The terahertz regime has until recently been some what neglected due to the difficulty of generating and measuring terahertz radiation. Terahertz time domain spectroscopy has allowed for affordable and broadband probing of this frequency regime with phase sensitive measurements (chapter 3). This thesis aims to use this tool to add to the knowledge of the interactions between electromagnetic radiation and matter specifically in regard to plasmonics. This thesis covers several distinct phenomena related to plasmonics at terahertz frequencies. The generation of terahertz radiation from metal nanoparticles is first described in chapter 4. It is shown that the field strength of the plasmon appears to relate to the strength of the generated field. It is also shown that the power dependence of the generated terahertz radiation is not consistent with the optical rectification description of this phenomenon. An alternative explanation is developed which appears more consistent with the observations. A simple model for the power dependence is derived and compared to the experimental results. In chapter 5 the parameters that make good plasmonic materials are discussed. These parameters are used to assess the suitability of semiconductors for terahertz surface plasmon experiments. The Drude permittivity of InSb is measured here, leading to a discussion of terahertz particle plasmons in chapter 6. Finite element method modelling is used to show some merits of these over optical particle plasmons. This also includes a discussion of fabrication methods for arrays of these particles. Finally, chapter 7 is a discussion of so called spoof surface plasmons. This includes some experimental work at microwave frequencies and an in depth analysis of open ended square hole arrays supported by model matching method modelling. Perfect endoscope effects are discussed and compared to superlensing. The thesis ends with a brief conclusions chapter where some of the ideas presented are brought together.
APA, Harvard, Vancouver, ISO, and other styles
34

Vemuri, Padma Rekha. "Surface Plasmon Based Nanophotonic Optical Emitters." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc5584/.

Full text
Abstract:
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the effective mean path of light emitted from the light emitter and hence quenches the quantum well emission peak compared to the uncoated sample.
APA, Harvard, Vancouver, ISO, and other styles
35

Gordon, Joshua Ari. "Coated Nano-particles for Optical Metamaterials and Nano-photonic Applications." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195907.

Full text
Abstract:
The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a nano-sized coated spherical particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It will be demonstrated that a properly designed passive optical spherical core impregnated with a gain medium and coated with a concentric spherical plasmonic nano-shell will have a "super resonant" (SR) lasing state. The operating characteristics of this coated nano-particle (CNP) laser have been obtained numerically for a variety of configurations and will be reported here. Once the optical properties of the isolated active CNP inclusion are established, several examples of optical metamaterials using them as inclusions will be presented and analyzed. In particular, the effective material properties of these optical MTMs will be explored using effective medium theories that are applicable to a variety of inclusion configurations. Two-dimensional (2D) mono-layers of these active CNPs, which form metafilms; three-dimensional (3D) periodic arrays of these active CNPs; and 3D random distributions of these active CNPs will be described. The effective permittivities and refractive indexes of these optical MTMs will be compared and contrasted to those of their active CNP inclusions. In addition to the active MTMs, some examples of nano-photonic applications enabled by the unique properties of these inclusions will also be presented. Specifically metamaterial pigments derived from exploiting the high absorption and low scattering properties of the passive CNP particle will be explored for possible use in color display technology as well as the use of the SR lasing state and localized plasmon resonance of the active CNP for nano-sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Burnett, Mathew T. "Microspectroscopy of localised plasmons." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516954.

Full text
Abstract:
Working with nanoscale optics requires methods and equipment designed for the purpose. This thesis describes the development of techniques and a system for performing highly localised spectroscopy. The system consists of a nanonics multiview 2000 scanning near-field optical microscope, a grating spectrometer and a photonic crystal fibre supercontinuum light source. Discussion of the microscope includes its modes of operation and development of software to collect and analyse data. In order to demonstrate the setup, an example of localised spectroscopy is presented in the form of an investigation of hollow core photonic crystal fibre. Taking spectra of the components of the cladding of these fibres makes it possible to investigate the origins of bandgap guidance. A core focus of nanoscale optics is the interaction of light with metal structures. This field is called plasmonics. Fabrication of structures is presented and requires special facilities and processes. These processes are both time consuming and expensive, both factors that emphasise the need for prior modelling. Forward difference time domain modelling of a proposed structure comprising of a concentrically arranged ring and disk is explored using home written code and a commercial package called CST Microwave Studio. The investigation of this concentric design through modelling shows a very highly localised field enhancement which can be engineered to have a narrow spectral resonance in the near infrared. The interaction of the two components which govern this resonance is explained using a theory called plasmon hybridization. Once the optical behaviour of small metal objects is understood they can be used in other ways. An example of this is shown in Porous Silicon. As a material it provides an excellent template for formation of metal nano-particles. Embedded in a high surface area network of silicon these particles can be used as very effcient catalysts.
APA, Harvard, Vancouver, ISO, and other styles
37

Halabuková, Hana. "Fourierova infračervená spektroskopie na nanostrukturách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402644.

Full text
Abstract:
This master’s thesis deals with the plasmon resonance of the nanostructures of several selected tungsten oxides using Fourier transform infrared spectroscopy (FTIR spectroscopy). The physical principles of the plasmonics, the characteristics of the materials used, as well as the principle of operating and measuring on the FTIR spectrometer, are described in the first part of this thesis. The second part is focused on the preparation of samples and performing measurements on the FTIR spectrometer. This part ends by representing the final spectra and the results obtained.
APA, Harvard, Vancouver, ISO, and other styles
38

Hajebifard, Akram. "Plasmonic Nano-Resonators and Fano Resonances for Sensing Applications." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41616.

Full text
Abstract:
Different types of plasmonic nanostructures are proposed and examined experimentally and theoretically, with a view towards sensing applications. First, a self-assembly approach was developed to create arrays of well-ordered glass-supported gold nanoparticles (AuNPs) with controllable particle size and inter-particle spacing. Then, a periodic array of gold nano-disks (AuNDs) supported by a Bragg reflector was proposed and examined in a search for Fano resonances in its optical response. Arrays of heptamer-arranged nanoholes (HNH) in a thin gold film were also proposed and explored theoretically and experimentally, revealing a very rich spectrum of resonances, several exhibiting a Fano lineshape. A commercial implementation of the vectorial finite element method (FEM) was used to model our plasmonic structures. Taking advantage of the periodic nature of the structures, a unit cell containing a single element was modelled. The transmittance, reflectance or absorbance spectra were computed, and the associated electromagnetic fields were obtained by solving the vector wave equations for the electromagnetic field vectors throughout the structures, subject to the applicable boundary conditions, and the applied source fields. The sensing performance of the structures, based on the bulk sensitivity, surface sensitivity and figure of merit (FOM) was calculated. First, a novel bottom-up fabrication approach was applied (by our collaborators) to form a periodic array of AuNPs with controllable size over large areas on SiO2 substrates. In this method, self-assembly of block copolymer micelles loaded with metal precursors was combined with a seeding growth route to create ordered AuNPs of desired size. It was shown that this new fabrication method offers a new approach to tune the AuNP size and edge-to-edge inter-particle spacing while preserving the AuNP ordering. The optical characteristics of the AuNP arrays, such as their size, interparticle spacing, localized surface plasmon resonance (LSPR) wavelength, and bulk sensitivity, were examined, numerically and experimentally. This proposed novel fabrication method is applicable for low-cost mass-production of large-area arrays of high-quality AuNPs on a substrate for sensing applications. Then, we proposed and examined the formation of Fano resonances in a plasmonic-dielectric system consisting of uncoupled gold nano-disk (AuND) arrays on a quarter-wave dielectric stack. The mechanism behind the creation of Fano resonances was explained based on the coherent interference between the reflection of the Bragg stack and the LSPPs of the AuNDs. Fano parameters were obtained by fitting the computational data to the Fano formula. The bulk sensitivities and figure of merit of the Fano resonances were calculated. This plasmonic structure supports Fano resonances with a linewidth around 9 nm which is much narrower than the individual AuND LSPP bandwidth ( 80 nm) and the Bragg stack bandwidth ( 100 nm). Supporting Fano resonances with such a narrow linewidth, the structure has a great potential to be used for sensing applications. Also, this metallic-dielectric nanostructure requires no near-field coupling between AuNDs to generate the Fano resonances. So, the AuNDs can be located far enough from each other to simplify the potential fabrication process. The optical properties of HNH arrays on an SiO2 substrate were investigated, numerically and experimentally. Helium focused ion beam (HeFIB) milling was applied (by Dr. Choloong Hahn) to fabricate well-ordered and well-defined arrays of HNHs. Transmittance spectra of the structures were obtained as the optical response, which exhibits several Fano resonances. Then, the mechanism behind the formation of the Fano resonances was explained, and the sensing performance of the structure was inspected by measuring the bulk sensitivities. This array of nanohole cluster is exciting because it supports propagating SPPs and LSPPs, and also Wood’s anomaly waves, which makes the optical response very rich in excitations and spectral features. Also, as a periodic array of sub-wavelength metallic nanoholes, the system produces extraordinary optical transmission - highly enhanced transmission through (otherwise) opaque metallic films at specific wavelengths, facilitating measurement acquisition in transmission.
APA, Harvard, Vancouver, ISO, and other styles
39

Metzger, Bernd [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yin, Xinghui [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Functional complex plasmonics : understanding and realizing chiral and active plasmonic systems / Xinghui Yin ; Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1141176394/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Biesso, Arianna. "Plasmonic field effects on the spectroscopic and photobiological function of the photosynthetic system of bacteriorhodopsin." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28162.

Full text
Abstract:
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009.
Committee Chair: Mostafa A. El-Sayed; Committee Member: Adegboyega K. Oyelere; Committee Member: Bridgette Barry; Committee Member: Joseph W. Perry; Committee Member: Mark R. Prausnitz.
APA, Harvard, Vancouver, ISO, and other styles
42

Constant, Thomas J. "Optical excitation of surface plasmon polaritons on novel bigratings." Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/9001.

Full text
Abstract:
This thesis details original experimental investigations in to the interaction of light with the mobile electrons at the surface of metallic diffraction gratings. The gratings used in this work to support the resultant trapped surface waves (surface plasmon polaritons), may be divided into two classes: ‘crossed’ bigratings and ‘zigzag’ gratings. Crossed bigratings are composed of two diffraction gratings formed of periodic grooves in a metal surface, which are crossed at an angle relative to one another. While crossed bigratings have been studied previously, this work focuses on symmetries which have received comparatively little attention in the literature. The gratings explored in this work possesses two different underlying Bravais lattices: rectangular and oblique. Control over the surface plasmon polariton (SPP) dispersion on a rectangular bigrating is demonstrated by the deepening of one of the two constituent gratings. The resulting change in the diffraction efficiency of the surface waves leads to large SPP band-gaps in one direction across the grating, leaving the SPP propagation in the orthogonal direction largely unperturbed. This provides a mechanism to design surfaces that support highly anisotropic propagation of SPPs. SPPs on the oblique grating are found to mediate polarisation conversion of the incident light field. Additionally, the SPP band-gaps that form on such a surface are shown to not necessarily occur at the Brillouin Zone boundaries of this lattice, as the BZ boundary for an oblique lattice is not a continuous contour of high-symmetry points. The second class of diffraction grating investigated in this thesis is the new zigzag grating geometry. This grating is formed of sub-wavelength (non-diffracting) grooves that are ‘zigzagged’ along their length to provide a diffractive periodicity for visible frequency radiation. The excitation and propagation of SPPs on such gratings is investigated and found to be highly polarisation selective. The first type of zigzag grating investigated possesses a single mirror plane. SPP excitation to found to be dependant on which diffracted order of SPP is under polarised illumination. The formation of SPP band-gaps is also investigated, finding that the band-gap at the first Brillouin Zone boundary is forbidden by the grating’s symmetry. The final grating considered is a zigzag grating which possesses no mirror symmetry. Using this grating, it is demonstrated that any polarisation of incident light may resonantly drive the same SPP modes. SPP propagation on this grating is found to be forbidden in all directions for a range of frequencies, forming a full SPP band-gap.
APA, Harvard, Vancouver, ISO, and other styles
43

Gorunmez, Zohre. "Finite-Difference Time-Domain (FDTD) Modeling of Nanoscale Plasmonic Substrates for Surface-Enhanced Raman Spectroscopy (SERS)." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563296001850111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Goffard, Julie. "Etude du couplage entre des nanocristaux de silicium et des plasmons de surface localisés." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0012/document.

Full text
Abstract:
La découverte de la photoluminescence du silicium sous sa forme nanométrique a ouvert la voie de l’utilisation du silicium dans les composants optoélectroniques. Cependant cette photoluminescence reste trop peu efficace et de nombreuses recherches portent aujourd’hui sur l’amélioration des propriétés optiques du silicium. Ce travail de thèse s’intéresse particulièrement à l’utilisation de plasmons de surface localisés afin d’améliorer les propriétés optiques de nanocristaux de silicium. Grâce au contrôle de tous les paramètres géométriques des nanocristaux de silicium et des nanoparticules métalliques lors de la fabrication des échantillons, il a été possible d’étudier les phénomènes physiques du couplage entre ces deux objets. Une modification de l’émission des nanocristaux de silicium en fonction de la distance, de la taille et de la nature des nanoparticules métalliques a été étudiée. Grâce au développement de différentes techniques de caractérisation optique, il a été possible de montrer que la photoluminescence des nanocristaux de silicium était modifiée à la fois spectralement et spatialement par les plasmons de surface localisés. Ce travail montre que grâce aux plasmons de surface localisés il est possible de grandement améliorer la photoluminescence des nanocristaux de silicium et ainsi il est possible d’imaginer de nouveaux composants optoélectroniques à base de silicium et de plasmons
The discovery of photoluminescence of nanometric silicon paves the way to use silicon in optoelectronic devices. However this photoluminescence remains low and a lot of works aim at improving silicon optical properties. In this dissertation we study localized surface plasmons to improve optical properties of silicon nanocrystals. Thanks to the control of all geometrical parameters of silicon nanocrystals and metallic nanoparticles during the fabrication process, the coupling process between these two objects has been studied. The modification of silicon nanocrystals emission as a function of the distance, the size and the nature of metallic nanoparticles has been investigated. Thanks to the development of experimental optical characterization techniques we showed that silicon nanocrystals photoluminescence is modified both spectrally and spatially by localized surface plasmons. This work shows that it’s possible to enhance silicon’s optical properties and thus to devise optoelectronic devices with silicon and plasmons
APA, Harvard, Vancouver, ISO, and other styles
45

Scheffler, Christopher M. "Localized Photoemission in Triangular Gold Antennas." Thesis, Portland State University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13808008.

Full text
Abstract:

With the development of ultra-fast laser technology, several new imaging techniques have pushed optical resolution past the diffraction limit for traditional light-based optics. Advancements in lithography have enabled the straightforward creation of micron- and nanometer-sized optical devices. Exposing metal-dielectric structures to light can result in surface plasmon excitation and propagation along the transition interface, creating a surface plasmon polariton (SPP) response. Varying the materials or geometry of the structures, the plasmonic response can be tailored for a wide range of applications.

Photoemission electron microscopy (PEEM) has been used to image excitations in micron-sized plasmonic devices. With PEEM, optical responses can be characterized in detail, aiding in the development of new types of plasmonic structures and their applications. We show here that in thin, triangular gold platelets SPPs can be excited and concentrated within specific regions of the material (thickness ~50 nm); resulting in localized photoemission in areas of high electric field intensity. In this regard, the platelets behave as receiver antennas by converting the incident light into localized excitations in specific regions of the gold platelets. The excited areas can be significantly smaller than the wavelength of the incident light (λ ≤ 1 µm). By varying the wavelength of the light, the brightness of the excited spots can be changed and by varying the polarization of the light, the brightness and position can be changed, effectively switching the photoemission on or off for a specific region within the triangular gold structure.

In this work, the spatial distribution of surface plasmons and the imaging results from photoemission electron microscopy are reproduced in simulation using finite element analysis (FEA). In addition, we show that electromagnetic theory and simulation enable a detailed and quantitative analysis of the excited SPP modes, an explanation of the overall optical responses seen in PEEM images, and prediction of new results.

APA, Harvard, Vancouver, ISO, and other styles
46

Debroux, Romain L. "Polarization Conversion Mediated Surface Plasmon Polaritons in Extraordinary Optical Transmission through a Nanohole Arrays." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83408.

Full text
Abstract:
Since Ebbesen's seminal work in 1998 observing extraordinary optical transmission (EOT) through nanohole arrays, much research has focused on the role of surface plasmon polaritons (SPPs) in EOT. While the energy and momentum conditions have become clear, no consensus has been reached on the role of incident light polarization. This study presents a simple model that captures Bloch-SPP excitation, including the role of polarization, in general periodic plasmonic structures. Our model predicts that under certain conditions polarization conversion should occur in EOT light transmitted through the nanohole array. We experimentally measure polarization conversion in EOT and compare the experimentally obtained results to the predictions of our model. Using numerical simulations, we tie the far field experimental results to the near field underlying physics described by our model. In using polarization conversion to provide evidence supporting our model, we also establish a novel approach to achieving polarization conversion based on SPPs instead of hole shape or other techniques in literature, and present reasons why this approach to achieving polarization conversion may be better suited for applications in biomedical sensing and optical elements.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
47

He, Zhixing. "Self-assembly of anisotropic nanostructures and interferometric spectroscopy." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97402.

Full text
Abstract:
With the development of controlled and predictable nanoparticle fabrication, assembling multiple nano-objects into larger functional nanostructure has attracted increasing attention. As the most basic structure, assembly of one-dimensional (1D) structures is a good model for investigating the assembly mechanism of a nanostructure's formation from individual particles. In this dissertation, the dynamics and the growth mechanism of anisotropic 1D nanostructures is investigated. In our first study, we demonstrate a simple method for assembling superparamagnetic nanoparticles (SPIONs) into structure-controlled 1D chains in a rotating magnetic field. The length of the SPION chains can be well described by an exponential distribution, as is also seen in SPION chains in a static field. In addition, the maximum chain length is limited by the field's rotational speed, as is seen in micro-sized beads forming chains in a rotating field. However, due to a combination of thermal fluctuations and hydrodynamic forces, the chain length in our case is shorter than either limit. In addition to chain length, the disorder of chains was also studied. Because of the friction between particles, kinetic potential traps prevent relaxation to the global free energy minimum. The traps are too deep to be overcome through thermal fluctuations, and assemblies captured by the kinetic traps therefore form disordered chains. We demonstrate that this disorder gradually heals over a timescale of tens of minutes and that the healing process can be promoted by increasing particle concentration or solution ionic strength, suggesting that the chain growth process provides the energy required to overcome the kinetic trapping. Next, we introduce a novel optical technique we term Quantitative Optical Anisotropy Imaging (QOAI). A fast and precise single-particle characterizing technique for anisotropic nanostructures, QOAI allows real-time tracking of particle orientation as well as the spectroscopic characterization of polarizabilities of nanoparticles on a microsecond timescale. The abilities of QOAI are demonstrated by the detection and the characterization of single gold nanorods. We also show that single particle diffusions and the process of particle binding to a wall can be tracked through QOAI. The rotational diffusivities of gold nanorods near the wall were determined by autocorrelation analysis, which shows that the diffusivity in the polar direction is slightly smaller than in the azimuthal direction. This result demonstrates that a detailed correlation analysis with QOAI may provide the opportunity to analyze both the translational and rotational motion of particles simultaneously, enabling true 3-dimensional orientation tracking. Finally, optical methods including QOAI are applied to the investigation of magnetic assembly, demonstrating that optical anisotropy is generated during particle binding, which can be used as a probe of the magnetic assembly process. QOAI is employed to track the dynamics of magnetic clusters in real time, attempting to capture insights on the self-assembly of the magnetic nanoparticles. By turning the external magnetic field on and off, the processes of combining superparamagnetic colloidal nanoparticle clusters into chain assemblies are monitored along with the chain growth. This fast and orientation-sensitive single-particle measurement opens the door to detailed studies of self-assembly away from equilibrium.
Doctor of Philosophy
Nanotechnology is the study and application of phenomena at the nanoscale, which is between 1 and 100 nm. Due to quantum effects, nanomaterials exhibit many interesting properties that cannot be found in bulk materials and are highly influenced by the shape of the nanostructures. One of the most promising strategies for forming complex nanostructures is to use smaller nanoparticles as building blocks. Therefore, significant efforts have been spent on the studies of the fabrication and modeling of the assembly of nanostructures. As a good starting point for analyzing the mechanism of self-assembly, we focus on the most basic structure, one-dimensional (1D) nanowires and chains. First, we demonstrate a simple method to fabricate one-dimensional magnetic chains from spherical magnetic nanoparticles in a rotating magnetic field. The growth mechanism of the nanochains is investigated, indicating the theory developed for chains formed with larger beads is not applicable at the nanoscale, and additional factors, such as the effect of temperature, need to be considered. Second, we introduce a fast, sensitive optical technique for characterizing anisotropic nanostructures. Because of their unique optical properties, gold nanorods are used to demonstrate the capabilities of the optical system. Not only static properties (orientation, aspect ratio), but also dynamics properties (rotational motion), of single gold nanorods are characterized quantitatively. Finally, this optical technique is extended to preliminary work on characterizing magnetic chain assembly. The processes of magnetic cluster binding and dissociation in a magnetic field are monitored and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
48

Derom, Stephane. "Plasmonic cavities and optical nanosources." Thesis, Dijon, 2013. http://www.theses.fr/2013DIJOS060/document.

Full text
Abstract:
Les microcavités optiques présentent de hauts facteurs de qualité, c'est pourquoi ces systèmes sont d'un grand intérêt pour la conception de lasers à bas seuil, ou encore, pour l'étude du régime de couplage fort. En revanche, ces systèmes sont soumis à la limite de diffraction de la lumière, et donc les modes qu'ils supportent ont une extension spatiale ne pouvant être en deçà de l'échelle de la longueur d'onde. Dans ce manuscrit de thèse, nous nous intéressons aux systèmes plasmoniques parce qu'ils supportent des modes confinés à l'échelle nanométrique. En premier lieu, nous étudions une microcavité plasmonique planaire, constituée de deux miroirs plasmoniques qui piègent les ondes de surface au sein du système. Nous sondons spatialement les modes de la cavité en mesurant le temps de vie de fluorescence de molécules individuelles dispersées au sein du système. Puis, nous nous intéressons au confinement en 3 dimensions de modes supportés par des nanoparticules métalliques sphériques. Nous discutons de la définition du volume modal basée sur le calcul du confinement d'énergie autour de la particule. Ensuite, nous étudions l'exaltation de fluorescence d'ions de terres rares au sein d'une particule plasmonique de configuration coeur-coquille. Enfin, nous perturbons la photodynamique d'émission d'une source de photon unique en approchant à proximité l'extrémité d'une pointe plasmonique
Optical microcavities exhibit high resonance quality, so that, they are of key interest for the design of low-threshold lasers or for achieving strong coupling regime. But, such systems support modes whose the volume remain diffraction limited.In this manuscript, we are interested in their plasmonic counterparts because they support confined modes at the sub-wavelength scale. First, we study an in-plane plasmonic cavity which is the transposition of 1D optical cavity to surface wave. We characterize the cavity by measuring the fluorescence lifetime of dye molecules deposited inside.Then, we are interested in 3-dimension mode confinement achieved by spherical metal nanoparticles. We discuss on the definition of the mode volume used in cavity quantum electrodynamic and based on the calculation of energy confinement around the particle. We also simulate the fluorescence enhancement of rare-earth ions embedded inside core-shell plasmonic particles. Finally, we disturb the photodynamic emission of a single-photon source by puttingthe extremity of a plasmonic tip nearby the emitter
APA, Harvard, Vancouver, ISO, and other styles
49

Humphrey, Alastair Dalziell. "Exploration of how light interacts with arrays of plasmonic, metallic nanoparticles." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/19365.

Full text
Abstract:
The content of this thesis is based upon the interaction of light with metallic nanoparticles arranged in different array geometries. An incident electric field (light) can force the conduction electrons of a metallic nanoparticle to oscillate. At particular frequencies, in the optical regime for gold and silver particles, absorption and scattering of the light by the particle is enhanced, corresponding to the particle plasmon resonance. The spectral position and width of the particle plasmon resonance of an isolated single particle may be tuned by adjusting its size and shape, thus changing the surface charge distribution. Periodic arrays of particles offer additional control over the frequency and width of the resonance attributed to the re-radiating (scattering) property of plasmonic particles. By fabricating arrays with a pitch comparable to the wavelength of an isolated single particle plasmon resonance, a coherent interaction between particles may be produced, known as surface lattice resonances (SLRs). The electromagnetic coupling between in-plane particle plasmon modes for different particle array geometries is explored through experiment and theory. Firstly, SLRs in square, hexagonal and honeycomb arrays are investigated by normal-incidence extinction measurements and compared to a simple-coupled dipole model. Secondly, to verify the nature of the coupling between the scattered electric field associated with particle resonances, the incident electric field polarization-dependence of the extinction of rectangular arrays and chains is studied. Thirdly, the optical response of square arrays with a symmetric two-particle basis is investigated, particularly the retardation of the scattered electric field between particles in a pair. Fourthly, square arrays with an asymmetric two-particle basis are fabricated to explore the symmetric (dipole moments of both particles are parallel) and anti-symmetric (dipole moment of both particles anti-parallel) SLRs, excited by normal-incidence light.
APA, Harvard, Vancouver, ISO, and other styles
50

Reed, Jennifer. "Light-Matter Interactions of Plasmonic Nanostructures." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6009.

Full text
Abstract:
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons: 1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of ?_p called the plasma frequency. 2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from ?=0 to ?= ?_p??2. Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell's equations. Using methods based on Maxwell's equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.
Ph.D.
Doctorate
Chemistry
Sciences
Chemistry
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography