To see the other types of publications on this topic, follow the link: Plasmoni.

Journal articles on the topic 'Plasmoni'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Plasmoni.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.

Full text
Abstract:
Abstract Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared magnetic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.
APA, Harvard, Vancouver, ISO, and other styles
2

Moskovits, Martin. "Canada’s early contributions to plasmonics." Canadian Journal of Chemistry 97, no. 6 (June 2019): 483–87. http://dx.doi.org/10.1139/cjc-2018-0365.

Full text
Abstract:
The field of plasmonics — the study of collective electron excitation in nanostructured metal and other conductors — is currently highly active with research foci in a number of related fields, including plasmon-enhanced spectroscopies and plasmon-mediated photochemical and photocatalytic processes through which the energy stored temporarily as plasmons can be used to enable and (or) accelerate photochemistry. This enhancement is accomplished either by the action of the large optical fields produced in the vicinity of plasmonic nanostructures or mediated by the energetic electrons and holes surviving transiently following the dephasing of the plasmon. This article traces the early contributions to the foundation of the current field of plasmonics by two scientists working in Canada in the early 1970s, J. P. Marton at McMaster University and Welwyn Corporation and the current author while he was at the University of Toronto.
APA, Harvard, Vancouver, ISO, and other styles
3

Bhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films." Processes 8, no. 1 (January 16, 2020): 115. http://dx.doi.org/10.3390/pr8010115.

Full text
Abstract:
Plasmonic-active nanomaterials are of high interest to scientists because of their expanding applications in the field for medicine and energy. Chemical and biological sensors based on plasmonic nanomaterials are well-established and commercially available, but the role of plasmonic nanomaterials on photothermal therapeutics, solar cells, super-resolution imaging, organic synthesis, etc. is still emerging. The effectiveness of the plasmonic materials on these technologies depends on their stability and sensitivity. Preparing plasmonics-active nanostructured thin films (PANTFs) on a solid substrate improves their physical stability. More importantly, the surface plasmons of thin film and that of nanostructures can couple in PANTFs enhancing the sensitivity. A PANTF can be used as a transducer for any of the three plasmonic-based sensing techniques, namely, the propagating surface plasmon, localized surface plasmon resonance, and surface-enhanced Raman spectroscopy-based sensing techniques. Additionally, continuous nanostructured metal films have an advantage for implementing electrical controls such as simultaneous sensing using both plasmonic and electrochemical techniques. Although research and development on PANTFs have been rapidly advancing, very few reviews on synthetic methods have been published. In this review, we provide some fundamental and practical aspects of plasmonics along with the recent advances in PANTFs synthesis, focusing on the advantages and shortcomings of the fabrication techniques. We also provide an overview of different types of PANTFs and their sensitivity for biosensing.
APA, Harvard, Vancouver, ISO, and other styles
4

You, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (April 17, 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.

Full text
Abstract:
AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.
APA, Harvard, Vancouver, ISO, and other styles
5

Law, Stephanie, Viktor Podolskiy, and Daniel Wasserman. "Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics." Nanophotonics 2, no. 2 (April 1, 2013): 103–30. http://dx.doi.org/10.1515/nanoph-2012-0027.

Full text
Abstract:
AbstractSurface plasmon polaritons and their localized counterparts, surface plasmons, are widely used at visible and near-infrared (near-IR) frequencies to confine, enhance, and manipulate light on the subwavelength scale. At these frequencies, surface plasmons serve as enabling mechanisms for future on-chip communications architectures, high-performance sensors, and high-resolution imaging and lithography systems. Successful implementation of plasmonics-inspired solutions at longer wavelengths, in the mid-infrared (mid-IR) frequency range, would benefit a number of highly important technologies in health- and defense-related fields that include trace-gas detection, heat-signature sensing, mimicking, and cloaking, and source and detector development. However, the body of knowledge of visible/near-IR frequency plasmonics cannot be easily transferred to the mid-IR due to the fundamentally different material response of metals in these two frequency ranges. Therefore, mid-IR plasmonic architectures for subwavelength light manipulation require both new materials and new geometries. In this work we attempt to provide a comprehensive review of recent approaches to realize nano-scale plasmonic devices and structures operating at mid-IR wavelengths. We first discuss the motivation for the development of the field of mid-IR plasmonics and the fundamental differences between plasmonics in the mid-IR and at shorter wavelengths. We then discuss early plasmonics work in the mid-IR using traditional plasmonic metals, illuminating both the impressive results of this work, as well as the challenges arising from the very different behavior of metals in the mid-IR, when compared to shorter wavelengths. Finally, we discuss the potential of new classes of mid-IR plasmonic materials, capable of mimicking the behavior of traditional metals at shorter wavelengths, and allowing for true subwavelength, and ultimately, nano-scale confinement at long wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Shenyang, Chaoyu Song, Guowei Zhang, and Hugen Yan. "Graphene plasmonics: physics and potential applications." Nanophotonics 6, no. 6 (October 18, 2016): 1191–204. http://dx.doi.org/10.1515/nanoph-2016-0126.

Full text
Abstract:
AbstractPlasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.
APA, Harvard, Vancouver, ISO, and other styles
7

Ogawa, Shinpei, Shoichiro Fukushima, and Masaaki Shimatani. "Graphene Plasmonics in Sensor Applications: A Review." Sensors 20, no. 12 (June 23, 2020): 3563. http://dx.doi.org/10.3390/s20123563.

Full text
Abstract:
Surface plasmon polaritons (SPPs) can be generated in graphene at frequencies in the mid-infrared to terahertz range, which is not possible using conventional plasmonic materials such as noble metals. Moreover, the lifetime and confinement volume of such SPPs are much longer and smaller, respectively, than those in metals. For these reasons, graphene plasmonics has potential applications in novel plasmonic sensors and various concepts have been proposed. This review paper examines the potential of such graphene plasmonics with regard to the development of novel high-performance sensors. The theoretical background is summarized and the intrinsic nature of graphene plasmons, interactions between graphene and SPPs induced by metallic nanostructures and the electrical control of SPPs by adjusting the Fermi level of graphene are discussed. Subsequently, the development of optical sensors, biological sensors and important components such as absorbers/emitters and reconfigurable optical mirrors for use in new sensor systems are reviewed. Finally, future challenges related to the fabrication of graphene-based devices as well as various advanced optical devices incorporating other two-dimensional materials are examined. This review is intended to assist researchers in both industry and academia in the design and development of novel sensors based on graphene plasmonics.
APA, Harvard, Vancouver, ISO, and other styles
8

Marinica, Dana Codruta, Mario Zapata, Peter Nordlander, Andrey K. Kazansky, Pedro M. Echenique, Javier Aizpurua, and Andrei G. Borisov. "Active quantum plasmonics." Science Advances 1, no. 11 (December 2015): e1501095. http://dx.doi.org/10.1126/sciadv.1501095.

Full text
Abstract:
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
9

Tao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (June 26, 2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.

Full text
Abstract:
The electronic plasmons of single layer MoS2 induced by different spin subbands owing to spin-orbit couplings (SOCs) are theoretically investigated. The study shows that two new and anomalous plasmonic modes can be achieved via inter-spin subband transitions around the Fermi level due to the SOCs. The plasmon modes are optic-like, which are very different from the plasmons reported recently in single-layer (SL) MoS2, and the other two-dimensional systems. The frequency of such plasmons ascends with the increasing of electron density or spin polarizability, and decreases with the increasing of wave vector. The promising plasmonic properties of SL MoS2 make it interesting for future applications in plasmonic and terahertz devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Sebek, Matej, Ahmed Elbana, Arash Nemati, Jisheng Pan, Ze Xiang Shen, Minghui Hong, Xiaodi Su, Nguyen Thi Kim Thanh, and Jinghua Teng. "Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications." Journal of Molecular and Engineering Materials 08, no. 01n02 (March 2020): 2030001. http://dx.doi.org/10.1142/s2251237320300016.

Full text
Abstract:
The inherent thinness of two-dimensional 2D materials limits their efficiency of light-matter interactions and the high loss of noble metal plasmonic nanostructures limits their applicability. Thus, a combination of 2D materials and plasmonics is highly attractive. This review describes the progress in the field of 2D plasmonics, which encompasses 2D plasmonic materials and hybrid plasmonic-2D materials structures. Novel plasmonic 2D materials, plasmon-exciton interaction within 2D materials and applications comprising sensors, photodetectors and, metasurfaces are discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Brooks, James L., Christopher L. Warkentin, Dayeeta Saha, Emily L. Keller, and Renee R. Frontiera. "Toward a mechanistic understanding of plasmon-mediated photocatalysis." Nanophotonics 7, no. 11 (August 29, 2018): 1697–724. http://dx.doi.org/10.1515/nanoph-2018-0073.

Full text
Abstract:
AbstractOne of the most exciting new developments in the plasmonic nanomaterials field is the discovery of their ability to mediate a number of photocatalytic reactions. Since the initial prediction of driving chemical reactions with plasmons in the 1980s, the field has rapidly expanded in recent years, demonstrating the ability of plasmons to drive chemical reactions, such as water splitting, ammonia generation, and CO2 reduction, among many other examples. Unfortunately, the efficiencies of these processes are currently suboptimal for practical widespread applications. The limitations in recorded outputs can be linked to the current lack of a knowledge pertaining to mechanisms of the partitioning of plasmonic energy after photoexcitation. Providing a descriptive and quantitative mechanism of the processes involved in driving plasmon-induced photochemical reactions, starting at the initial plasmon excitation, followed by hot carrier generation, energy transfer, and thermal effects, is critical for the advancement of the field as a whole. Here, we provide a mechanistic perspective on plasmonic photocatalysis by reviewing select experimental approaches. We focus on spectroscopic and electrochemical techniques that provide molecular-scale information on the processes that occur in the coupled molecular-plasmonic system after photoexcitation. To conclude, we evaluate several promising techniques for future applications in elucidating the mechanism of plasmon-mediated photocatalysis.
APA, Harvard, Vancouver, ISO, and other styles
12

Balevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing." Coatings 10, no. 12 (December 5, 2020): 1187. http://dx.doi.org/10.3390/coatings10121187.

Full text
Abstract:
The total internal reflection ellipsometry method was used to analyse the angular spectra of the hybrid Tamm and surface plasmon modes and to compare their results with those obtained using the conventional single SPR method. As such type of measurement is quite common in commercial SPR devices, more detailed attention was paid to the analysis of the p-polarization reflection intensity dependence. The conducted study showed that the presence of strong coupling in the hybrid plasmonic modes increases the sensitivity of the plasmonic-based sensors due to the reduced losses in the metal layer. The experimental results and analysis of the optical responses of three different plasmonic-based samples indicated that the optimized Tamm plasmons ΔRp(TP) and optimized surface plasmons ΔRp(SP) samples produce a response that is about five and six times greater than the conventional surface plasmon resonance ΔRp(SPR) in angular spectra. The sensitivity of the refractive index unit of the spectroscopic measurements for the optimized Tamm plasmon samples was 1.5 times higher than for conventional SPR, while for wavelength scanning, the SPR overcame the optimized TP by 1.5 times.
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Jianxun, Huilin He, Dong Xiao, Shengtao Yin, Wei Ji, Shouzhen Jiang, Dan Luo, Bing Wang, and Yanjun Liu. "Recent Advances of Plasmonic Nanoparticles and their Applications." Materials 11, no. 10 (September 26, 2018): 1833. http://dx.doi.org/10.3390/ma11101833.

Full text
Abstract:
In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Ruoxi, and Zhaolin Lu. "Subwavelength Plasmonic Waveguides and Plasmonic Materials." International Journal of Optics 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/258013.

Full text
Abstract:
With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.
APA, Harvard, Vancouver, ISO, and other styles
15

Nishimura, Takuya, and Taiichi Otsuji. "TERAHERTZ POLARIZATION CONTROLLER BASED ON ELECTRONIC DISPERSION CONTROL OF 2D PLASMONS." International Journal of High Speed Electronics and Systems 17, no. 03 (September 2007): 547–55. http://dx.doi.org/10.1142/s0129156407004734.

Full text
Abstract:
We numerically investigated the possibility of terahertz polarization controller based on electronic dispersion control of two dimensional (2D) plasmon gratings in semiconductor heterostructure material systems. Taking account of the Mikhailov's dispersive plasmonic conductivity model, the electromagnetic field emission properties of the gated 2D plasmon gratings were numerically analyzed with respect to the density (n) of electrons by using in-house Maxwell's FDTD (finite difference time domain method) simulator. When n is low under a constant drift-velocity condition, the fundamental plasmon mode is excited, being coupled with the radiative zeroth mode of transverse electric (TE) waves. When n exceeds a threshold level, the second harmonic mode of plasmon is predominantly excited, being coupled with the non-radiative first mode of TE waves. We numerically demonstrated that if a grating mesh of 2D plasmons is formed where two independent 2D plasmon gratings are combined orthogonally, the structure can act as a polarization controller by electronically controlling the two axial plasmonic dispersions.
APA, Harvard, Vancouver, ISO, and other styles
16

Huang, Cheng-Ping, and Yong-Yuan Zhu. "Plasmonics: Manipulating Light at the Subwavelength Scale." Active and Passive Electronic Components 2007 (2007): 1–13. http://dx.doi.org/10.1155/2007/30946.

Full text
Abstract:
The coupling of light to collective oscillation of electrons on the metal surface allows the creation of surface plasmon-polariton wave. This surface wave is of central interest in the field of plasmonics. In this paper, we will present a brief review of this field, focusing on the plasmonic waveguide and plasmonic transmission. In the plasmonic waveguide, the light can be guided along the metal surface with subwavelength lateral dimensions, enabling the possibility of high-density integration of the optical elements. On the other hand, in the plasmonic transmission, the propagation of light through a metal surface can be tailored with the subwavelength holes, leading to the anomalous transmission behaviors which have received extensive investigations in recent years. In addition, as a supplement to plasmonics in the visible and near-infrared region, the study of THz plasmonics has also been discussed.
APA, Harvard, Vancouver, ISO, and other styles
17

Coello, Víctor, Cesar E. Garcia-Ortiz, and Manuel Garcia-Mendez. "Classical Plasmonics: Wave Propagation Control at Subwavelength Scale." Nano 10, no. 07 (October 2015): 1530005. http://dx.doi.org/10.1142/s1793292015300054.

Full text
Abstract:
In this paper, surface plasmons polariton propagation and manipulation is reviewed in the context of experiments and modeling of optical images. We focus our attention in the interaction of surface plasmon polaritons with arrays of micro-scatereres and nanofabricated structures. Numerical simulations and experimental results of different plasmonic devices are presented. Plasmonic beam manipulation opens up numerous possibilities for application in biosensing, nanophotonics, and in general in the area of surface optics properties.
APA, Harvard, Vancouver, ISO, and other styles
18

Dong, Jun, Zhenglong Zhang, Hairong Zheng, and Mentao Sun. "Recent Progress on Plasmon-Enhanced Fluorescence." Nanophotonics 4, no. 4 (December 30, 2015): 472–90. http://dx.doi.org/10.1515/nanoph-2015-0028.

Full text
Abstract:
AbstractThe optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.
APA, Harvard, Vancouver, ISO, and other styles
19

Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (January 6, 2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.

Full text
Abstract:
AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR) quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.
APA, Harvard, Vancouver, ISO, and other styles
20

Kawata, Satoshi. "Plasmonics for Nanoimaging and Nanospectroscopy." Applied Spectroscopy 67, no. 2 (February 2013): 117–25. http://dx.doi.org/10.1366/12-06861.

Full text
Abstract:
The science of surface plasmon polaritons, known as “plasmonics,” is reviewed from the viewpoint of applied spectroscopy. In this discussion, noble metals are regarded as reservoirs of photons exhibiting the functions of photon confinement and field enhancement at metallic nanostructures. The functions of surface plasmons are described in detail with an historical overview, and the applications of plasmonics to a variety of industry and sciences are shown. The slow light effect of surface plasmons is also discussed for nanoimaging capability of the near-field optical microscopy and tip-enhanced Raman microscopy. The future issues of plasmonics are also shown, including metamaterials and the extension to the ultraviolet and terahertz regions.
APA, Harvard, Vancouver, ISO, and other styles
21

Intravaia, F., and A. Lambrecht. "The Role of Surface Plasmon Modes in the Casimir Effect." Open Systems & Information Dynamics 14, no. 02 (June 2007): 159–68. http://dx.doi.org/10.1007/s11080-007-9044-4.

Full text
Abstract:
In this paper, we study the role of surface plasmon modes in the Casimir effect. First we write the Casimir energy as the sum over the modes of a real cavity. We may identify two sorts of modes, two evanescent surface plasmon modes and propagative modes. As one of the surface plasmon modes becomes propagative for some choice of parameters we adopt an adiabatic mode definition where we follow this mode into the propagative sector and count it together with the surface plasmon contribution, calling this contribution “plasmonic”. The remaining modes are propagative cavity modes, which we call “photonic”. The Casimir energy contains two main contributions, one coming from the plasmonic, the other from the photonic modes. Surprisingly we find that the plasmonic contribution to the Casimir energy becomes repulsive for intermediate and large mirror separations. Alternatively, we discuss the common surface plasmon defintion, which includes only evanescent waves, where this effect is not found. We show that, in contrast to an intuitive expectation, for both definitions the Casimir energy is the sum of two very large contributions which nearly cancel each other. The contribution of surface plasmons to the Casimir energy plays a fundamental role not only at short but also at large distances.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Xiaoyu, Chanda Ranjit Yonzon, and Richard P. Van Duyne. "Nanosphere lithography fabricated plasmonic materials and their applications." Journal of Materials Research 21, no. 5 (May 1, 2006): 1083–92. http://dx.doi.org/10.1557/jmr.2006.0136.

Full text
Abstract:
Nanosphere lithography fabricated nanostructures have highly tunable localized surface plasmons, which have been used for important sensing and spectroscopy applications. In this work, the authors focus on biological applications and technologies that utilize two types of related plasmonic phenomena: localized surface plasmon resonance (LSPR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). Two applications of these plasmonic materials are presented: (i) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (ii) the SERS detection of an anthrax biomarker.
APA, Harvard, Vancouver, ISO, and other styles
23

Song, Wen-Bo, Yun Qi, Xiao-Peng Zhang, Ming-Li Wan, and Jinna He. "Controlling the interference between localized and delocalized surface plasmons via incident polarization for optical switching." International Journal of Modern Physics B 32, no. 16 (June 28, 2018): 1850194. http://dx.doi.org/10.1142/s0217979218501941.

Full text
Abstract:
Surface plasmons supported by various metallic nanostructures have given rise to several significant breakthroughs in the field of integrated photonic devices due to its ability to effectively confine and enhance optical field in subwavelength volume. In particular, the demand to actively control optical responses of plasmonic systems becomes urgent for the miniaturization of signal processing devices, surface-enhanced Raman scattering (SERS) substrates and biochemical sensors. In this paper, we systematically investigate the plasmon modes as well as their interaction in a layered nanostructure composed of a periodically-arranged radiative nanoring and a metallic ground plane, as well as a thin insulating spacer. A tunable transparent peak on the background of the broadband plasmon resonance emerges in the reflection spectrum as changing the periodicity of nanoparticle array, a plasmonic analogue of electromagnetically induced transparency (EIT). Owing to the structural symmetry of the rings, we demonstrate a new scheme of controlling the interference between localized and delocalized plasmons by means of incident polarization and believe that the proposed metasurface may find applications in optical switching if the polarization-controlled components are introduced.
APA, Harvard, Vancouver, ISO, and other styles
24

Sarkar, Partha, Bansibadan Maji, Aritra Manna, Saradindu Panda, and Asish Kr Mukhopadhyay. "Effect of Surface Plasmon-Based Improvement in Optical Absorption in Plasmonic Solar Cell." International Journal of Nanoscience 17, no. 04 (July 8, 2018): 1760028. http://dx.doi.org/10.1142/s0219581x17600286.

Full text
Abstract:
In the last few years, plasmonics has attracted much attention and has been included in the principal domains of nanophotonics that can manage optical fields at the nanodimension level. Its exquisite characteristic is to increase the electromagnetic fields at the nanometer scale particularly in the solar cell. In the plasmonic discipline, noble metals used as nanoparticles in which the density of the electron gas which oscillates at surface plasmon frequency at that time also enhances absorption via scattering. So the usage of plasmonics in solar cells offers better possibility of improving the performance through absorption, because the optical spectrum loss is principal as a part of the overall loss for the solar photovoltaic cell. So we investigated the impact of the nanoparticle size for the enhancement of extinction in terms of absorption and scattering by using surface plasmon resonance, and additionally studied the finite-difference time domain (FDTD)-based proposed model and found various plasmonic fields components and characterized optical enhancement in the plasmonic thin film solar cell.
APA, Harvard, Vancouver, ISO, and other styles
25

Davis, Timothy J., Daniel E. Gómez, and Ann Roberts. "Plasmonic circuits for manipulating optical information." Nanophotonics 6, no. 3 (October 26, 2016): 543–59. http://dx.doi.org/10.1515/nanoph-2016-0131.

Full text
Abstract:
AbstractSurface plasmons excited by light in metal structures provide a means for manipulating optical energy at the nanoscale. Plasmons are associated with the collective oscillations of conduction electrons in metals and play a role intermediate between photonics and electronics. As such, plasmonic devices have been created that mimic photonic waveguides as well as electrical circuits operating at optical frequencies. We review the plasmon technologies and circuits proposed, modeled, and demonstrated over the past decade that have potential applications in optical computing and optical information processing.
APA, Harvard, Vancouver, ISO, and other styles
26

Jacak, Janusz, and Witold Jacak. "Plasmons and Plasmon–Polaritons in Finite Ionic Systems: Toward Soft-Plasmonics of Confined Electrolyte Structures." Applied Sciences 9, no. 6 (March 19, 2019): 1159. http://dx.doi.org/10.3390/app9061159.

Full text
Abstract:
We address the field of soft plasmonics in finite electrolyte liquid systems ranged by insulating membranes by an analogy to the plasmonics of metallic nanostructures. The confined electrolyte systems can be encountered on a bio-cell organizational level, taking into account that the characteristics of ion plasmons fall to the micrometer size scale instead of the nanometer in metals because of at least three orders of magnitude larger masses of ions in comparison to electrons. The lower density of ions in electrolytes in comparison to density of electrons in metal may also reduce the energy of plasmons by several orders. We provide the fully analytical description of surface and volume plasmons in finite ionic micro-systems allowing for further applications. We next apply the theory of ionic plasmons to plasmon–polaritons in ionic periodic systems. The complete theory of ionic plasmon–polariton kinetics in the chain of micrometer-sized electrolyte spheres, confined by a dielectric membrane, is formulated and solved. The latter theory has next been applied to the explanation of a mysterious and unclear (for several dozen of years) problem of so-called saltatory conduction of the action potential in myelinated axons of nerve cells. Contrary to conventional models of nerve signaling, the plasmon–polariton model pretty well fits to the queer properties of the saltatory conduction. Moreover, the presented application of soft plasmonics to signaling in periodically myelinated axons may allow for identification of a different role in information processing of the white and gray matters in brain and spinal cord. We have outlined some perspectives to utilize the difference between the electricity of myelinated and non-myelinated nerve cells in brain to develop the topological concept of the memory functioning. The proposed ionic plasmon–polariton model of the saltatory conduction differently recognizes the role of the insulating myelin than previously was thought which may be helpful in the development of a better understanding of the demyelination diseases.
APA, Harvard, Vancouver, ISO, and other styles
27

Tohari, Mariam M., Andreas Lyras, and Mohamad S. AlSalhi. "A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser." Nanomaterials 10, no. 3 (February 27, 2020): 416. http://dx.doi.org/10.3390/nano10030416.

Full text
Abstract:
Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications.
APA, Harvard, Vancouver, ISO, and other styles
28

Томилина, О. А., В. Н. Бержанский, and С. В. Томилин. "Влияние перколяционного перехода на электропроводящие и оптические свойства сверхтонких металлических пленок." Физика твердого тела 62, no. 4 (2020): 614. http://dx.doi.org/10.21883/ftt.2020.04.49129.610.

Full text
Abstract:
In paper the investigation results of features of electrophysical, optical and plasmonic properties changes in ultrathin metallic films during percolation transition from island structure to continuous are representative. It was shown that during Ti and Pt thin films condensation a change of their electrical conductivity above the percolation threshold is well described in the framework of the classical percolation theory. The resonance behavior of localized plasmons and surface (propagating) plasmon-polaritons in Au metal films during a percolation transition was studied. It was shown that when the film becomes to a granular state a decrease in the Q-factor of surface plasmon-polariton resonance is observed in the vicinity of the percolation transition, which is associated with excitation of localized plasmons in metallic nanoparticles. For all studied coatings the percolation threshold was determined.
APA, Harvard, Vancouver, ISO, and other styles
29

Lamri, Gwénaëlle, Alessandro Veltri, Jean Aubard, Pierre-Michel Adam, Nordin Felidj, and Anne-Laure Baudrion. "Polarization-dependent strong coupling between silver nanorods and photochromic molecules." Beilstein Journal of Nanotechnology 9 (October 8, 2018): 2657–64. http://dx.doi.org/10.3762/bjnano.9.247.

Full text
Abstract:
Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Qingfeng, Taylor Hernandez, Kyle W. Smith, Seyyed Ali Hosseini Jebeli, Alan X. Dai, Lauren Warning, Rashad Baiyasi, et al. "Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes." Science 365, no. 6460 (September 26, 2019): 1475–78. http://dx.doi.org/10.1126/science.aax5415.

Full text
Abstract:
Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.
APA, Harvard, Vancouver, ISO, and other styles
31

Dheur, Marie-Christine, Eloïse Devaux, Thomas W. Ebbesen, Alexandre Baron, Jean-Claude Rodier, Jean-Paul Hugonin, Philippe Lalanne, Jean-Jacques Greffet, Gaétan Messin, and François Marquier. "Single-plasmon interferences." Science Advances 2, no. 3 (March 2016): e1501574. http://dx.doi.org/10.1126/sciadv.1501574.

Full text
Abstract:
Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.
APA, Harvard, Vancouver, ISO, and other styles
32

Kosobukin, V. A. "Plasmon-excitonic polaritons in metal-semiconductor nanostructures with quantum wells." Физика и техника полупроводников 52, no. 5 (2018): 502. http://dx.doi.org/10.21883/ftp.2018.05.45846.35.

Full text
Abstract:
AbstractA theory of plasmon-exciton coupling and its spectroscopy is developed for metal-semiconductor nanostructures. Considered as a model is a periodic superlattice with cells consisting of a quantum well and a layer of metal nanoparticles. The problem is solved self-consistently using the electrodynamic Green’s functions taking account of resonant polarization. Coulomb plasmon-exciton interaction is associated with the dipole surface plasmons of particles and their image charges due to excitonic polarization of neighboring quantum well. Optical reflection spectra are numerically investigated for superlattices with GaAs/AlGaAs quantum wells and silver nanoparticles. Superradiant regime caused by one-dimensional Bragg diffraction is studied for plasmonic, excitonic and plasmon-excitonic polaritons depending on the number of supercells. The plasmon-excitonic Rabi splitting is shown to occur in reflectivity spectra of resonant Bragg structures.
APA, Harvard, Vancouver, ISO, and other styles
33

Abed, Jehad, Nitul S. Rajput, Amine El Moutaouakil, and Mustapha Jouiad. "Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting." Nanomaterials 10, no. 11 (November 15, 2020): 2260. http://dx.doi.org/10.3390/nano10112260.

Full text
Abstract:
Plasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron–hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts.
APA, Harvard, Vancouver, ISO, and other styles
34

Кособукин, В. А. "Спектроскопия плазмон-экситонов в наноструктурах полупроводник-металл." Физика твердого тела 60, no. 8 (2018): 1606. http://dx.doi.org/10.21883/ftt.2018.08.46256.18gr.

Full text
Abstract:
AbstractThe results of the theory considering mixed plasmon-excitonic modes and their spectroscopy are presented. The plasmon-excitons are formed owing to strong Coulomb coupling between quasi-two-dimensional excitons of a quantum well and dipole plasmons of nanoparticles. The effective polarizability associated with a nanoparticle is calculated in a self-consistent approximation taking into account the local field determined by in-layer dipole plasmons and their image charges due to the excitonic polarization of a near quantum well. The spectra of elastic scattering and specular reflection of light are investigated in cases of a single silver nanoparticle and a monolayer of such particles situated in close proximity to a quantum well GaAs/AlGaAs. The optical spectra show a two-peak structure with a deep and narrow dip in the resonant range of plasmon-excitons. Propagation of plasmon-excitonic polaritons is discussed for periodic superlattices whose unit cell consists of a quantum well and a layer of metal nanoparticles. The superradiance regime originating in the Bragg diffraction of plasmon-excitonic polaritons by the superlattice is investigated. It is shown that the broad spectrum of plasmonic reflection depending on the number of unit cells in a superlattice also has a narrow dip at the exciton frequency.
APA, Harvard, Vancouver, ISO, and other styles
35

Kvítek, Ondřej, Jakub Siegel, Vladimír Hnatowicz, and Václav Švorčík. "Noble Metal Nanostructures Influence of Structure and Environment on Their Optical Properties." Journal of Nanomaterials 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/743684.

Full text
Abstract:
Optical properties of nanostructured materials, isolated nanoparticles, and structures composed of both metals and semiconductors are broadly discussed. Fundamentals of the origin of surface plasmons as well as the surface plasmon resonance sensing are described and documented on a number of examples. Localized plasmon sensing and surface-enhanced Raman spectroscopy are subjected to special interest since those techniques are inherently associated with the direct application of plasmonic structures. The possibility of tailoring the optical properties of ultra-thin metal layers via controlling their shape and morphology by postdeposition annealing is documented. Special attention is paid to the contribution of bimetallic particles and layers as well as metal structures encapsulated in semiconductors and dielectrics to the optical response. The opportunity to tune the properties of materials over a large scale of values opens up entirely new application possibilities of optical active structures. The nature of surface plasmons predetermines noble metal nanostructures to be promising great materials for development of modern label-free sensing methods based on plasmon resonance—SPR and LSPR sensing.
APA, Harvard, Vancouver, ISO, and other styles
36

Singh, Leeju, Nicolò Maccaferri, Denis Garoli, and Yuri Gorodetski. "Directional Plasmonic Excitation by Helical Nanotips." Nanomaterials 11, no. 5 (May 19, 2021): 1333. http://dx.doi.org/10.3390/nano11051333.

Full text
Abstract:
The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light–plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.
APA, Harvard, Vancouver, ISO, and other styles
37

Kuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (February 23, 2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.

Full text
Abstract:
AbstractGraphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to conventional magneto-plasmonics based on magneto-optically active metals or dielectrics. Despite a large number of review articles devoted to plasmonic properties and applications of graphene, little is known about graphene magneto-plasmonics and topological effects in graphene-based nanostructures, which represent the main subject of this review. We discuss several strategies to enhance plasmonic effects in topologically distinct closed surface landscapes, i.e. graphene nanotubes, cylindrical nanocavities and toroidal nanostructures. A novel phenomenon of the strongly asymmetric SPP propagation on chiral meta-structures and the fundamental relations between structural and plasmonic topological indices are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
38

Silva, Jaime, Bruce F. Milne, and Fernando Nogueira. "On the Single Wall Carbon Nanotube Surface Plasmon Stability." EPJ Web of Conferences 233 (2020): 05009. http://dx.doi.org/10.1051/epjconf/202023305009.

Full text
Abstract:
The physics of surface plasmons has a long tradition in condensed matter theory but as the dimension of the systems reaches the nano scale, new effects appear. In this work, by calculating the absorption spectra of a single wall carbon nanotube, using time dependent density functional theory, the effect of adding/removing electrons on the surface plasmon energy is studied. It is shown that removing electrons from the single wall carbon nanotube does not affect the surface plasmon energy peak. In contrast, adding electrons to the single wall carbon nanotube will redshift the plasmonic peak energy, an effect that is explained by an increase of the electron effective mass.
APA, Harvard, Vancouver, ISO, and other styles
39

Jiang, Jing, Xinhao Wang, Shuang Li, Fei Ding, Nantao Li, Shaoyu Meng, Ruifan Li, Jia Qi, Qingjun Liu, and Gang Logan Liu. "Plasmonic nano-arrays for ultrasensitive bio-sensing." Nanophotonics 7, no. 9 (August 28, 2018): 1517–31. http://dx.doi.org/10.1515/nanoph-2018-0023.

Full text
Abstract:
AbstractSurface plasmon resonance (SPR) and localized SPR (LSPR) effects have been shown as the principles of some highlysensitive sensors in recent decades. Due to the advances in nano-fabrication technology, the plasmon nano-array sensors based on SPR and LSPR phenomena have been widely used in chemical and bioloical analysis. Sensing with surface-enhanced field and sensing for refractive index changes are able to identify the analytes quantitatively and qualitatively. With the newly developed ultrasensitive plasmonic biosensors, platforms with excellent performance have been built for various biomedical applications, including point-of-care diagnosis and personalized medicine. In addition, flexible integration of plasmonics nano-arrays and combining them with electrochemical sensing have significantly enlarged the application scenarios of the plasmonic nano-array sensors, as well as improved the sensing accuracy.
APA, Harvard, Vancouver, ISO, and other styles
40

Amoako, G., W. Zhang, M. Zhou, S. S. Sackey, and P. Mensah-Amoah. "Rapid Laser Direct Writing of Plasmonic Components." Applied Physics Research 9, no. 6 (November 7, 2017): 19. http://dx.doi.org/10.5539/apr.v9n6p19.

Full text
Abstract:
A new device named technology-plasmonics has recently emerged and can be used to manipulate light at the nano-scale level. Here, we report the method of two-photon photopolymerization for rapid laser direct writing of plasmonic components. The characterization of these components is performed by a leakage radiation microscope, which has the same system construction as the two-photon photopolymerization micro-fabrication system except the laser pattern. The dielectric structures covered with gold proved to be very efficient for the excitation of surface plasmon polaritons in this system and can achieve different plasmon fields.
APA, Harvard, Vancouver, ISO, and other styles
41

Goswami, P., and U. P. Tyagi. "Graphene-TMD Van der Waals Heterostucture Plasmonics." Journal of Scientific Research 12, no. 2 (February 1, 2020): 169–74. http://dx.doi.org/10.3329/jsr.v12i2.43685.

Full text
Abstract:
The collective excitations of electrons in the bulk or at the surface, viz. plasmons, play an important role in the properties of materials, and have generated the field of “plasmonics”. We report the observation of a highly unusual plasmon mode on the surface of Van der Waals heterostructures (vdWHs) of graphene monolayer on 2D transition metal dichalcogenide (Gr-TMD) substrate. Since the exponentially decaying fields of surface plasmon wave propagating along interface is highly sensitive to the ambient refractive index variations, such heterostructures are useful for ultra-sensitive bio-sensing.
APA, Harvard, Vancouver, ISO, and other styles
42

Khurgin, Jacob B. "Pliable polaritons: Wannier exciton-plasmon coupling in metal-semiconductor structures." Nanophotonics 8, no. 4 (November 20, 2018): 629–39. http://dx.doi.org/10.1515/nanoph-2018-0166.

Full text
Abstract:
AbstractPlasmonic structures are known to support the modes with sub-wavelength volumes in which the field/matter interactions are greatly enhanced. Coupling between the molecular excitations and plasmons leading to the formation of “plexcitons” has been investigated for a number of organic molecules. However, plasmon-exciton coupling in metal/semiconductor structures has not experienced the same degree of attention. In this work, we show that the “very strong coupling” regime in which the Rabi energy exceeds the exciton binding energy is attainable in semiconductor-cladded plasmonic nanoparticles and leads to the formation of Wannier exciton-plasmon polariton (WEPP), which is bound to the metal nanoparticle and characterized by dramatically smaller (by a factor of a few) excitonic radius and correspondingly higher ionization energy. This higher ionization energy, which exceeding approaches 100 meV for the CdS/Ag structures, may make room-temperature Bose-Einstein condensation and polariton lasing in plasmonic/semiconductor structures possible.
APA, Harvard, Vancouver, ISO, and other styles
43

Yeshchenko, O. A., A. O. Bartenev, A. P. Naumenko, N. V. Kutsevol, Iu I. Harahuts, and A. I. Marinin. "Laser-Driven Aggregation in Dextran–Graft–PNIPAM/Silver Nanoparticles Hybrid Nanosystem: Plasmonic Effects." Ukrainian Journal of Physics 65, no. 3 (March 26, 2020): 254. http://dx.doi.org/10.15407/ujpe65.3.254.

Full text
Abstract:
The laser-induced aggregation in the thermosensitive dextran grafted-poly(N-isopropylacrylamide) copolymer/Ag nanoparticles (D–g–PNIPAM/AgNPs) hybrid nanosystem in water has been observed. The laser-induced plasmonic heating of Ag NPs causes the Lower Critical Solution Temperature (LCST) conformation transition in D–g–PNIPAM/AgNPs macromolecules which shrink during the transition. The shrinking decreases sharply the distance between the silver nanoparticles that launches the aggregation of Ag NPs and the appearance of plasmonic attractive optical forces acting between the nanoparticles. It has been shown that the approach of the laser wavelength to the surface plasmon resonance in Ag nanoparticles leads to a significant strengthening of the observed aggregation, which proves its plasmon nature. The laser-induced transformations in the D–g–PNIPAM/AgNPs nanosystem have been found to be essentially irreversible that differs principally them from the temperature-induced transformations. Such fundamental difference proves the crucial role of the optical forces arising due to the excitation of surface plasmons in Ag NPs.
APA, Harvard, Vancouver, ISO, and other styles
44

Yu, Sanghyeon, and Habib Ammari. "Hybridization of singular plasmons via transformation optics." Proceedings of the National Academy of Sciences 116, no. 28 (June 24, 2019): 13785–90. http://dx.doi.org/10.1073/pnas.1902194116.

Full text
Abstract:
Surface plasmon resonances of metallic nanostructures offer great opportunities to guide and manipulate light on the nanoscale. In the design of novel plasmonic devices, a central topic is to clarify the intricate relationship between the resonance spectrum and the geometry of the nanostructure. Despite many advances, the design becomes quite challenging when the desired spectrum is highly complex. Here we develop a theoretical model for surface plasmons of interacting nanoparticles to reduce the complexity of the design process significantly. Our model is developed by combining plasmon hybridization theory with transformation optics, which yields an efficient way of simultaneously controlling both global and local features of the resonance spectrum. As an application, we propose a design of metasurface whose absorption spectrum can be controlled over a large class of complex patterns through only a few geometric parameters in an intuitive way. Our approach provides fundamental tools for the effective design of plasmonic metamaterials with on-demand functionality.
APA, Harvard, Vancouver, ISO, and other styles
45

Urban, Maximilian J., Chenqi Shen, Xiang-Tian Kong, Chenggan Zhu, Alexander O. Govorov, Qiangbin Wang, Mario Hentschel, and Na Liu. "Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 275–99. http://dx.doi.org/10.1146/annurev-physchem-050317-021332.

Full text
Abstract:
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.
APA, Harvard, Vancouver, ISO, and other styles
46

Cheng, Chang-Wei, Soniya S. Raja, Ching-Wen Chang, Xin-Quan Zhang, Po-Yen Liu, Yi-Hsien Lee, Chih-Kang Shih, and Shangjr Gwo. "Epitaxial aluminum plasmonics covering full visible spectrum." Nanophotonics 10, no. 1 (November 25, 2020): 627–37. http://dx.doi.org/10.1515/nanoph-2020-0402.

Full text
Abstract:
AbstractAluminum has attracted a great deal of attention as an alternative plasmonic material to silver and gold because of its natural abundance on Earth, material stability, unique spectral capability in the ultraviolet spectral region, and complementary metal-oxide-semiconductor compatibility. Surprisingly, in some recent studies, aluminum has been reported to outperform silver in the visible range due to its superior surface and interface properties. Here, we demonstrate excellent structural and optical properties measured for aluminum epitaxial films grown on sapphire substrates by molecular-beam epitaxy under ultrahigh vacuum growth conditions. Using the epitaxial growth technique, distinct advantages can be achieved for plasmonic applications, including high-fidelity nanofabrication and wafer-scale system integration. Moreover, the aluminum film thickness is controllable down to a few atomic monolayers, allowing for plasmonic ultrathin layer devices. Two kinds of aluminum plasmonic applications are reported here, including precisely engineered plasmonic substrates for surface-enhanced Raman spectroscopy and high-quality-factor plasmonic surface lattices based on standing localized surface plasmons and propagating surface plasmon polaritons, respectively, in the entire visible spectrum (400–700 nm).
APA, Harvard, Vancouver, ISO, and other styles
47

Guo, Zi-Zheng. "Effect of dielectric environment on plasmonic resonance absorption of graphene nanoribbon arrays." International Journal of Modern Physics B 32, no. 26 (October 18, 2018): 1850284. http://dx.doi.org/10.1142/s0217979218502843.

Full text
Abstract:
The plasmonic resonance absorption properties of a periodic graphene nanoribbon array are studied in this paper. We discuss the effect of the asymmetricity of the dielectric environment on the plasmonic resonance of the graphene nanoribbon array in order to know which combination of the two dielectric materials surrounding the graphene is most advantageous. The results show that, regardless of the graphene in symmetric and asymmetrical environments, the absorption peak of plasmon resonance shifts to longer wavelengths (shifts red) with the increase of the changing permittivity (permittivities) on one or both sides. This absorption characteristic of the graphene periodic array to external electromagnetic waves originates from the wavelength dependence of the intrinsic graphene plasmons on the environmental medium.
APA, Harvard, Vancouver, ISO, and other styles
48

Grieser, Daniel. "The plasmonic eigenvalue problem." Reviews in Mathematical Physics 26, no. 03 (April 2014): 1450005. http://dx.doi.org/10.1142/s0129055x14500056.

Full text
Abstract:
A plasmon of a bounded domain Ω ⊂ ℝn is a non-trivial bounded harmonic function on ℝn\∂Ω which is continuous at ∂Ω and whose exterior and interior normal derivatives at ∂Ω have a constant ratio. We call this ratio a plasmonic eigenvalue of Ω. Plasmons arise in the description of electromagnetic waves hitting a metallic particle Ω. We investigate these eigenvalues and prove that they form a sequence of numbers converging to one. Also, we prove regularity of plasmons, derive a variational characterization, and prove a second-order perturbation formula. The problem can be reformulated in terms of Dirichlet–Neumann operators, and as a side result, we derive a formula for the shape derivative of these operators.
APA, Harvard, Vancouver, ISO, and other styles
49

Khurgin, Jacob B. "Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2090 (March 28, 2017): 20160068. http://dx.doi.org/10.1098/rsta.2016.0068.

Full text
Abstract:
Noble metals that currently dominate the fields of plasmonics and metamaterials suffer from large ohmic losses. Some of the new plasmonic materials, such as doped oxides and nitrides, have smaller material loss, and using them in place of metals carries the promise of reduced-loss plasmonic and metamaterial structures, with sharper resonances and higher field concentrations. This promise is put to a rigorous analytical test in this work, which reveals that having low material loss is not sufficient to have reduced modal loss in plasmonic structures. To reduce the modal loss, it is absolutely necessary for the plasma frequency to be significantly higher than the operational frequency. Using examples of nanoparticle plasmons and gap plasmons one comes to the conclusion that, even in the mid-infrared spectrum, metals continue to hold an advantage over alternative media when it comes to propagation distances and field enhancements. Of course, the new materials still have an application niche where high absorption loss is beneficial, e.g. in medicine and thermal photovoltaics. This article is part of the themed issue ‘New horizons for nanophotonics’.
APA, Harvard, Vancouver, ISO, and other styles
50

Qi, Miao, Nancy Meng Ying Zhang, Kaiwei Li, Swee Chuan Tjin, and Lei Wei. "Hybrid Plasmonic Fiber-Optic Sensors." Sensors 20, no. 11 (June 8, 2020): 3266. http://dx.doi.org/10.3390/s20113266.

Full text
Abstract:
With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon–matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybrid fiber-optic sensors rely on the resonant electron oscillations of thin metallic films or metallic nanoparticles functionalized on fiber surfaces. Coupled with the new advances in functional nanomaterials as well as fiber structure design and fabrication in recent years, new solutions continue to emerge to further improve the fiber-optic plasmonic sensors’ performances in terms of sensitivity, specificity and biocompatibility. For instance, 2D materials like graphene can enhance the surface plasmon intensity at the metallic film surface due to the plasmon–matter interaction. Two-dimensional (2D) morphology of transition metal oxides can be doped with abundant free electrons to facilitate intrinsic plasmonics in visible or near-infrared frequencies, realizing exceptional field confinement and high sensitivity detection of analyte molecules. Gold nanoparticles capped with macrocyclic supramolecules show excellent selectivity to target biomolecules and ultralow limits of detection. Moreover, specially designed microstructured optical fibers are able to achieve high birefringence that can suppress the output inaccuracy induced by polarization crosstalk and meanwhile deliver promising sensitivity. This review aims to reveal and explore the frontiers of such hybrid plasmonic fiber-optic platforms in various sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography