Academic literature on the topic 'Plasmonic biosensing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic biosensing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic biosensing"

1

Bochenkov, Vladimir, and Tatyana Shabatina. "Chiral Plasmonic Biosensors." Biosensors 8, no. 4 (December 1, 2018): 120. http://dx.doi.org/10.3390/bios8040120.

Full text
Abstract:
Biosensing requires fast, selective, and highly sensitive real-time detection of biomolecules using efficient simple-to-use techniques. Due to a unique capability to focus light at nanoscale, plasmonic nanostructures provide an excellent platform for label-free detection of molecular adsorption by sensing tiny changes in the local refractive index or by enhancing the light-induced processes in adjacent biomolecules. This review discusses the opportunities provided by surface plasmon resonance in probing the chirality of biomolecules as well as their conformations and orientations. Various types of chiral plasmonic nanostructures and the most recent developments in the field of chiral plasmonics related to biosensing are considered.
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.

Full text
Abstract:
Abstract Due to their promising properties, surface magneto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, surface magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible frequencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic materials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared magnetic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Xue, Kun Liu, and Changsen Sun. "Plasmonics for Biosensing." Materials 12, no. 9 (April 30, 2019): 1411. http://dx.doi.org/10.3390/ma12091411.

Full text
Abstract:
Techniques based on plasmonic resonance can provide label-free, signal enhanced, and real-time sensing means for bioparticles and bioprocesses at the molecular level. With the development in nanofabrication and material science, plasmonics based on synthesized nanoparticles and manufactured nano-patterns in thin films have been prosperously explored. In this short review, resonance modes, materials, and hybrid functions by simultaneously using electrical conductivity for plasmonic biosensing techniques are exclusively reviewed for designs containing nanovoids in thin films. This type of plasmonic biosensors provide prominent potential to achieve integrated lab-on-a-chip which is capable of transporting and detecting minute of multiple bio-analytes with extremely high sensitivity, selectivity, multi-channel and dynamic monitoring for the next generation of point-of-care devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattarai, Jay K., Md Helal Uddin Maruf, and Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films." Processes 8, no. 1 (January 16, 2020): 115. http://dx.doi.org/10.3390/pr8010115.

Full text
Abstract:
Plasmonic-active nanomaterials are of high interest to scientists because of their expanding applications in the field for medicine and energy. Chemical and biological sensors based on plasmonic nanomaterials are well-established and commercially available, but the role of plasmonic nanomaterials on photothermal therapeutics, solar cells, super-resolution imaging, organic synthesis, etc. is still emerging. The effectiveness of the plasmonic materials on these technologies depends on their stability and sensitivity. Preparing plasmonics-active nanostructured thin films (PANTFs) on a solid substrate improves their physical stability. More importantly, the surface plasmons of thin film and that of nanostructures can couple in PANTFs enhancing the sensitivity. A PANTF can be used as a transducer for any of the three plasmonic-based sensing techniques, namely, the propagating surface plasmon, localized surface plasmon resonance, and surface-enhanced Raman spectroscopy-based sensing techniques. Additionally, continuous nanostructured metal films have an advantage for implementing electrical controls such as simultaneous sensing using both plasmonic and electrochemical techniques. Although research and development on PANTFs have been rapidly advancing, very few reviews on synthetic methods have been published. In this review, we provide some fundamental and practical aspects of plasmonics along with the recent advances in PANTFs synthesis, focusing on the advantages and shortcomings of the fabrication techniques. We also provide an overview of different types of PANTFs and their sensitivity for biosensing.
APA, Harvard, Vancouver, ISO, and other styles
5

Mejía-Salazar, J. R., and Osvaldo N. Oliveira. "Plasmonic Biosensing." Chemical Reviews 118, no. 20 (September 24, 2018): 10617–25. http://dx.doi.org/10.1021/acs.chemrev.8b00359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coello, Víctor, Cesar E. Garcia-Ortiz, and Manuel Garcia-Mendez. "Classical Plasmonics: Wave Propagation Control at Subwavelength Scale." Nano 10, no. 07 (October 2015): 1530005. http://dx.doi.org/10.1142/s1793292015300054.

Full text
Abstract:
In this paper, surface plasmons polariton propagation and manipulation is reviewed in the context of experiments and modeling of optical images. We focus our attention in the interaction of surface plasmon polaritons with arrays of micro-scatereres and nanofabricated structures. Numerical simulations and experimental results of different plasmonic devices are presented. Plasmonic beam manipulation opens up numerous possibilities for application in biosensing, nanophotonics, and in general in the area of surface optics properties.
APA, Harvard, Vancouver, ISO, and other styles
7

Fossati, Stefan, Simone Hageneder, Samia Menad, Emmanuel Maillart, and Jakub Dostalek. "Multiresonant plasmonic nanostructure for ultrasensitive fluorescence biosensing." Nanophotonics 9, no. 11 (July 30, 2020): 3673–85. http://dx.doi.org/10.1515/nanoph-2020-0270.

Full text
Abstract:
AbstractA novel metallic nanostructure for efficient plasmon-enhanced fluorescence readout of biomolecular binding events on the surface of a solid sensor chip is reported. It is based on gold multiperiod plasmonic grating (MPG) that supports spectrally narrow plasmonic resonances centered at multiple distinct wavelengths. They originate from diffraction coupling to propagating surface plasmons (SPs) forming a delocalized plasmonic hotspot associated with enhanced electromagnetic field intensity and local density of optical states at its surface. The supported SP resonances are tailored to couple with the excitation and emission transitions of fluorophores that are conjugated with the biomolecules and serve as labels. By the simultaneous coupling at both excitation and emission wavelengths, detected fluorescence intensity is enhanced by the factor of 300 at the MPG surface, which when applied for the readout of fluorescence immunoassays translates to a limit of detection of 6 fM within detection time of 20 min. The proposed approach is attractive for parallel monitoring of kinetics of surface reactions in microarray format arranged on a macroscopic footprint. The readout by epi-fluorescence geometry (that inherently relies on low numerical aperture optics for the imaging of the arrays) can particularly take advantage of the reported MPG. In addition, the proposed MPG nanostructure can be prepared in scaled up means by UV-nanoimprint lithography for future practical applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Yanting, and Xuming Zhang. "Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays." Micromachines 12, no. 7 (July 14, 2021): 826. http://dx.doi.org/10.3390/mi12070826.

Full text
Abstract:
This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
9

Anker, Jeffrey N., W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and Richard P. Van Duyne. "Biosensing with plasmonic nanosensors." Nature Materials 7, no. 6 (June 2008): 442–53. http://dx.doi.org/10.1038/nmat2162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mauriz, Elba. "Recent Progress in Plasmonic Biosensing Schemes for Virus Detection." Sensors 20, no. 17 (August 22, 2020): 4745. http://dx.doi.org/10.3390/s20174745.

Full text
Abstract:
The global burden of coronavirus disease 2019 (COVID-19) to public health and global economy has stressed the need for rapid and simple diagnostic methods. From this perspective, plasmonic-based biosensing can manage the threat of infectious diseases by providing timely virus monitoring. In recent years, many plasmonics’ platforms have embraced the challenge of offering on-site strategies to complement traditional diagnostic methods relying on the polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). This review compiled recent progress on the development of novel plasmonic sensing schemes for the effective control of virus-related diseases. A special focus was set on the utilization of plasmonic nanostructures in combination with other detection formats involving colorimetric, fluorescence, luminescence, or Raman scattering enhancement. The quantification of different viruses (e.g., hepatitis virus, influenza virus, norovirus, dengue virus, Ebola virus, Zika virus) with particular attention to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reviewed from the perspective of the biomarker and the biological receptor immobilized on the sensor chip. Technological limitations including selectivity, stability, and monitoring in biological matrices were also reviewed for different plasmonic-sensing approaches.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasmonic biosensing"

1

Tullius, Ryan Michael. "High-throughput biosensing using chiral plasmonic nanostructures." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8657/.

Full text
Abstract:
The object of this thesis, is to demonstrate the potential capabilities of injection moulded chiral plasmonic nanostructures for enhanced sensing in biological systems. The key phenomenon employed throughout this thesis is the generation of electromagnetic fields, that produce a greater chiral asymmetry than that of circularly polarised light, termed ‘superchiral’ fields. These superchiral fields will be demonstrated as being an incisive probe into the structure, conformation, and orientation of proteins immobilised on the nanostructure surface of these injection moulded substrates. Initially, it will be shown how this phenomenon is sensitive to higher order changes in protein structure induced upon ligand binding, using an asymmetry parameter extracted from the optical rotatory dispersion (ORD) spectra. Where these changes would not be routinely detected by conventional chiroptical spectroscopy techniques, such as circular dichroism (CD). Further to this, as these nanostructures display the plasmonic analogue of the interference effect, electromagnetically induced transparency (EIT), a narrow transparency window is created within a broad reflectance spectrum. Where the spectra can be modelled using a simple coupled oscillator model, and the retardation phase effects extracted. This allows two new asymmetry parameters to be introduced for characterising any changes induced by the biological samples, the experimental separation parameter ∆∆S, and the modelled retardation phase asymmetries. These will be used to characterise the orientation of three structurally similar protein fragments, called Affimers, with the modelled phase asymmetries being shown as a particularly incisive probe into the surface immobilised orientation. Furthermore, conformational changes in the cancer relevant protein, HSP90, will be characterised upon the addition of increasing concentrations of the inhibitor molecule 17-AAG. With the orientation of the immobilised HSP90 protein being shown to influence the sensitivity observed for any protein-ligand interactions that occur. Finally, this phenomenon will be used to quantitatively detect elevated protein levels in a complex solution. Elevated levels of IgG will be measured in human blood serum solutions, utilising the isoelectric point of the proteins in solution to enhance the level of IgG adsorbed in the protein corona. This will demonstrate for the first time, the use of superchiral fields generated around injection moulded chiral nanostructures, to detect protein changes in complex real life solutions, such as human blood serum. Representing the first step in creating a high-throughput ultrasensitive system for a range of diagnostic applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Hao, Danni. "Hybridisation of plasmonic and acoustic biosensing devices." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8992/.

Full text
Abstract:
Monolithically integrating multiple sensing technologies shows a great potential to perform quantitative measurements for multiple biomarkers of diseases and also provide more insight towards one single biochemical event. The localised surface plasmon resonance spectroscopy measures the change in the refractive index arising from the molecular adsorption on the metallic nanostructures. Acoustic sensors, such as surface acoustic wave sensor and quartz crystal microbalance, measure the variation of its mechanical oscillation caused by the sum of the deposited molecules and the solvent coupled to the adsorbed molecules. Both techniques are known independently as having applications in in-situ, label-free sensing and analysis of biological binding reactions. Due to their complementary properties, the integration of both can prove to be a valuable tool for studying biomolecules on sensing surface. This thesis reports on the development of a hybrid biosensing device that integrates localised surface plasmonic sensing and acoustic sensing technologies. Gold nanodisk arrays as localised surface plasmon resonance sensing device was studied in visible region using three substrates: borosilicate glass, lithium niobate and quartz. The design, simulation, fabrication and characterisation of the gold nanodisk arrays, and the sensing performance optimisation were investigated using glass substrate. Lithium niobate, as a piezoelectric material has surface acoustic wave compatibility and this study can pave the way towards the development of hybrid sensing devices. The study on lithium niobate demonstrated the feasibility of a localised surface plasmon resonance device utilising a high refractive index, birefringent and piezoelectric substrate. Using quartz as the substrate, the design and fabrication of a hybrid sensor were performed, which integrated localised surface plasmonic resonance into a quartz crystal microbalance for studying biochemical surface binding reactions. The coupling of localised plasmon resonance nanostructures and a quartz crystal microbalance allows optical spectra and quartz crystal microbalance resonant frequency shifts to be recorded simultaneously, and analysed in real time for a given surface adsorption process. This integration has the potential to be miniaturised for application in point-of-care diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
3

He, Jie. "Plasmonic Nanomaterials for Biosensing, Optimizations and Applications." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522336210516443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.

Full text
Abstract:
Cette thèse considère de nouvelles architectures prometteuses des métamatériaux plasmoniques pour biosensing, comprenant: (I) des réseaux périodiques 2D de nanoparticules d'Au, qui peuvent supporter des résonances des réseaux de surface couplées de manière diffractive; (II) Reseaux 3D à base de cristaux plasmoniques du type d'assemblage de bois. Une étude systématique des conditions d'excitation plasmonique, des propriétés et de la sensibilité à l'environnement local dans ces géométries métamatérielles est présentée. On montre que de tels réseaux peuvent combiner une très haute sensibilité spectrale (400 nm / RIU et 2600 nm / RIU, ensemble respectivement) et une sensibilité de phase exceptionnellement élevée (> 105 deg./RIU) et peuvent être utilisés pour améliorer l'état actuel de la technologie de biosensing the-art. Enfin, on propose une méthode de sondage du champ électrique excité par des nanostructures plasmoniques (nanoparticules uniques, dimères). On suppose que cette méthode aidera à concevoir des structures pour SERS (La spectroscopie du type Raman à surface renforcée), qui peut être utilisée comme une chaîne d'information supplémentaire à un biocapteur de transduction optique
This thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing
APA, Harvard, Vancouver, ISO, and other styles
5

D'Imperio, Luke A. "Biosensing-inspired Nanostructures:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108627.

Full text
Abstract:
Thesis advisor: Michael J. Naughton
Nanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
6

López, Muñoz Gerardo Arturo. "Simple and low cost nanostructured plasmonic biosensor for sensitive and multiplexed biodetection." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665242.

Full text
Abstract:
La creciente demanda de plataformas de análisis que sean fiables y, al mismo tiempo, fáciles de usar y compactas, que requieran un bajo consumo de muestras y proporcionen una alta sensibilidad y una respuesta en tiempo real, ha proporcionado una considerable innovación en el diseño de los biosensores. Entre todos ellos, aquellos basados ​​en fenómenos de resonancia de plasmón superficial (SPR) han sido objeto de un gran interés científico en las últimas décadas porque aportan una alta sensibilidad y simplicidad en los esquemas de detección. Con el avance en las técnicas de nanofabricación, el desarrollo de sensores ópticos basados en nanoestructuras plasmónicas ha representado una excelente vía para su integración en dispositivos Lab-on-a-chip con un reducido tamaño, con la capacidad de resolver algunos de los retos actuales relacionados con los tiempos de análisis, el volumen de muestra requerido y la viabilidad de detectar varios analitos a la vez de forma multiplexada. Con el propósito de ofrecer herramientas biosensoras simples y de bajo costo, la presente Tesis Doctoral presenta el desarrollo de biosensores nanoplasmónicos integrados en plataformas Lab-on-a-Chip (LOC) para la biodetección multiplexada de diferentes analitos en tiempo real. El sensor desarrollado se basa en el empleo de soportes comerciales de discos Blu-Ray como un sustrato que contiene nano-rejillas para general el fenómeno de resonancia de plasmón al recubrirlos con diferentes capas metálicas a escala nanométrica. Los nanobiosensores desarrollados constituyen una alternativa muy prometedora que podrían sustituir a las técnicas de análisis convencionales, simplificando los procesos y superando los principales retos actuales relacionados con la sensibilidad, el coste y el tiempo requerido para el diagnóstico clínico.
The increasing demand for analytical platforms that are reliable and, at the same time, easy to use and compact, that require low sample consumption and provide high sensitivity and real-time response, have provided considerable innovation in the design of the biosensors. Among all of them, those based on surface plasmon resonance phenomena (SPR) have been the subject of great scientific interest in recent decades because they provide high sensitivity and simplicity in the detection schemes. With the advance in nanofabrication techniques, the development of optical sensors based on plasmonic nanostructures has represented an excellent way to integrate them into Lab-on-a-chip devices with a small size, with the ability to solve some of the current challenges related to the analysis times, the volume of sample required and the feasibility of detecting several analytes at the same time multiplexed. With the purpose of offering simple and inexpensive biosensing tools, this Doctoral Thesis presents the development of nanoplasmonic biosensors integrated in Lab-on-a-Chip (LOC) platforms for the multiplexed biosensing of different analytes in real time. The developed sensor is based on the use of commercial Blu-Ray discs as a substrate containing nano-slits to generate the plasmon resonance phenomena by coating them with different metallic layers on a nanometric scale. The developed nanobiosensors are a very promising alternative that could replace conventional analysis techniques, simplifying processes and overcoming the main current challenges related to sensitivity, cost and time required for clinical diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Tzu-Heng. "Smart plasmonic Lab-On-a-Chip System for DNA-based biosensing." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0010/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la problématique de l’intégration de capteurs plasmoniques performants et bas coût sur des dispositifs de type smartphone, en vue d’applications de diagnostic biomédical. A cette fin, nous proposons deux biocapteurs « smart ». Premièrement, un système de détection colorimétrique à base de nanoparticules d’or est mis en œuvre pour détecter de l’ADN. Le système intègre une détection synchrone logicielle mise en œuvre au sein du smartphone, où les signaux physiques transitent par la voie audio. Le processus de diagnostic prend moins de 15 minutes pour une limite de détection de 0.77 nM, approximativement 6 fois meilleure que la sensibilité usuelle d’un spectromètre UV-Vis conventionnel, à temps de mesure identique. Dans une seconde partie, un capteur à résonance plasmon de surface en configuration de Kretschmann, se distinguant par une sensibilité à la phase optique, est développé. Le design monolithique et compact repose sur un interféromètre à dédoublement latéral et une modulation de phase. Le contrôle et la lecture du prototype s’effectue également par smartphone. La modulation de phase est de type sinusoïdale et une sensibilité importante est obtenue, autour de 2,3 10-6 RIU avec une dynamique de 7 10-3 RIU, chiffres obtenus pour une puce optique standard et un temps d’intégration de 100 ms. Ce second dispositif est ensuite testé pour la détection de protéines (Troponine I cardiaque), en fonctionnalisant la surface par ADN Tro4
In this thesis, we investigate the possibility and potential for integration of portable optical biosensor for diagnostic purposes. To this end, we propose two “smart” biosensor systems. In the first part of this thesis, a DNA biosensor combining single-wavelength colorimetry and digital Lock-in Amplifier within a smartphone is proposed. Utilizing full advantage of audio channel and digital signal processing capacity of a smartphone, we have built a handheld DNA AuNp colorimetry biosensor. Based on the results, the diagnostic process takes only 15 minutes of reaction time while offering a limit of detection around 0.77 nM which is 6 times better than a desktop UV-Vis spectrometer.In second part of the thesis, a Shearing interferometer based Surface Plasmon Resonance (SiSPR) biosensor is proposed. SiSPR allows for phase sensitive detection on conventional Kretschmann configuration. Its monolithic design reduces optical parts, costs and allows portable application. The essence of SiSPR is a reflective layer in addition to plasmonic layer. To extract phase information from SiSPR, a sinusoidal phase modulation is achieved by modulation of the laser injection current. For a 100 ms measurement and a standard optical chip, the sensitivity of the SiSPR is around 2.3x10-6 RIU with a dynamic range of 7.0x10-3 RIU, which is better than amplitude SPR devices. Finally, Tro4 DNA surface modification on the SiSPR chip is demonstrated for future cardiac Troponin I diagnostic
APA, Harvard, Vancouver, ISO, and other styles
8

Castro, Arias Juan Manuel. "Towards a Plasmonic and Electrochemical Biosensor Integrated in a Microfluidic Platform." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS020/document.

Full text
Abstract:
Au cours de ma thèse, j'ai développé un procédé de fabrication spécifique capable de produire un biocapteur qui combine deux techniques de biodétection différentes, la réponse plasmonique basée sur la résonance de plasmon de surface localisée (LSPR) et la réponse électrochimique. Les méthodes et les résultats qui sont présentés dans ce manuscrit ont été définis pour converger vers un dispositif fluidique unique combinant ces deux approches de détection différentes. Afin de trouver la configuration permettant l'excitation des résonances plasmoniques, la géométrie des nanocavités MIM (métal/isolant/métal) en réseau de lignes interdigitées a été optimisée par des simulations électromagnétiques. La fabrication par nanoimpression douce assistée UV (SoftUV-NIL) a été optimisée et, finalement, la caractérisation optique de ces nanocavités a été comparée avec succès aux simulations théoriques. Parallèlement à la réalisation de ce dispositif nanostructuré, des dispositifs électrochimiques fluidiques plus simples qui intègrent des microélectrodes classiques ont également été développés. L'objectif était d'abord de développer une chimie innovante pour le couple « biotine/streptavidine » et de comprendre ensuite comment les paramètres fluidiques peuvent affecter l'efficacité de capture des biomolécules. Ce manuscrit se termine par une discussion sur le rôle des paramètres fluidiques concernant l’efficacité de la biodétection sur la base de la théorie de Squires
During my thesis, I worked on the development of a specific fabrication process able to produce a device that combines two different biodetection techniques, plasmonic response based on Localized Surface Plasmon Resonance (LSPR) and electrochemical response. Methods and results that are presented in this manuscript were defined to converge towards a unique fluidic device combining these two different sensing approaches. This device integrates interdigitated array of MIM nanocavities. In order to find the easier working configuration allowing the excitation of plasmonic resonances, their geometry has been optimized through electromagnetic simulations. The fabrication of these dual devices has been optimized based on Soft-UV NIL and, finally, optical characterization of these nanocavities has been successfully compared with theoretical simulations. In parallel to this challenging goal, simpler fluidic electrochemical devices that integrate conventional microelectrodes have also been developed. The goal was first to develop an innovative chemistry for the couple biotin/streptavidin and secondly to learn how fluidic parameters can affect the capture efficiency of molecules. This manuscript ends with a discussion on the role of the fluidic parameters on the biodetection efficiency based on the theory of Squires
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.

Full text
Abstract:
Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly functional devices with a wide range of applications from sensing to switching. We investigated the excitation of various plasmonic resonance modes (i.e. Fano resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic metamolecules. By designing and fabricating various nanostructures, we successfully predicted, demonstrated and analyzed the excitation of plasmonic resonances, numerically and experimentally. A simple comparison between the sensitivity and lineshape quality of various optically driven resonances reveals that nonradiative toroidal moments are exotic plasmonic modes with strong sensitivity to environmental perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective infection diagnosis using the THz range of the spectrum. We used the exotic behavior of toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and low-molecular-weight biomarkers at the picomolar range of concentration. In summary, by using high-quality and pronounced toroidal moments as sensitive resonances, we have successfully designed, fabricated and characterized novel plasmonic toroidal metamaterials for the detection of infectious biomarkers using different methods. The proposed approach allowed us to compare and analyze the binding properties, sensitivity, repeatability, and limit of detection of the metasensing devices
APA, Harvard, Vancouver, ISO, and other styles
10

Doherty, Brenda [Verfasser], Markus A. [Gutachter] Schmidt, Rachel [Gutachter] Grange, and Isabelle Philippa [Gutachter] Staude. "Plasmonic microstructured optical fibres : an efficient platform towards biosensing / Brenda Doherty ; Gutachter: Markus A. Schmidt, Rachel Grange, Isabelle Philippa Staude." Jena : Friedrich-Schiller-Universität Jena, 2020. http://d-nb.info/121099853X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasmonic biosensing"

1

Dahlin, Andreas B. Plasmonic biosensors: An integrated view of refractometric detection. Amsterdam: IOS Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohseni, Hooman. Biosensing III: 1-3 August 2010, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohseni, Hooman, and M. Razeghi. Biosensing II: 4-6 August 2009, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohseni, Hooman, Massoud H. Agahi, and M. Razeghi. Biosensing and nanomedicine IV: 21-23 August 2011, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Razeghi, Manijeh, and Hooman Mohseni. Biosensing: 12-14 August 2008, San Diego, California, USA. SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), Electra Gizeli, and Christopher R. Lowe (Editor), eds. Biomolecular Sensors. CRC, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasmonic biosensing"

1

Zhu, Xiuhua, and Eng Huat Khoo. "Demonstration of Switching Plasmonic Chirality via Geometric Transformations for Biosensing Applications." In IRC-SET 2018, 135–42. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9828-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Castro Arias, Juan, Andrea Cattoni, Dominique Decanini, Stéphane Collin, and Anne-Marie Haghiri-Gosnet. "Biosensing on a Chip: Study of Plasmonic Nanostructures Integrated in Microfluidic Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics, 491–92. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dell’Olio, Francesco, Donato Conteduca, Maripina De Palo, Nicola Sasanelli, and Caterina Ciminelli. "Design of a Label-Free Multiplexed Biosensing Platform Based on an Ultracompact Plasmonic Resonant Cavity." In Lecture Notes in Electrical Engineering, 263–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Singh, Pranveer. "LSPR Biosensing: Recent Advances and Approaches." In Reviews in Plasmonics, 211–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Piliarik, Marek, Hana Vaisocherová, and Jiří Homola. "Surface Plasmon Resonance Biosensing." In Biosensors and Biodetection, 65–88. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-567-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jing, Chao, and Yi-Tao Long. "Sensing on Single Plasmonics." In Photonic Materials for Sensing, Biosensing and Display Devices, 209–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24990-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liedberg, B., I. Lundström, L. Laricchia Robbio, and R. P. Revoltella. "Surface Plasmon Resonance for Biosensing." In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 339–50. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liz-Marzán, Luis M., Jorge Pérez-Juste, and Isabel Pastoriza-Santos. "Plasmonics of Gold Nanorods. Considerations for Biosensing." In Nanomaterials for Application in Medicine and Biology, 103–11. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6829-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Snopok, Boris. "Biosensing under Surface Plasmon Resonance Conditions." In 21st Century Nanoscience – A Handbook, 19–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351617-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Ruoyun, Chenxi Li, Yang Chen, Feng Liu, and Na Li. "Metal-Enhanced Fluorescence in Biosensing Applications." In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 121–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic biosensing"

1

Wu, F., J. P. Singh, P. A. Thomas, O. Ivasenko, S. De Feyter, V. G. Kravets, P. J. R. Day, and A. N. Grigorenko. "Ultrasensitive plasmonic biosensing." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, Philip A., F. Wu, V. G. Kravets, O. Ivasenko, P. J. Day, and A. N. Grigorenko. "Graphene-based plasmonic biosensing." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, Jing, Vince Siu, Alec Roelke, Vihang Mehta, Steve Rhieu, Tayhas Palmore, and Domenico Pacifici. "Plasmonic interferometry for biosensing." In 2012 Lester Eastman Conference on High Performance Devices (LEC). IEEE, 2012. http://dx.doi.org/10.1109/lec.2012.6410977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duan, Hongwei. "Plasmonic Assemblies for Biosensing." In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asu3b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singamaneni, Srikanth. "Plasmonic biosensors for resource-limited settings (Conference Presentation)." In Biosensing and Nanomedicine X, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2276773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toussaint, Kimani C. "Exploring plasmonic nanoantenna arrays as a platform for biosensing." In Biosensing and Nanomedicine X, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2275793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Po, S., M. P. Carmo, M. Zhao, S. Anguiano, M. L. Guyon, A. Reynoso, E. Cortes, et al. "Hybrid plasmonic-SERS based biosensing." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Csáki, A., K. Schröder, R. Willsch, H. Bartelt, and W. Fritzsche. "Plasmonic nanoparticles for optical biosensing." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, Robert A. Lieberman, and Kyriacos Kalli. SPIE, 2011. http://dx.doi.org/10.1117/12.886798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, Li-Jing, Akash Kannegulla, Ye Liu, and Bo Wu. "Enhanced molecular beacon based DNA detection using plasmonic open-ring nanoarrays." In Biosensing and Nanomedicine XI, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2321234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Haiping Matthew, Lin Pang, and Yeshaiahu Fainman. "Plasmonic-coupled nanostructure for improved surface plasmon resonance biosensing." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmqq6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography