To see the other types of publications on this topic, follow the link: Plasmonic applications.

Journal articles on the topic 'Plasmonic applications'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Plasmonic applications.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.

Full text
Abstract:
Abstract Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of m
APA, Harvard, Vancouver, ISO, and other styles
2

Babicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications." Nanomaterials 13, no. 7 (2023): 1270. http://dx.doi.org/10.3390/nano13071270.

Full text
Abstract:
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy
APA, Harvard, Vancouver, ISO, and other styles
3

Sebek, Matej, Ahmed Elbana, Arash Nemati, et al. "Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications." Journal of Molecular and Engineering Materials 08, no. 01n02 (2020): 2030001. http://dx.doi.org/10.1142/s2251237320300016.

Full text
Abstract:
The inherent thinness of two-dimensional 2D materials limits their efficiency of light-matter interactions and the high loss of noble metal plasmonic nanostructures limits their applicability. Thus, a combination of 2D materials and plasmonics is highly attractive. This review describes the progress in the field of 2D plasmonics, which encompasses 2D plasmonic materials and hybrid plasmonic-2D materials structures. Novel plasmonic 2D materials, plasmon-exciton interaction within 2D materials and applications comprising sensors, photodetectors and, metasurfaces are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Ogawa, Shinpei, Shoichiro Fukushima, and Masaaki Shimatani. "Graphene Plasmonics in Sensor Applications: A Review." Sensors 20, no. 12 (2020): 3563. http://dx.doi.org/10.3390/s20123563.

Full text
Abstract:
Surface plasmon polaritons (SPPs) can be generated in graphene at frequencies in the mid-infrared to terahertz range, which is not possible using conventional plasmonic materials such as noble metals. Moreover, the lifetime and confinement volume of such SPPs are much longer and smaller, respectively, than those in metals. For these reasons, graphene plasmonics has potential applications in novel plasmonic sensors and various concepts have been proposed. This review paper examines the potential of such graphene plasmonics with regard to the development of novel high-performance sensors. The th
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Jianxun, Huilin He, Dong Xiao, et al. "Recent Advances of Plasmonic Nanoparticles and their Applications." Materials 11, no. 10 (2018): 1833. http://dx.doi.org/10.3390/ma11101833.

Full text
Abstract:
In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and a
APA, Harvard, Vancouver, ISO, and other styles
6

Bhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films." Processes 8, no. 1 (2020): 115. http://dx.doi.org/10.3390/pr8010115.

Full text
Abstract:
Plasmonic-active nanomaterials are of high interest to scientists because of their expanding applications in the field for medicine and energy. Chemical and biological sensors based on plasmonic nanomaterials are well-established and commercially available, but the role of plasmonic nanomaterials on photothermal therapeutics, solar cells, super-resolution imaging, organic synthesis, etc. is still emerging. The effectiveness of the plasmonic materials on these technologies depends on their stability and sensitivity. Preparing plasmonics-active nanostructured thin films (PANTFs) on a solid subst
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Xiaoyu, Chanda Ranjit Yonzon, and Richard P. Van Duyne. "Nanosphere lithography fabricated plasmonic materials and their applications." Journal of Materials Research 21, no. 5 (2006): 1083–92. http://dx.doi.org/10.1557/jmr.2006.0136.

Full text
Abstract:
Nanosphere lithography fabricated nanostructures have highly tunable localized surface plasmons, which have been used for important sensing and spectroscopy applications. In this work, the authors focus on biological applications and technologies that utilize two types of related plasmonic phenomena: localized surface plasmon resonance (LSPR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). Two applications of these plasmonic materials are presented: (i) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (ii) the SERS de
APA, Harvard, Vancouver, ISO, and other styles
8

Marinica, Dana Codruta, Mario Zapata, Peter Nordlander, et al. "Active quantum plasmonics." Science Advances 1, no. 11 (2015): e1501095. http://dx.doi.org/10.1126/sciadv.1501095.

Full text
Abstract:
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric pla
APA, Harvard, Vancouver, ISO, and other styles
9

Odom, Teri W. "Materials Screening and Applications of Plasmonic Crystals." MRS Bulletin 35, no. 1 (2010): 66–73. http://dx.doi.org/10.1557/mrs2010.618.

Full text
Abstract:
AbstractSurface plasmon polaritons are responsible for various optical phenomena, including negative refraction, enhanced optical transmission, and nanoscale focusing. Although many materials support plasmons, the choice of metal for most applications has been based on traditional plasmonic materials, such as Ag and Au, because there have been no side-by-side comparisons of different materials on well-defined, nanostructured surfaces. This article will describe how a multiscale patterning approach based on soft interference lithography can be used to create plasmonic crystals with different un
APA, Harvard, Vancouver, ISO, and other styles
10

Mauriz, Elba. "Clinical Applications of Visual Plasmonic Colorimetric Sensing." Sensors 20, no. 21 (2020): 6214. http://dx.doi.org/10.3390/s20216214.

Full text
Abstract:
Colorimetric analysis has become of great importance in recent years to improve the operationalization of plasmonic-based biosensors. The unique properties of nanomaterials have enabled the development of a variety of plasmonics applications on the basis of the colorimetric sensing provided by metal nanoparticles. In particular, the extinction of localized surface plasmon resonance (LSPR) in the visible range has permitted the exploitation of LSPR colorimetric-based biosensors as powerful tools for clinical diagnostics and drug monitoring. This review summarizes recent progress in the biochemi
APA, Harvard, Vancouver, ISO, and other styles
11

Jiang, Jing, Xinhao Wang, Shuang Li, et al. "Plasmonic nano-arrays for ultrasensitive bio-sensing." Nanophotonics 7, no. 9 (2018): 1517–31. http://dx.doi.org/10.1515/nanoph-2018-0023.

Full text
Abstract:
AbstractSurface plasmon resonance (SPR) and localized SPR (LSPR) effects have been shown as the principles of some highlysensitive sensors in recent decades. Due to the advances in nano-fabrication technology, the plasmon nano-array sensors based on SPR and LSPR phenomena have been widely used in chemical and bioloical analysis. Sensing with surface-enhanced field and sensing for refractive index changes are able to identify the analytes quantitatively and qualitatively. With the newly developed ultrasensitive plasmonic biosensors, platforms with excellent performance have been built for vario
APA, Harvard, Vancouver, ISO, and other styles
12

Genç, Aziz, Javier Patarroyo, Jordi Sancho-Parramon, Neus G. Bastús, Victor Puntes, and Jordi Arbiol. "Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications." Nanophotonics 6, no. 1 (2017): 193–213. http://dx.doi.org/10.1515/nanoph-2016-0124.

Full text
Abstract:
AbstractMetallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridizatio
APA, Harvard, Vancouver, ISO, and other styles
13

Indhu, A. R., L. Keerthana, and Gnanaprakash Dharmalingam. "Plasmonic nanotechnology for photothermal applications – an evaluation." Beilstein Journal of Nanotechnology 14 (March 27, 2023): 380–419. http://dx.doi.org/10.3762/bjnano.14.33.

Full text
Abstract:
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventiona
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Shaobo, Shuming Yang, Fei Wang, Qiang Liu, Biyao Cheng, and Yossi Rosenwaks. "Plasmonic interference modulation for broadband nanofocusing." Nanophotonics 10, no. 16 (2021): 4113–23. http://dx.doi.org/10.1515/nanoph-2021-0405.

Full text
Abstract:
Abstract Metallic plasmonic probes have been successfully applied in near-field imaging, nanolithography, and Raman enhanced spectroscopy because of their ability to squeeze light into nanoscale and provide significant electric field enhancement. Most of these probes rely on nanometric alignment of incident beam and resonant structures with limited spectral bandwidth. This paper proposes and experimentally demonstrates an asymmetric fiber tip for broadband interference nanofocusing within its full optical wavelengths (500–800 nm) at the nanotip with 10 nm apex. The asymmetric geometry consisti
APA, Harvard, Vancouver, ISO, and other styles
15

You, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.

Full text
Abstract:
AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discu
APA, Harvard, Vancouver, ISO, and other styles
16

Urban, Maximilian J., Chenqi Shen, Xiang-Tian Kong, et al. "Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches." Annual Review of Physical Chemistry 70, no. 1 (2019): 275–99. http://dx.doi.org/10.1146/annurev-physchem-050317-021332.

Full text
Abstract:
We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly i
APA, Harvard, Vancouver, ISO, and other styles
17

Khan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (2020): 1365. http://dx.doi.org/10.3390/sym12081365.

Full text
Abstract:
Optical properties of metal nanostructures, governed by the so-called localised surface plasmon resonance (LSPR) effects, have invoked intensive investigations in recent times owing to their fundamental nature and potential applications. LSPR scattering from metal nanostructures is expected to show the symmetry of the oscillation mode and the particle shape. Therefore, information on the polarisation properties of the LSPR scattering is crucial for identifying different oscillation modes within one particle and to distinguish differently shaped particles within one sample. On the contrary, the
APA, Harvard, Vancouver, ISO, and other styles
18

Brooks, James L., Christopher L. Warkentin, Dayeeta Saha, Emily L. Keller, and Renee R. Frontiera. "Toward a mechanistic understanding of plasmon-mediated photocatalysis." Nanophotonics 7, no. 11 (2018): 1697–724. http://dx.doi.org/10.1515/nanoph-2018-0073.

Full text
Abstract:
AbstractOne of the most exciting new developments in the plasmonic nanomaterials field is the discovery of their ability to mediate a number of photocatalytic reactions. Since the initial prediction of driving chemical reactions with plasmons in the 1980s, the field has rapidly expanded in recent years, demonstrating the ability of plasmons to drive chemical reactions, such as water splitting, ammonia generation, and CO2 reduction, among many other examples. Unfortunately, the efficiencies of these processes are currently suboptimal for practical widespread applications. The limitations in rec
APA, Harvard, Vancouver, ISO, and other styles
19

Lamri, Gwénaëlle, Alessandro Veltri, Jean Aubard, Pierre-Michel Adam, Nordin Felidj, and Anne-Laure Baudrion. "Polarization-dependent strong coupling between silver nanorods and photochromic molecules." Beilstein Journal of Nanotechnology 9 (October 8, 2018): 2657–64. http://dx.doi.org/10.3762/bjnano.9.247.

Full text
Abstract:
Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators.
APA, Harvard, Vancouver, ISO, and other styles
20

Tao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.

Full text
Abstract:
The electronic plasmons of single layer MoS2 induced by different spin subbands owing to spin-orbit couplings (SOCs) are theoretically investigated. The study shows that two new and anomalous plasmonic modes can be achieved via inter-spin subband transitions around the Fermi level due to the SOCs. The plasmon modes are optic-like, which are very different from the plasmons reported recently in single-layer (SL) MoS2, and the other two-dimensional systems. The frequency of such plasmons ascends with the increasing of electron density or spin polarizability, and decreases with the increasing of
APA, Harvard, Vancouver, ISO, and other styles
21

Demishkevich, Elizaveta, Andrey Zyubin, Alexey Seteikin, et al. "Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver." Materials 16, no. 9 (2023): 3342. http://dx.doi.org/10.3390/ma16093342.

Full text
Abstract:
The purpose of this paper is to provide an in-depth review of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. We describe fundamental concepts, synthesis methods, and optical sensing applications of these nanoparticles. Plasmonic metal nanoparticles have received a lot of interest due to various applications, such as optical sensors, single-molecule detection, single-cell detection, pathogen detection, environmental contaminant monitoring, cancer diagnostics, biomedicine, and food and health safety monitoring. They provide a promising platform for highly sensitive d
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Yuyu, Khwanchai Tantiwanichapan, Anna K. Swan, and Roberto Paiella. "Graphene plasmonic devices for terahertz optoelectronics." Nanophotonics 9, no. 7 (2020): 1901–20. http://dx.doi.org/10.1515/nanoph-2020-0211.

Full text
Abstract:
AbstractPlasmonic excitations, consisting of collective oscillations of the electron gas in a conductive film or nanostructure coupled to electromagnetic fields, play a prominent role in photonics and optoelectronics. While traditional plasmonic systems are based on noble metals, recent work has established graphene as a uniquely suited materials platform for plasmonic science and applications due to several distinctive properties. Graphene plasmonic oscillations exhibit particularly strong sub-wavelength confinement, can be tuned dynamically through the application of a gate voltage, and span
APA, Harvard, Vancouver, ISO, and other styles
23

Barbillon, Grégory, Andrey Ivanov, and Andrey K. Sarychev. "Applications of Symmetry Breaking in Plasmonics." Symmetry 12, no. 6 (2020): 896. http://dx.doi.org/10.3390/sym12060896.

Full text
Abstract:
Plasmonics is one of the most used domains for applications to optical devices, biological and chemical sensing, and non-linear optics, for instance. Indeed, plasmonics enables confining the electromagnetic field at the nanoscale. The resonances of plasmonic systems can be set in a given domain of a spectrum by adjusting the geometry, the spatial arrangement, and the nature of the materials. Moreover, symmetry breaking can be used for the further improvement of the optical properties of the plasmonic systems. In the last three years, great advances in or insights into the use of symmetry break
APA, Harvard, Vancouver, ISO, and other styles
24

Kessentini, Sameh, Dominique Barchiesi, Thomas Grosges, Laurence Giraud-Moreau, and Marc Lamy de la Chapelle. "Adaptive Non-Uniform Particle Swarm Application to Plasmonic Design." International Journal of Applied Metaheuristic Computing 2, no. 1 (2011): 18–28. http://dx.doi.org/10.4018/jamc.2011010102.

Full text
Abstract:
The metaheuristic approach has become an important tool for the optimization of design in engineering. In that way, its application to the development of the plasmonic based biosensor is apparent. Plasmonics represents a rapidly expanding interdisciplinary field with numerous transducers for physical, biological and medicine applications. Specific problems are related to this domain. The plasmonic structures design depends on a large number of parameters. Second, the way of their fabrication is complex and industrial aspects are in their infancy. In this study, the authors propose a non-unifor
APA, Harvard, Vancouver, ISO, and other styles
25

Qi, Miao, Nancy Meng Ying Zhang, Kaiwei Li, Swee Chuan Tjin, and Lei Wei. "Hybrid Plasmonic Fiber-Optic Sensors." Sensors 20, no. 11 (2020): 3266. http://dx.doi.org/10.3390/s20113266.

Full text
Abstract:
With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon–matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybri
APA, Harvard, Vancouver, ISO, and other styles
26

Tohari, Mariam M., Andreas Lyras, and Mohamad S. AlSalhi. "A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser." Nanomaterials 10, no. 3 (2020): 416. http://dx.doi.org/10.3390/nano10030416.

Full text
Abstract:
Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium
APA, Harvard, Vancouver, ISO, and other styles
27

Cheng, Chang-Wei, Soniya S. Raja, Ching-Wen Chang, et al. "Epitaxial aluminum plasmonics covering full visible spectrum." Nanophotonics 10, no. 1 (2020): 627–37. http://dx.doi.org/10.1515/nanoph-2020-0402.

Full text
Abstract:
AbstractAluminum has attracted a great deal of attention as an alternative plasmonic material to silver and gold because of its natural abundance on Earth, material stability, unique spectral capability in the ultraviolet spectral region, and complementary metal-oxide-semiconductor compatibility. Surprisingly, in some recent studies, aluminum has been reported to outperform silver in the visible range due to its superior surface and interface properties. Here, we demonstrate excellent structural and optical properties measured for aluminum epitaxial films grown on sapphire substrates by molecu
APA, Harvard, Vancouver, ISO, and other styles
28

Davis, Timothy J., Daniel E. Gómez, and Ann Roberts. "Plasmonic circuits for manipulating optical information." Nanophotonics 6, no. 3 (2016): 543–59. http://dx.doi.org/10.1515/nanoph-2016-0131.

Full text
Abstract:
AbstractSurface plasmons excited by light in metal structures provide a means for manipulating optical energy at the nanoscale. Plasmons are associated with the collective oscillations of conduction electrons in metals and play a role intermediate between photonics and electronics. As such, plasmonic devices have been created that mimic photonic waveguides as well as electrical circuits operating at optical frequencies. We review the plasmon technologies and circuits proposed, modeled, and demonstrated over the past decade that have potential applications in optical computing and optical infor
APA, Harvard, Vancouver, ISO, and other styles
29

Manuel, Ajay, and Karthik Shankar. "Hot Electrons in TiO2–Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis." Nanomaterials 11, no. 5 (2021): 1249. http://dx.doi.org/10.3390/nano11051249.

Full text
Abstract:
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2–noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provi
APA, Harvard, Vancouver, ISO, and other styles
30

Kuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.

Full text
Abstract:
AbstractGraphene is a unique material in the study of the fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner, the electrodynamic properties of graphene can be varied from highly conductive to dielectric. Graphene supports strongly confined, propagating surface plasmon polaritons (SPPs) in a broad spectral range from terahertz to mid-infrared frequencies. It also possesses a strong magneto-optical response and thus provides complimentary architectures to convent
APA, Harvard, Vancouver, ISO, and other styles
31

Song, Hyerin, Heesang Ahn, Taeyeon Kim, Jong-ryul Choi, and Kyujung Kim. "Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting." Applied Sciences 11, no. 19 (2021): 9133. http://dx.doi.org/10.3390/app11199133.

Full text
Abstract:
Metallic nanowires have been utilized as a platform for propagating surface plasmon (SPs) fields. To be exploited for applications such as plasmonic circuits, manipulation of localized field propagating pattern is also important. In this study, we calculated the field distributions of localized surface plasmons (LSPs) on the specifically shaped nanostructures and explored the feasibility of manipulating LSP fields. Specifically, plasmonic fields were calculated at different wavelengths for a nanoscale rod array (I-shaped), an array connected with two nanoscale rods at right angles (T-shaped),
APA, Harvard, Vancouver, ISO, and other styles
32

Spektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.

Full text
Abstract:
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtose
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Kai, Eunice Sok Ping Leong, Michael Rukavina, Tadaaki Nagao, Yan Jun Liu, and Yuebing Zheng. "Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions." Nanophotonics 4, no. 1 (2015): 186–97. http://dx.doi.org/10.1515/nanoph-2015-0007.

Full text
Abstract:
Abstract:Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one can dynamically tune the plasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly h
APA, Harvard, Vancouver, ISO, and other styles
34

He, Zhicong, Fang Li, Yahui Liu, et al. "Principle and Applications of the Coupling of Surface Plasmons and Excitons." Applied Sciences 10, no. 5 (2020): 1774. http://dx.doi.org/10.3390/app10051774.

Full text
Abstract:
Surface plasmons have been attracting increasing attention and have been studied extensively in recent decades because of their half-light and half-material polarized properties. On the one hand, the tightly confined surface plasmonic mode may reduce the size of integrated optical devices beyond the diffraction limit; on the other hand, it provides an approach toward enhancement of the interactions between light and matter. In recent experiments, researchers have realized promising applications for surface plasmons in quantum information processing, ultra-low-power lasers, and micro-nano proce
APA, Harvard, Vancouver, ISO, and other styles
35

Duan, Qilin, Yineng Liu, Shanshan Chang, Huanyang Chen, and Jin-hui Chen. "Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications." Sensors 21, no. 16 (2021): 5262. http://dx.doi.org/10.3390/s21165262.

Full text
Abstract:
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials in
APA, Harvard, Vancouver, ISO, and other styles
36

Endo-Kimura, Maya, and Ewa Kowalska. "Plasmonic Photocatalysts for Microbiological Applications." Catalysts 10, no. 8 (2020): 824. http://dx.doi.org/10.3390/catal10080824.

Full text
Abstract:
Wide-bandgap semiconductors modified with nanostructures of noble metals for photocatalytic activity under vis irradiation due to localized surface plasmon resonance (LSPR), known as plasmonic photocatalysts, have been intensively investigated over the last decade. Most literature reports discuss the properties and activities of plasmonic photocatalysts for the decomposition of organic compounds and solar energy conversion. Although noble metals, especially silver and copper, have been known since ancient times as excellent antimicrobial agents, there are only limited studies on plasmonic phot
APA, Harvard, Vancouver, ISO, and other styles
37

Kasani, Sujan, Kathrine Curtin, and Nianqiang Wu. "A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications." Nanophotonics 8, no. 12 (2019): 2065–89. http://dx.doi.org/10.1515/nanoph-2019-0158.

Full text
Abstract:
AbstractThis review article discusses progress in surface plasmon resonance (SPR) of two-dimensional (2D) and three-dimensional (3D) chip-based nanostructure array patterns. Recent advancements in fabrication techniques for nano-arrays have endowed researchers with tools to explore a material’s plasmonic optical properties. In this review, fabrication techniques including electron-beam lithography, focused-ion lithography, dip-pen lithography, laser interference lithography, nanosphere lithography, nanoimprint lithography, and anodic aluminum oxide (AAO) template-based lithography are introduc
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Yanting, and Xuming Zhang. "Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays." Micromachines 12, no. 7 (2021): 826. http://dx.doi.org/10.3390/mi12070826.

Full text
Abstract:
This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integratio
APA, Harvard, Vancouver, ISO, and other styles
39

Deka, Gitanjal, Chi-Kuang Sun, Katsumasa Fujita, and Shi-Wei Chu. "Nonlinear plasmonic imaging techniques and their biological applications." Nanophotonics 6, no. 1 (2017): 31–49. http://dx.doi.org/10.1515/nanoph-2015-0149.

Full text
Abstract:
AbstractNonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawa
APA, Harvard, Vancouver, ISO, and other styles
40

Yan, Siqi, Xiaolong Zhu, Jianji Dong, Yunhong Ding, and Sanshui Xiao. "2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications." Nanophotonics 9, no. 7 (2020): 1877–900. http://dx.doi.org/10.1515/nanoph-2020-0074.

Full text
Abstract:
AbstractDue to their novel electronic and optical properties, atomically thin layered two-dimensional (2D) materials are becoming promising to realize novel functional optoelectronic devices including photodetectors, modulators, and lasers. However, light–matter interactions in 2D materials are often weak because of the atomic-scale thickness, thus limiting the performances of these devices. Metallic nanostructures supporting surface plasmon polaritons show strong ability to concentrate light within subwavelength region, opening thereby new avenues for strengthening the light–matter interactio
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Renlong, Kaleem Ullah, Sa Yang, et al. "Recent advances in graphene and black phosphorus nonlinear plasmonics." Nanophotonics 9, no. 7 (2020): 1695–715. http://dx.doi.org/10.1515/nanoph-2020-0004.

Full text
Abstract:
AbstractOver the past decade, the plasmonics of graphene and black phosphorus (BP) were widely recognized as promising media for establishing linear and nonlinear light-matter interactions. Compared to the conventional metals, they support significant light-matter interaction of high efficiency and show undispersed optical properties. Furthermore, in contrast to the conventional metals, the plasmonic properties of graphene and BP structure can be tuned by electrical and chemical doping. In this review, a deep attention was paid toward the second- and third-order nonlinear plasmonic modes of gr
APA, Harvard, Vancouver, ISO, and other styles
42

Ren, Yi, Jingjing Zhang, Xinxin Gao, Xin Zheng, Xinyu Liu, and Tie Jun Cui. "Active spoof plasmonics: from design to applications." Journal of Physics: Condensed Matter 34, no. 5 (2021): 053002. http://dx.doi.org/10.1088/1361-648x/ac31f7.

Full text
Abstract:
Abstract Spoof plasmonic metamaterials enable the transmission of electromagnetic energies with strong field confinement, opening new pathways to the miniaturization of devices for modern communications. The design of active, reconfigurable, and nonlinear devices for the efficient generation and guidance, dynamic modulation, and accurate detection of spoof surface plasmonic signals has become one of the major research directions in the field of spoof plasmonic metamaterials. In this article, we review recent progress in the studies on spoof surface plasmons with a special focus on the active s
APA, Harvard, Vancouver, ISO, and other styles
43

Humbert, Christophe, Thomas Noblet, Laetitia Dalstein, Bertrand Busson, and Grégory Barbillon. "Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review." Materials 12, no. 5 (2019): 836. http://dx.doi.org/10.3390/ma12050836.

Full text
Abstract:
We report on the recent scientific research contribution of non-linear optics based on Sum-Frequency Generation (SFG) spectroscopy as a surface probe of the plasmonic properties of materials. In this review, we present a general introduction to the fundamentals of SFG spectroscopy, a well-established optical surface probe used in various domains of physical chemistry, when applied to plasmonic materials. The interest of using SFG spectroscopy as a complementary tool to surface-enhanced Raman spectroscopy in order to probe the surface chemistry of metallic nanoparticles is illustrated by taking
APA, Harvard, Vancouver, ISO, and other styles
44

Wei, Hong, and Hongxing Xu. "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits." Nanophotonics 1, no. 2 (2012): 155–69. http://dx.doi.org/10.1515/nanoph-2012-0012.

Full text
Abstract:
AbstractThe fast development of plasmonics have greatly advanced our understanding to the abundant phenomena related to surface plamon polaritons (SPPs) and improved our ability to manipulate light at the nanometer scale. With tightly confined local field, SPPs can be transmitted in waveguides of subwavelength dimensions. Nanophotonic circuits built with plasmonic elements can be scaled down to dimensions compatible with semiconductor-based nanoelectronic circuits, which provides a potential solution for the next-generation information technology. Different structures have been explored as pla
APA, Harvard, Vancouver, ISO, and other styles
45

Ahn, Heesang, Soojung Kim, Sung Suk Oh, et al. "Plasmonic Nanopillars—A Brief Investigation of Fabrication Techniques and Biological Applications." Biosensors 13, no. 5 (2023): 534. http://dx.doi.org/10.3390/bios13050534.

Full text
Abstract:
Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three m
APA, Harvard, Vancouver, ISO, and other styles
46

Karaballi, Reem A., Yashar Esfahani Monfared, Isobel C. Bicket, Robert H. Coridan, and Mita Dasog. "Solid-state synthesis of UV-plasmonic Cr2N nanoparticles." Journal of Chemical Physics 157, no. 15 (2022): 154706. http://dx.doi.org/10.1063/5.0109806.

Full text
Abstract:
Materials that exhibit plasmonic response in the UV region can be advantageous for many applications, such as biological photodegradation, photocatalysis, disinfection, and bioimaging. Transition metal nitrides have recently emerged as chemically and thermally stable alternatives to metal-based plasmonic materials. However, most free-standing nitride nanostructures explored so far have plasmonic responses in the visible and near-IR regions. Herein, we report the synthesis of UV-plasmonic Cr2N nanoparticles using a solid-state nitridation reaction. The nanoparticles had an average diameter of 9
APA, Harvard, Vancouver, ISO, and other styles
47

Vlček, Jaroslav, Jaromír Pištora, and Michal Lesňák. "Design of Plasmonic-Waveguiding Structures for Sensor Applications." Nanomaterials 9, no. 9 (2019): 1227. http://dx.doi.org/10.3390/nano9091227.

Full text
Abstract:
Surface plasmon resonance has become a widely accepted optical technique for studying biological and chemical interactions. Among others, detecting small changes in analyte concentration in complex solutions remains challenging, e.g., because of the need of distinguishing the interaction of interest from other effects. In our model study, the resolution ability of plasmonic sensing element was enhanced by two ways. Besides an implementation of metal-insulator-metal (MIM) plasmonic nanostructure, we suggest concatenation with waveguiding substructure to achieve mutual coupling of surface plasmo
APA, Harvard, Vancouver, ISO, and other styles
48

Zhao, Xiaoyu, Jiahong Wen, Aonan Zhu, et al. "Manipulation and Applications of Hotspots in Nanostructured Surfaces and Thin Films." Nanomaterials 10, no. 9 (2020): 1667. http://dx.doi.org/10.3390/nano10091667.

Full text
Abstract:
The synthesis of nanostructured surfaces and thin films has potential applications in the field of plasmonics, including plasmon sensors, plasmon-enhanced molecular spectroscopy (PEMS), plasmon-mediated chemical reactions (PMCRs), and so on. In this article, we review various nanostructured surfaces and thin films obtained by the combination of nanosphere lithography (NSL) and physical vapor deposition. Plasmonic nanostructured surfaces and thin films can be fabricated by controlling the deposition process, etching time, transfer, fabrication routes, and their combination steps, which manipula
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Keng-Te, Han Lin, and Baohua Jia. "Plasmonic nanostructures in photodetection, energy conversion and beyond." Nanophotonics 9, no. 10 (2020): 3135–63. http://dx.doi.org/10.1515/nanoph-2020-0104.

Full text
Abstract:
AbstractThis review article aims to provide a comprehensive understanding of plasmonic nanostructures and their applications, especially on the integration of plasmonic nanostructures into devices. Over the past decades, plasmonic nanostructures and their applications have been intensively studied because of their outstanding features at the nanoscale. The fundamental characteristics of plasmonic nanostructures, in particular, the electric field enhancement, the generation of hot electrons, and thermoplasmonic effects, play essential roles in most of the practical applications. In general, the
APA, Harvard, Vancouver, ISO, and other styles
50

Butt, Muhammad Ali ALI, and Nikolay Kazanskiy. "Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating the Nano-dots in the cavity." Photonics Letters of Poland 12, no. 1 (2020): 1. http://dx.doi.org/10.4302/plp.v12i1.902.

Full text
Abstract:
We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomed
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!