To see the other types of publications on this topic, follow the link: Plasmonic biosensing.

Dissertations / Theses on the topic 'Plasmonic biosensing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Plasmonic biosensing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Tullius, Ryan Michael. "High-throughput biosensing using chiral plasmonic nanostructures." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8657/.

Full text
Abstract:
The object of this thesis, is to demonstrate the potential capabilities of injection moulded chiral plasmonic nanostructures for enhanced sensing in biological systems. The key phenomenon employed throughout this thesis is the generation of electromagnetic fields, that produce a greater chiral asymmetry than that of circularly polarised light, termed ‘superchiral’ fields. These superchiral fields will be demonstrated as being an incisive probe into the structure, conformation, and orientation of proteins immobilised on the nanostructure surface of these injection moulded substrates. Initially, it will be shown how this phenomenon is sensitive to higher order changes in protein structure induced upon ligand binding, using an asymmetry parameter extracted from the optical rotatory dispersion (ORD) spectra. Where these changes would not be routinely detected by conventional chiroptical spectroscopy techniques, such as circular dichroism (CD). Further to this, as these nanostructures display the plasmonic analogue of the interference effect, electromagnetically induced transparency (EIT), a narrow transparency window is created within a broad reflectance spectrum. Where the spectra can be modelled using a simple coupled oscillator model, and the retardation phase effects extracted. This allows two new asymmetry parameters to be introduced for characterising any changes induced by the biological samples, the experimental separation parameter ∆∆S, and the modelled retardation phase asymmetries. These will be used to characterise the orientation of three structurally similar protein fragments, called Affimers, with the modelled phase asymmetries being shown as a particularly incisive probe into the surface immobilised orientation. Furthermore, conformational changes in the cancer relevant protein, HSP90, will be characterised upon the addition of increasing concentrations of the inhibitor molecule 17-AAG. With the orientation of the immobilised HSP90 protein being shown to influence the sensitivity observed for any protein-ligand interactions that occur. Finally, this phenomenon will be used to quantitatively detect elevated protein levels in a complex solution. Elevated levels of IgG will be measured in human blood serum solutions, utilising the isoelectric point of the proteins in solution to enhance the level of IgG adsorbed in the protein corona. This will demonstrate for the first time, the use of superchiral fields generated around injection moulded chiral nanostructures, to detect protein changes in complex real life solutions, such as human blood serum. Representing the first step in creating a high-throughput ultrasensitive system for a range of diagnostic applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Hao, Danni. "Hybridisation of plasmonic and acoustic biosensing devices." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8992/.

Full text
Abstract:
Monolithically integrating multiple sensing technologies shows a great potential to perform quantitative measurements for multiple biomarkers of diseases and also provide more insight towards one single biochemical event. The localised surface plasmon resonance spectroscopy measures the change in the refractive index arising from the molecular adsorption on the metallic nanostructures. Acoustic sensors, such as surface acoustic wave sensor and quartz crystal microbalance, measure the variation of its mechanical oscillation caused by the sum of the deposited molecules and the solvent coupled to the adsorbed molecules. Both techniques are known independently as having applications in in-situ, label-free sensing and analysis of biological binding reactions. Due to their complementary properties, the integration of both can prove to be a valuable tool for studying biomolecules on sensing surface. This thesis reports on the development of a hybrid biosensing device that integrates localised surface plasmonic sensing and acoustic sensing technologies. Gold nanodisk arrays as localised surface plasmon resonance sensing device was studied in visible region using three substrates: borosilicate glass, lithium niobate and quartz. The design, simulation, fabrication and characterisation of the gold nanodisk arrays, and the sensing performance optimisation were investigated using glass substrate. Lithium niobate, as a piezoelectric material has surface acoustic wave compatibility and this study can pave the way towards the development of hybrid sensing devices. The study on lithium niobate demonstrated the feasibility of a localised surface plasmon resonance device utilising a high refractive index, birefringent and piezoelectric substrate. Using quartz as the substrate, the design and fabrication of a hybrid sensor were performed, which integrated localised surface plasmonic resonance into a quartz crystal microbalance for studying biochemical surface binding reactions. The coupling of localised plasmon resonance nanostructures and a quartz crystal microbalance allows optical spectra and quartz crystal microbalance resonant frequency shifts to be recorded simultaneously, and analysed in real time for a given surface adsorption process. This integration has the potential to be miniaturised for application in point-of-care diagnostics.
APA, Harvard, Vancouver, ISO, and other styles
3

He, Jie. "Plasmonic Nanomaterials for Biosensing, Optimizations and Applications." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522336210516443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.

Full text
Abstract:
Cette thèse considère de nouvelles architectures prometteuses des métamatériaux plasmoniques pour biosensing, comprenant: (I) des réseaux périodiques 2D de nanoparticules d'Au, qui peuvent supporter des résonances des réseaux de surface couplées de manière diffractive; (II) Reseaux 3D à base de cristaux plasmoniques du type d'assemblage de bois. Une étude systématique des conditions d'excitation plasmonique, des propriétés et de la sensibilité à l'environnement local dans ces géométries métamatérielles est présentée. On montre que de tels réseaux peuvent combiner une très haute sensibilité spectrale (400 nm / RIU et 2600 nm / RIU, ensemble respectivement) et une sensibilité de phase exceptionnellement élevée (> 105 deg./RIU) et peuvent être utilisés pour améliorer l'état actuel de la technologie de biosensing the-art. Enfin, on propose une méthode de sondage du champ électrique excité par des nanostructures plasmoniques (nanoparticules uniques, dimères). On suppose que cette méthode aidera à concevoir des structures pour SERS (La spectroscopie du type Raman à surface renforcée), qui peut être utilisée comme une chaîne d'information supplémentaire à un biocapteur de transduction optique
This thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing
APA, Harvard, Vancouver, ISO, and other styles
5

D'Imperio, Luke A. "Biosensing-inspired Nanostructures:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108627.

Full text
Abstract:
Thesis advisor: Michael J. Naughton
Nanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
6

López, Muñoz Gerardo Arturo. "Simple and low cost nanostructured plasmonic biosensor for sensitive and multiplexed biodetection." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665242.

Full text
Abstract:
La creciente demanda de plataformas de análisis que sean fiables y, al mismo tiempo, fáciles de usar y compactas, que requieran un bajo consumo de muestras y proporcionen una alta sensibilidad y una respuesta en tiempo real, ha proporcionado una considerable innovación en el diseño de los biosensores. Entre todos ellos, aquellos basados ​​en fenómenos de resonancia de plasmón superficial (SPR) han sido objeto de un gran interés científico en las últimas décadas porque aportan una alta sensibilidad y simplicidad en los esquemas de detección. Con el avance en las técnicas de nanofabricación, el desarrollo de sensores ópticos basados en nanoestructuras plasmónicas ha representado una excelente vía para su integración en dispositivos Lab-on-a-chip con un reducido tamaño, con la capacidad de resolver algunos de los retos actuales relacionados con los tiempos de análisis, el volumen de muestra requerido y la viabilidad de detectar varios analitos a la vez de forma multiplexada. Con el propósito de ofrecer herramientas biosensoras simples y de bajo costo, la presente Tesis Doctoral presenta el desarrollo de biosensores nanoplasmónicos integrados en plataformas Lab-on-a-Chip (LOC) para la biodetección multiplexada de diferentes analitos en tiempo real. El sensor desarrollado se basa en el empleo de soportes comerciales de discos Blu-Ray como un sustrato que contiene nano-rejillas para general el fenómeno de resonancia de plasmón al recubrirlos con diferentes capas metálicas a escala nanométrica. Los nanobiosensores desarrollados constituyen una alternativa muy prometedora que podrían sustituir a las técnicas de análisis convencionales, simplificando los procesos y superando los principales retos actuales relacionados con la sensibilidad, el coste y el tiempo requerido para el diagnóstico clínico.
The increasing demand for analytical platforms that are reliable and, at the same time, easy to use and compact, that require low sample consumption and provide high sensitivity and real-time response, have provided considerable innovation in the design of the biosensors. Among all of them, those based on surface plasmon resonance phenomena (SPR) have been the subject of great scientific interest in recent decades because they provide high sensitivity and simplicity in the detection schemes. With the advance in nanofabrication techniques, the development of optical sensors based on plasmonic nanostructures has represented an excellent way to integrate them into Lab-on-a-chip devices with a small size, with the ability to solve some of the current challenges related to the analysis times, the volume of sample required and the feasibility of detecting several analytes at the same time multiplexed. With the purpose of offering simple and inexpensive biosensing tools, this Doctoral Thesis presents the development of nanoplasmonic biosensors integrated in Lab-on-a-Chip (LOC) platforms for the multiplexed biosensing of different analytes in real time. The developed sensor is based on the use of commercial Blu-Ray discs as a substrate containing nano-slits to generate the plasmon resonance phenomena by coating them with different metallic layers on a nanometric scale. The developed nanobiosensors are a very promising alternative that could replace conventional analysis techniques, simplifying processes and overcoming the main current challenges related to sensitivity, cost and time required for clinical diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Tzu-Heng. "Smart plasmonic Lab-On-a-Chip System for DNA-based biosensing." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0010/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la problématique de l’intégration de capteurs plasmoniques performants et bas coût sur des dispositifs de type smartphone, en vue d’applications de diagnostic biomédical. A cette fin, nous proposons deux biocapteurs « smart ». Premièrement, un système de détection colorimétrique à base de nanoparticules d’or est mis en œuvre pour détecter de l’ADN. Le système intègre une détection synchrone logicielle mise en œuvre au sein du smartphone, où les signaux physiques transitent par la voie audio. Le processus de diagnostic prend moins de 15 minutes pour une limite de détection de 0.77 nM, approximativement 6 fois meilleure que la sensibilité usuelle d’un spectromètre UV-Vis conventionnel, à temps de mesure identique. Dans une seconde partie, un capteur à résonance plasmon de surface en configuration de Kretschmann, se distinguant par une sensibilité à la phase optique, est développé. Le design monolithique et compact repose sur un interféromètre à dédoublement latéral et une modulation de phase. Le contrôle et la lecture du prototype s’effectue également par smartphone. La modulation de phase est de type sinusoïdale et une sensibilité importante est obtenue, autour de 2,3 10-6 RIU avec une dynamique de 7 10-3 RIU, chiffres obtenus pour une puce optique standard et un temps d’intégration de 100 ms. Ce second dispositif est ensuite testé pour la détection de protéines (Troponine I cardiaque), en fonctionnalisant la surface par ADN Tro4
In this thesis, we investigate the possibility and potential for integration of portable optical biosensor for diagnostic purposes. To this end, we propose two “smart” biosensor systems. In the first part of this thesis, a DNA biosensor combining single-wavelength colorimetry and digital Lock-in Amplifier within a smartphone is proposed. Utilizing full advantage of audio channel and digital signal processing capacity of a smartphone, we have built a handheld DNA AuNp colorimetry biosensor. Based on the results, the diagnostic process takes only 15 minutes of reaction time while offering a limit of detection around 0.77 nM which is 6 times better than a desktop UV-Vis spectrometer.In second part of the thesis, a Shearing interferometer based Surface Plasmon Resonance (SiSPR) biosensor is proposed. SiSPR allows for phase sensitive detection on conventional Kretschmann configuration. Its monolithic design reduces optical parts, costs and allows portable application. The essence of SiSPR is a reflective layer in addition to plasmonic layer. To extract phase information from SiSPR, a sinusoidal phase modulation is achieved by modulation of the laser injection current. For a 100 ms measurement and a standard optical chip, the sensitivity of the SiSPR is around 2.3x10-6 RIU with a dynamic range of 7.0x10-3 RIU, which is better than amplitude SPR devices. Finally, Tro4 DNA surface modification on the SiSPR chip is demonstrated for future cardiac Troponin I diagnostic
APA, Harvard, Vancouver, ISO, and other styles
8

Castro, Arias Juan Manuel. "Towards a Plasmonic and Electrochemical Biosensor Integrated in a Microfluidic Platform." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS020/document.

Full text
Abstract:
Au cours de ma thèse, j'ai développé un procédé de fabrication spécifique capable de produire un biocapteur qui combine deux techniques de biodétection différentes, la réponse plasmonique basée sur la résonance de plasmon de surface localisée (LSPR) et la réponse électrochimique. Les méthodes et les résultats qui sont présentés dans ce manuscrit ont été définis pour converger vers un dispositif fluidique unique combinant ces deux approches de détection différentes. Afin de trouver la configuration permettant l'excitation des résonances plasmoniques, la géométrie des nanocavités MIM (métal/isolant/métal) en réseau de lignes interdigitées a été optimisée par des simulations électromagnétiques. La fabrication par nanoimpression douce assistée UV (SoftUV-NIL) a été optimisée et, finalement, la caractérisation optique de ces nanocavités a été comparée avec succès aux simulations théoriques. Parallèlement à la réalisation de ce dispositif nanostructuré, des dispositifs électrochimiques fluidiques plus simples qui intègrent des microélectrodes classiques ont également été développés. L'objectif était d'abord de développer une chimie innovante pour le couple « biotine/streptavidine » et de comprendre ensuite comment les paramètres fluidiques peuvent affecter l'efficacité de capture des biomolécules. Ce manuscrit se termine par une discussion sur le rôle des paramètres fluidiques concernant l’efficacité de la biodétection sur la base de la théorie de Squires
During my thesis, I worked on the development of a specific fabrication process able to produce a device that combines two different biodetection techniques, plasmonic response based on Localized Surface Plasmon Resonance (LSPR) and electrochemical response. Methods and results that are presented in this manuscript were defined to converge towards a unique fluidic device combining these two different sensing approaches. This device integrates interdigitated array of MIM nanocavities. In order to find the easier working configuration allowing the excitation of plasmonic resonances, their geometry has been optimized through electromagnetic simulations. The fabrication of these dual devices has been optimized based on Soft-UV NIL and, finally, optical characterization of these nanocavities has been successfully compared with theoretical simulations. In parallel to this challenging goal, simpler fluidic electrochemical devices that integrate conventional microelectrodes have also been developed. The goal was first to develop an innovative chemistry for the couple biotin/streptavidin and secondly to learn how fluidic parameters can affect the capture efficiency of molecules. This manuscript ends with a discussion on the role of the fluidic parameters on the biodetection efficiency based on the theory of Squires
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.

Full text
Abstract:
Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly functional devices with a wide range of applications from sensing to switching. We investigated the excitation of various plasmonic resonance modes (i.e. Fano resonances, and toroidal moments) using both optical and terahertz (THz) plasmonic metamolecules. By designing and fabricating various nanostructures, we successfully predicted, demonstrated and analyzed the excitation of plasmonic resonances, numerically and experimentally. A simple comparison between the sensitivity and lineshape quality of various optically driven resonances reveals that nonradiative toroidal moments are exotic plasmonic modes with strong sensitivity to environmental perturbations. Employing toroidal plasmonic metasurfaces, we demonstrated ultrafast plasmonic switches and highly sensitive sensors. Focusing on the biomedical applications of toroidal moments, we developed plasmonic metamaterials for fast and cost-effective infection diagnosis using the THz range of the spectrum. We used the exotic behavior of toroidal moments for the identification of Zika-virus (ZIKV) envelope proteins as the infectious nano-agents through two protocols: 1) direct biding of targeted biomarkers to the plasmonic metasurfaces, and 2) attaching gold nanoparticles to the plasmonic metasurfaces and binding the proteins to the particles to enhance the sensitivity. This led to developing ultrasensitive THz plasmonic metasensors for detection of nanoscale and low-molecular-weight biomarkers at the picomolar range of concentration. In summary, by using high-quality and pronounced toroidal moments as sensitive resonances, we have successfully designed, fabricated and characterized novel plasmonic toroidal metamaterials for the detection of infectious biomarkers using different methods. The proposed approach allowed us to compare and analyze the binding properties, sensitivity, repeatability, and limit of detection of the metasensing devices
APA, Harvard, Vancouver, ISO, and other styles
10

Doherty, Brenda [Verfasser], Markus A. [Gutachter] Schmidt, Rachel [Gutachter] Grange, and Isabelle Philippa [Gutachter] Staude. "Plasmonic microstructured optical fibres : an efficient platform towards biosensing / Brenda Doherty ; Gutachter: Markus A. Schmidt, Rachel Grange, Isabelle Philippa Staude." Jena : Friedrich-Schiller-Universität Jena, 2020. http://d-nb.info/121099853X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lei, Dang-Yuan. "Superfocusing, biosensing and modulation in plasmonics." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9046.

Full text
Abstract:
Plasmonics could bridge the gap between photonics and electronics at the nanoscale, by allowing the realization of surface-plasmon-based circuits and plasmonic chips in the future. To build up such devices, elementary components are required, such as a passive plasmonic lens to focus free-space light to nanometre area and an active plasmonic modulator or switch to control an optical response with an external signal (optical, thermal or electrical). This thesis partially focuses on designing novel passive and active plasmonic devices, with a specific emphasis on the understanding of the physical principles lying behind these nanoscale optical phenomena. Three passive plasmonic devices, designed by conformal transformation optics, are numerically studied, including nanocrescents, kissing and overlapping nanowire dimers. Contrary to conventional metal nanoparticles with just a few resonances, these devices with structural singularities are able to harvest light over a broadband spectrum and focus it into well-defined positions, with potential applications in high efficiency solar cells and nanowire-based photodetectors and nanolasers. Moreover, thermo-optical and electrooptical modulation of plasmon resonances are realized in metallic nanostructures integrated with either a temperature-controlled phase transition material (vanadium dioxide, VO2), or ferroelectric thin films. Taking advantage of the high sensitivity of particle plasmon resonances to the change of its surrounding environment, we develop a plasmon resonance nanospectroscopy technique to study the effects of sizes and defects in the metal-insulator phase transition of VO2 at the single-particle level, and even single-domain level. Finally, we propose and examine the use of two-dimensional metallic nanohole arrays as a refractive index sensing platform for future label-free biosensors with good surface sensitivity and high-throughput detection ability. The designed plasmonic devices have great potential implications for constructing nextgeneration optical computers and chip-scale biosensors. The developed plasmon resonance nanospectroscopy has the potential to probe the interfacial or domain boundary scattering in polycrystalline and epitaxial thin films.
APA, Harvard, Vancouver, ISO, and other styles
12

Nenninger, Garet Glenn. "High-resolution surface plasmon resonance biosensing /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Thomas, Philip. "Narrow plasmon resonances in hybrid systems." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/narrow-plasmon-resonances-in-hybrid-systems(a2e3a6e8-1055-4e7e-8b35-a597163aacc8).html.

Full text
Abstract:
Surface plasmons are collective oscillations of free electrons excited at a metal-dielectric interface by incident light. They possess a broad set of interesting properties including a high degree of tunability, the generation of strong field enhancements close to the metal's surface and high sensitivity to their adjacent dielectric environment. It is possible to enhance the sensitivity of plasmonic systems by using narrow plasmon resonances. In this thesis two approaches to narrowing surface plasmon resonances have been studied: diffraction coupling of localised surface plasmon resonances in gold nanoarrays and the use of graphene-protected copper thin films. Applications of these approaches in hybrid systems have been considered for modulation, waveguiding, biosensing and field enhancements. Arrays of gold nanostripes fabricated on a gold sublayer have been used to create extremely narrow plasmon resonances using diffraction coupling of localised plasmon resonances with quality factors up to a value of $Q \sim 300$, among the highest reported in the literature. The nanostructures were designed to give the narrowest resonance at the telecommunication wavelength of 1.5 µm, allowing for this array geometry to be used in hybrid systems for proof-of-concept optoelectronic devices. The gold nanostripe array was used in a hybrid nanomechanical electro-optical modulator along with hexagonal boron nitride (hBN) and graphene. The modulator was fabricated with an air gap between the nanoarray and the hexagonal boron nitride/graphene. Applying a gate voltage across the device moves the hBN towards the nanoarray, resulting in broadband modulation effects from the ultraviolet through to the mid-infrared dependant on the motion of the hBN instead of graphene gating. The deposition of a 400 nm hafnium(IV) oxide film on top of the gold nanoarray created a structure capable of guiding modes at 1.5 µm. The hybrid air-dielectric-stripe waveguide is capable of guiding modes over a distance of 250 µm. Copper thin films have stronger plasmon resonances and higher phase sensitivity than gold thin films. Transferring a graphene sheet on the copper prevents oxidation of the copper. A feasibility study of this hybrid system has shown that phase-sensitive graphene-protected copper biosensing can detect HT-2 mycotoxin with over four orders of magnitude greater sensitivity than commercially-available gold-based surface plasmon resonance biosensing systems. In summary, two methods of attaining narrow plasmon resonances have been demonstrated and their promise in modulation, waveguiding and biosensing have been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
14

Oleksiy, Krupin. "Biosensing Using Long-Range Surface Plasmon-Polariton Waveguides." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34210.

Full text
Abstract:
Specific detection of biological matter is one of the key elements in a wide range of modern fields such as food industry, medicine, environmental and pharmaceutical industries. Generally, current common methods of detection (e.g. ELISA) involve molecular labelling, requirements for well-trained personnel and lengthy experimental procedures such as bacteria culture. All of the above issues result in high costs for biological analysis, and consequently, high costs for medical service, therapeutic drugs and various food products. Biosensors, on the other hand, can provide quick and cheap solutions to these problems. The field of optical biosensors is dominated by the method of surface plasmon resonance, which so far has attracted a lot of attention in the pharmaceutical industry. Investigation of long-range surface plasmon-polariton waveguides as an application for biosensing is still very novel, and most of it exists in the venue of theoretical discussions and modelling. The objective of this thesis is to demonstrate the capability of the novel optical biosensor based on plasmonic waveguides to selectively detect various biological entities in solutions. The experiments were conducted on photolithographically fabricated sensors consisting of straight gold waveguides embedded in low-refractive index fluoropolymer CYTOP and a microfluidic channel. As a proof-of-concept, a demonstration of basic sensing experiments such as detection of change in refractive index of bulk solution and non-specific adsorption of bovine serum albumin is provided. Further investigation of the sensor capabilities involved specific detection of human red blood cells and leukemia markers. Red blood cell detection was based on ABO blood grouping and included the estimation of limit of detection and signal-to-noise ratio for single cell detection. Finally, a clinically relevant problem of B-cell leukemia marker detection was targeted. The sensor demonstrated the ability to detect the relative abundance of similar proteins (immunoglobulin kappa and lambda) in a complex fluid (human serum). In addition, an experimental study on the optimization of the sensor for sensitivity was conducted.
APA, Harvard, Vancouver, ISO, and other styles
15

Gazzaz, Kholoud Khalid. "Biosensing Performance of Surface Plasmon Polariton Bragg Gratings." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31293.

Full text
Abstract:
Surface plasmon biosensors have raised much interest over the past few decades for their potential in biosensing applications. This thesis investigates the plasmon-polariton Bragg grating, which is a novel structure that supports surface plasmon modes. Plasmon-polariton Bragg gratings PPBGs consist of metal stripes embedded in Cytop. A number of designs were investigated to evaluate the biosensing capabilities of the device. The biosensing performance was studied for both bulk and surface sensitivities via wavelength interrogation. The biosensing study was conducted by observing changes in the effective refractive indices of the supported modes by changing the index of the sensing solution for bulk sensitivity, and by changing the thickness of the adlayer that represents the binding of the target analyte to the sensing surface for surface sensitivity. A theoretical assessment of the achievable sensitivity and detection limit for PPBGs is conducted via two approaches, wavelength and output power interrogation.
APA, Harvard, Vancouver, ISO, and other styles
16

Lu, Hongbo. "Surface plasmon resonance biosensors : development and applications /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/8069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lopez, Marcano Ana Graciela. "Surface Modification of Multimaterial Multifunctional Fibers Enabling Biosensing Applications." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/96145.

Full text
Abstract:
During the last decades, the continuing need for faster and smaller sensors has indeed triggered the rapid growth of more sophisticated technologies. This has led to the development of new optical-based sensors, able to detect and measure different phenomena using light. Furthermore, material processing technologies and micro fabrication methods have exponentially advanced, allowing engineers and scientists to develop new and more complex sensors on optical fibers platforms; specifically attractive for life science and biomedical research. All these substantial developments have brought biosensors to a point where multifunctionality is needed, this has led to envision the "Lab-on-Fiber" concept. Which promotes the integration of different sensing components into a single platform, an optical fiber. In this work, an integrated system with non-conventional polymer optical fibers and their further surface modification has been developed. With these different approaches, electrodes, hollow channels and plasmonic nanostructures can be incorporated into a single optical fiber-based sensor, allowing for both electrical and optical sensing with the capabilities of tuning and signal enhancement thanks to the metallic nanostructures. Different fiber substrates can be designed and modified in order to satisfy multiple requirements for a wide variety of applications.
MS
APA, Harvard, Vancouver, ISO, and other styles
18

Acomovic, Srdjan S. "Localized surface plasmon resonance for biosensing lab-on-a-chip applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/113676.

Full text
Abstract:
In recent times, metallic nanoparticle plasmonics coupled with applications towards biosensing has gathered momentum to the point where commercial R&D are investing large resources in developing the so-called localized surface plasmon resonance (LSPR) biosensors. Conceptually, the main motivation for the research presented within this thesis is achievement of fully-operational LSPR biosensor interfaced with the state-of-the-art microfluidics, allowing for very precise control of sample manipulation and stable read-out. LSPR sensors are specifficaly engineered by electron beam lithography nanofabrication technique, where nanoparticle interactions are optimized to exhibit increased sensitivity and higher signal-to-noise ratio. However, the overall performance of LSPR lab-on-a-chip device depends critically on the biorecognition layer preparation in combination with surface passivation. As an introduction, the principles of plasmonic biosensing are identified encompassing both Surface Plasmon Resonance (SPR) and Localized SPR. Being successfully implemented into commercial product, the governing physics of SPR is compared to LSPR in chapter 1, together with advantages and disadvantages of both. Chapter 2 describes methods necessary for LSPR biosensor development, beginning with nano-fabrication methods, the modelling tool (COMSOL Multiphisics), while the basics of micro-fabrication in microfluidics conclude this chapter, where passive and active microfluidics networks are discerned. Particularly attractive optical properties are exhibited by closely-coupled nanoparticles (dimers), with the dielectric gap of below tens of nm, which were theoretically predicted to be very suitable as LSPR biosensing substrates. Chapter 3 is subjected to optical characterization (dependence on the size of the dielectric gap) of nanofabricated dimer arrays. The acquired data demonstrate the advantages of the nanofabrication methods presented in chapter 2 and the technique for fast and reliable determination of nanoparticle characteristic parameters. The initial biosensing-like experiments presented in chapter 4 (no integration with microfluidics) proved for the first time, the theoretical predictions of higher sensitivity, yielding additionally the specific response as function of analyte size and dielectric gap between nanoparticles. The overall response of different dimer arrays (various gaps) provides information about adopted conformation of analyte protein once immobilized. Broad resonances of dimers feature higher noise when employing them for the real-time LSPR biosensing. As a way to circumvent such problem, the feasibility of employing far-field interaction within the nanoparticle array to spectrally narrow resonance is investigated in chapter 5 by optimizing the array periodicity and introducing thin waveguiding layers. Finally, the concluding chapter 6 is dedicated to a full assembly of a Lab-on-a-chip (LOC) LSPR biosensor, starting with interfacing plasmonic substrates with compatible active microfluidic networks, allowing the precise sample delivery and multiplexing. The prototype device consisting of 8 individual sensors is presented with typical modes of operation. The bulk refractive index determination of various samples demonstrates the working principle of such device. Finally, various strategies of biorecognition layer formation are discussed within the on-going research.
APA, Harvard, Vancouver, ISO, and other styles
19

Paynter, Sally. "Biomolecular conformational change : possibilities for the development of a measurement strategy for biosensing." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sarkar, Mitradeep. "Hybrid surface plasmon modes in metallic nanostructures : Theory, numerical analysis and application to bio-sensing." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS251/document.

Full text
Abstract:
Les Plasmons de surface à l’interface d’un métal et d’un diélectrique sont des oscillations collectives des électrons libres. Pour une interface plane, les plasmons se manifestent comme des champs électromagnétiques évanescents, confinée à quelques centaines de nanomètres de la surface métallique et se propagent le long de l'interface. Ce mode plasmonique, appelé plasmon propagatif de surface (PSP), est un mode fondamental. D’autres modes fondamentaux, non-propagatifs, sont appelé plasmons localisés (LSP) et apparaissent dans les nano-particules métalliques. Dans ce travail, nous avons calculé analytiquement la polarisabilité de géométries métalliques complexes et les résultats obtenus permettent d’expliquer les conditions de résonance des différents modes plasmoniques.Parmi les divers modes plasmoniques, plusieurs modes fondamentaux ont été étudiés en détail et décrits par une formulation analytique. Tout d’abord, dans un réseau binaire de lignes métalliques, des plasmons propagatifs confinés par la dimension finie des lignes sont générés. Ce mode plasmonique est appelé plasmons propagatifs confinée (CPP). D’autre part, dans des réseaux périodiques de nano-particules métalliques, déposées sur un film métallique, des modes de Bragg (BM) sont excités par la diffraction des PSP. De plus, dans de telles structures, un couplage harmonique entre les LSP des nano-particules et le PSP du film métallique sous-jacent se traduit par l’apparition d’un mode hybride (HLP). Les caractéristiques de ce mode hybride pour un réseau de nano-cylindres métalliques sur un film métallique sont présentées en détails, en particulier son intérêt en bio-détection.L'effet du milieu diélectrique environnant sur les modes plasmoniques est utilisé dans les détecteurs basés sur la résonance des plasmons de surface (SPR). Ces systèmes mesurent le décalage de la résonance d’un mode plasmonique, qui est fonction de l’indice de réfraction du milieu diélectrique. L’un des buts de ce travail est d'optimiser les détecteurs SPR pour des expériences typiques sondes – cibles où les molécules sonde sont greffées à la surface du capteur. Nous avons montré que par une fonctionnalisation sélective de la surface métallique, une amélioration de la performance de détection peut être obtenue en terme de quantité de molécules cibles détectable. L'amélioration de champ proche joue aussi un rôle majeur dans les techniques de diffusion Raman exaltée de surface (SERS). La présence de certains des modes plasmoniques étudiés dans les substrats nano-structurés permet d’augmenter significativement l'intensité du signal SERS.Pour réaliser ce travail, des méthodes numériques adaptées à la géométrie particulière des structures étudiées ont été développés pour calculer les distributions des champs proches et lointains dans ces structures. Les caractéristiques de ces modes plasmoniques ont été mesurés expérimentalement et leurs performances en détection SPR ont été démontrées en utilisant une configuration basée sur une interrogation angulo-spectrale en configuration de Kretschmann. Des expériences de SERS ont également été réalisées en collaboration avec le CSPBAT à Paris 13. Les différentes structures ont été fabriquées par lithographie électronique à l’IEF à Paris 11. Les résultats expérimentaux concordent avec les résultats numériques et analytiques.Cette description détaillée des modes plasmoniques offre une compréhension plus complète du phénomène de résonance des plasmons de surface dans les nanostructures métalliques et permet d’optimiser les structures selon l’application souhaitée. Le modèle présenté dans ce travail est relativement général et peut être utilisé pour décrire les propriétés électromagnétiques de différentes géométries et configurations expérimentales. De la représentation complète des modes plasmoniques, différents aspects des interactions photons-plasmons peuvent ainsi être étudiés
The surface plasmons on metallic surfaces are excited by the collective oscillations of free electrons. They satisfy certain resonance conditions and their dispersion can be considered as modes of the system. The plasmons at uniform metal-dielectric interfaces manifest as evanescent electromagnetic (EM) fields confined to a few hundreds of nanometers from the metallic surface and propagate along the interface. This mode is called the Propagating surface plasmon (PSP) and is a fundamental plasmonic mode. The other fundamental modes, which are non-propagative, results from collective oscillations of free electrons on curved surfaces of metallic nano-particles. They are called localized surface plasmon (LSP) modes. We have shown that the polarizability of complex geometries with an underlying substrate can be calculated analytically and the results obtained closely approximate the resonance conditions for such geometries.In this work, various other plasmonic modes originating from the two fundamental modes were studied in details and described by their corresponding analytical formulation. In a binary metallic arrays on glass substrate, plasmonic modes are excited by diffraction orders, called the Wood-Rayleigh modes (WRM). In metallic strips the PSP is confined by the finite edges of the strips and propagate along the length of the strips, called the confined propagating plasmons (CPP).For arrays of metallic nano-particles on a metallic film, the Bragg modes (BM) are excited by diffraction of the PSP. In such structures the LSP of the nano-particles and the PSP of the film can undergo a harmonic coupling to give rise to the hybrid lattice plasmon (HLP). The characteristics of the HLP mode for an array of metallic nano-cylinders on a metallic film is presented in details.The effect of the surrounding medium on the plasmonic modes is used in surface plasmon resonance (SPR) detectors which probe the shift in resonance condition of the modes. Such shift is dependent on the intrinsic dispersion of the modes. The aim of this work is to optimize the SPR detectors for affinity biosensing where probe and analyte molecules are bound to the metallic surface. We have shown that by selective functionalization of the metallic biochip surface, an enhancement of the performance of such detection can be achieved in terms of the amount of analyte used. Also the near field enhancement plays a major role in surface enhanced Raman scattering (SERS). We have shown that the presence of certain modes in the system can enhance the recorded SERS intensity.Rigorous numerical methods, adapted to the particular geometry under study, were developed to compute the near and far field characteristics of different structures. The experimental excitation of the modes and their application in SPR detection was demonstrated using a setup based on a spectral scanning modality operating in the Kretschmann configuration. The various structures were fabricated on a biochip using e-beam lithography at IEF, University Paris Sud and the reflectivity dispersion from the biochip was recorded. Such experimental results were shown to be in close agreement with the theoretical results. SERS experiments were carried out in collaboration with CSPBAT at University Paris 13 and the results were seen to fit closely the theoretically predicted trends.Such detailed description of plasmonic modes can offer a complete understanding of the surface plasmon resonance phenomenon in metallic structures and be optimized as per required for various applications. The theories presented in this work can be used to effectively describe the EM properties of different geometries and experimental configurations. From a comprehensive representation of plasmonic modes, different aspects of the photon-plasmon interactions can thus be elucidated
APA, Harvard, Vancouver, ISO, and other styles
21

Hoa, Xuyen Dai. "Guided immobilization of bioreceptors on nano-gratings for enhanced surface plasmon resonance biosensing." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40728.

Full text
Abstract:
In recent years, a significant progress has been made in integrated biosensors for applications in medical diagnosis, environmental assessment and agricultural analysis. While the design of various biosensors, in particular surface plasmon resonance (SPR) biosensors, has been described in the literature, a robust, low-cost, and high sensitive solution has not yet been presented. The advent of nanotechnology presents numerous opportunities to this development with the introduction of novel transduction elements and bioreceptors permitting the development of sensitive and optimized interfaces. This thesis presents the design of an enhanced surface plasmon resonance biosensor interface with nano-structured surfaces and nano-patterned functionalization. Periodic structures (nano-gratings) with the exclusive localization of surface bioreceptors are numerically studied for improved surface plasmon resonance angular responses. Rigorous coupled-wave analyses show a field intensity concentration localized either on the troughs or mesas of the nano-gratings. The immobilization of surface bioreceptors onto areas of increased field strength, and consequently the concentration of the adsorbed analytes of interest, leads to a doubling of angular response compared to a uniformly functionalized interface. A combination of a metal lift-off, electron-beam (e-beam) patterned polymeric resist and self-assembled monolayer is employed to create the designed interfaces. Two molecules are employed to functionalize the surface: one for the coupling of surface bioreceptors and a second for the surface passivation. There is a significant challenge in the characterization of these surfaces at the nanoscale. Atomic force microscopy, in phase contrast imaging mode, and scanning near-field optical microscopy are described for the imaging of the nano-patterned surface chemistry and topography. Experimental measurements of the surface plasmon resonance response of the nano-patterned surface
Depuis plusieurs années, le développement des biosenseurs est principalement axé sur l’intégration de différents composants visant des applications en analyses médicales, environnementales et agricoles. La littérature scientifique présente plusieurs exemples de biosenseurs, dont un grand nombre basé sur la technologie de la résonance des plasmons de surface (SPR). Cependant, peu de systèmes sont à la fois suffisamment robustes, économiques et sensibles pour atteindre les objectifs désirés. En revanche, les progrès dans le domaine des nanotechnologies ont récemment amené de nouvelles possibilités pour la conception de transducteurs, de récepteurs chimiques et biologiques, et de biointerfaces plus performants.Cette thèse présente la conception d’une nouvelle interface nano-structurées au niveau topographique et chimique pour améliorer la sensibilité des biosenseurs SPR. Les nano-réseaux fonctionnalisés avec des récepteurs de surface immobilisés localement sont dans un premier temps analysées de façon théorique en fonction des changements de résonance angulaire. Les calculs numériques démontrent une concentration des champs électromagnétiques des plasmons de surface pouvant se situer soit sur les plateaux, soit dans les creux des nano-réseaux. L’emplacement des biocapteurs et donc la concentration des biomolécules adsorbées pour coïncider avec les concentrations des champs électromagnétiques permettent de doubler la sensibilité des biosenseurs SPR.Une combinaison des techniques de relevé métallique, de lithographie à faisceaux d’électron et de formation de monocouches auto-assemblées a été utilisée pour la conception des interfaces. La caractérisation de la topographie et des chimies de surface présente une autre problématique due aux dimensions nanoscopiques. La microscopie à force atomique en mode de mesure de phase et la microscopie à balayage optique à champs proche ont été utilisées à cette f
APA, Harvard, Vancouver, ISO, and other styles
22

Wathen, Adam D. "An Exploration of Electron-Excited Surface Plasmon Resonance for Use In Biosensor Applications." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5240.

Full text
Abstract:
Electron-excited surface plasmon resonance (eSPR) is investigated for potential use in biosensors. Optical SPR sensors are commercially available at present and these sensors are extremely sensitive, but have the tendency to be relatively large, expensive, and ignore the potentials of microelectronic technology. By employing the use of various microelectronic and nanotechnology principles, the goal is to eventually design a device that exploits the eSPR phenomenon in order to make a sensor which is siginificantly smaller in size, more robust, and cheaper in cost.
APA, Harvard, Vancouver, ISO, and other styles
23

Lisi, Samuele. "Approches innovantes basées sur la Résonance des Plasmons de Surface pour le diagnostic biomoléculaire de la maladie d’Alzheimer." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV003/document.

Full text
Abstract:
La maladie d’Alzheimer est une pathologie neurodégénérative qui amène à une perte progressive de la mémoire et cause des changements comportementaux. Selon plusieurs théories, le développement de cette maladie est associé à l’accumulation du peptide amyloïde beta et de la protéine tau dans des zones précises du cerveau humain. A l’heure actuelle, les approches thérapeutiques testées sont fondées sur l’hypothèse de la cascade amyloïde, mais les résultats n’ont pas été jugés suffisamment efficaces. Pour augmenter les chances de succès des traitements thérapeutiques existants, de meilleures techniques pour un dépistage précoce de l’Alzheimer semblent nécessaires. De ce fait, dans cette thèse, des stratégies innovantes pour l’analyse d’un des biomarqueurs de la maladie d’Alzheimer sont proposées. En particulier le projet porte sur l’analyse de la protéine tau avec des biocapteurs basés sur la Résonance de Plasmons de Surface (SPR). L’augmentation du niveau de ce biomarqueur dans le Liquide Céphalo-Rachidien (LCR) est déjà indicateur d’un processus de neurodégénérescence. De plus, si la mesure de la protéine tau est combinée à celle d’autres biomarqueurs de la pathologie (i.e. : amyloïde beta), les possibilités de dépistage sont fortement augmentées. Les travaux ont portés sur deux aspects : initialement l’interaction antigène-anticorps a été exploitée pour développer un immunocapteur pour la protéine tau. En utilisant cette technologie, nous avons pu caractériser les paramètres analytiques de l’essai direct (avec un seul anticorps) et ceux de l’essai sandwich (avec deux anticorps complémentaires). Dès ces premières approches, nous avons remarqué le besoin d’augmenter la sensibilité de la méthode SPR développée. En effet la limite de détection pour l’essai sandwich était de l’ordre du nM, alors que les niveaux de tau dans le LCR sont de l’ordre du pM. L’utilisation de nanotechnologies, en particulier des nanotubes de carbone, a permis d’atteindre des niveaux proches du pM, avec de bonnes performances en terme de répétabilité de l’essai.Une approche alternative a été conçue dans la deuxième partie du projet. Elle était consacrée à la sélection d’un aptamère pour la protéine tau, afin d’exploiter les avantages de cette classe de récepteurs par rapport aux anticorps. Pour accomplir cet objectif, deux stratégies de sélection ont été mises en place. Premièrement la sélection traditionnelle (SELEX, Systematic Evolution of Ligands by EXponential enrichment) a été appliquée en utilisant l’Electrophorèse Capillaire (EC) comme moyen de séparation. Bien que de nombreuses conditions aient été modifiées, avec le SELEX traditionnel nous n’avons pas observé une évolution significative de l’affinité entre les séquences d’ADN et la protéine tau. Dans la deuxième approche nous avons utilisé la même méthode de séparation pour mener la sélection à travers l’EC-Non-SELEX. En utilisant cette méthode, où les étapes de PCR étaient réduites, une évolution positive a été observée après seulement trois rounds. En effet cinq séquences parmi celles issues du dernier round ont montré une affinité supérieure pour la cible par rapport à la banque. Néanmoins le nombre de séquences analysées à la fois par SPR et par anisotropie de fluorescence reste extrêmement limité par rapport au pool initial. Même si ceci semble être une limite, ce travail est le premier où les aptamères sont appliqués à l’analyse de la protéine tau. Le potentiel de cette classe de récepteurs reste en grande partie inexploré, ce qui laisse entrevoir des améliorations possibles de l’affinité grâce à de meilleurs processus de sélection et au développement de nouveaux outils bioinformatiques.En conclusion la SPR grâce à ses caractéristiques jouera un rôle fondamental dans les prochaines années pour l’analyse des biomarqueurs et pour le screening de nouvelles molécules, qui seront l’objet de futurs essais cliniques pour limiter l’agrégation de la protéine tau
Alzheimer’s disease (AD) is a widespread pathogenic condition causing memory and behavior impairment mostly in elderlies because of the accumulation of amyloid beta peptide and tau protein in human brain. Current therapeutic approaches, based on the amyloid hypothesis, are unable to arrest the progression of the disease, hence early diagnosis is crucial for an effective intervention. Based on the updated criteria for AD probable diagnosis, and considering the limits associated with the actual analytical techniques, my work in this thesis was dedicated to develop novel strategies for AD diagnosis. The whole project focused on the analysis of tau protein by Surface Plasmon Resonance (SPR) biosensing. Such protein is well known for being relevant as neurodegenerative marker. In particular if the measurement of tau is associated with that of the amyloid beta peptide and that of the phosphorylated tau, the clinical specificity of this protein become significant to detect Alzheimer. Two aspects were studied; first of all an immunosensor was developed taking advantage of the well-established antigen-antibody interaction. After characterization of the analytical parameters of the direct assay (with primary antibody), a sandwich assay (using two monoclonal antibodies mapping on different analyte i.e. protein tau epitopes) was developed, allowing very low sensitivity to be obtained in artificial Cerebrospinal Fluid (aCSF). In particular to enhance the analytical signal Carbon Nano Tubes (CNTs) were used. Secondly, the research was focused on the selection of aptamers for tau. To this aim two SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods were compared, both based on Capillary Electrophoresis (CE) for partitioning step of the process. Whether with CE-SELEX (first method), no significant affinity improvement was measured, using the CE-Non-SELEX (second method) affinity of the DNA library for tau protein was consistently improved. After isolation of a limited population of aptamer candidates, five sequences were chosen to be analyzed for their affinity for the target. Fluorescence Anisotropy (FA) measurements and SPR highlight similar behavior for the selected sequences, despite the detection principles of these techniques are significantly different. In conclusion the work highlight versatility of SPR technology used both for quantitative analysis and for new selected aptamers characterization in terms of affinity for the analyte tau. The above mentioned versatility is of great interest in a field such AD, which is rapidly expanding. Lowering the total tau levels has been recently identified as a new goal for therapy. Therefore many drug candidates are likely going to be tested in the near future. SPR technology is already widely used in pharmaceutical industry to investigate novel molecules, since it gives access to a large panel of information. In this panorama aptamer technology may improve the overall quality of the analytical data, allowing better comparison among drug candidates. With respect of these receptors, the thesis opened the door to new studies for DNA aptamers to recognize tau, with considerable advantages in term of the receptor stability. Moreover the whole potential of DNA aptamers selected in this work still remain to be explored. New selection methodologies, combined with fast progression of bioinformatics tools might give rise to affinity improvement, which will lead to sensitivity improvement for tau detection in the next few years
APA, Harvard, Vancouver, ISO, and other styles
24

Bruzas, Ian R. "Biocompatible noble metal nanoparticle substrates for bioanalytical and biophysical analysis of protein and lipids." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1553250462519941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rye, Jan-Michael. "Spatial Modulation Spectroscopy Of Single Nano-Objects In A Liquid Environment For Biosensing Applications." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1053/document.

Full text
Abstract:
Le développement de méthodes rapides, précises et ultra-sensibles pour la détection d'analytes cibles en solution est crucial pour la recherche et les applications potentielles en médecine ou biologie moléculaire. Une approche très prometteuse consiste à développer des nano-capteurs à partir de nano-objets métalliques (NOM) qui présentent une résonance d'extinction dans leur réponse optique. Cette résonance nommée résonance de plasmon de surface localisée (RPSL) peut être ajustée spectralement en jouant sur la nature, la morphologie et l'environnement du NOM. Mesurer des modifications sur la RPSL de nano-objets individuels en présence d'analytes cibles doit permettre de s'affranchir des effets de moyennes dans les mesures d'ensemble. De plus, cela ouvre la voie vers le développement d'échantillons micrométriques pour des tests multicibles sans étiquette (« label-free »).Dans ce travail on a développé un nouveau dispositif expérimental basé sur la technique de spectroscopie à modulation spatiale (SMS) permettant de sonder la réponse optique de NOM individuels en milieu liquide. En parallèle des méthodes de synthèse ont été mises au point pour obtenir des échantillons sondes stables permettant des mesures sur NOM unique, en particulier sur des bipyramides d'or qui présentent de nombreuses qualités intrinsèques faisant d'elles de bonnes candidates pour le « bio-sensing ».Des mesures ont été réalisées dans des environnements d'indice variable et les changements détectés sont en bon accord avec les simulations théoriques. De plus, de nombreuses études ont été réalisées pour comprendre l'influence des nombreux paramètres agissant sur la réponse optique des systèmes étudiés
Advances in the development of rapid, accurate and highly sensitive methods for detecting target analytes in solution will provide crucial tools for research and applications in medicine and molecular biology. One of the currently most promising approaches is the development of nanosensors based on the localized surface plasmon resonance (LSPR) of noble metal nano-objects (MNOs), which is an optical response that depends on their size, shape, composition and local environment. The ability to measure the modification of the reponse of a single MNO in the presence of a target analyte would allow each object to act as an independent probe with increased sensitivity as the signal would be isolated from the averaging effects of ensemble measurements. Furthermore it would allow the development of micrometric, functionalized multiprobe samples for multitarget label-free assays.In this work, a novel experimental setup based on the spatial modulation spectroscopy (SMS) technique has been developed to measure the optical response of individual nano-objects in a liquid environment. In parallel, a new technique has also been developed to elaborate stable probes for measurements with the new setup, with a focus on gold bipyramids due to numerous qualities that make them excellent candidates for biosensing probes. The setup has been used to measure the response of individual objects in environments of different real refractive indices and the detected changes have been shown to be in good agreement with theoretical calculations. Numerical studies have also been performed to investigate the influence on the optical response of numerous factors encountered in the studied systems
APA, Harvard, Vancouver, ISO, and other styles
26

Geitner, Nicholas. "A Study of Gold Nanoparticles for Application in Semiconductor CdS Nanosheet Biosensor Devices." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1311893825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

De, Bonnault Sandie. "Conception, fabrication et caractérisation d'un biocapteur SPR à base de guides d'ondes photoniques sur substrat de verre." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8957.

Full text
Abstract:
Résumé : Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, il reste encore à étudier en profondeur la complexité des interactions entre les différentes molécules présentes lors d’une détection à l’interface solide-liquide. Dans ce cadre, il est de tout intérêt de croiser différentes méthodes de détection afin d’obtenir des informations complémentaires. Le principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection, dont un microcalorimètre. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche dont les matrices de polymères, présentés dans ce travail. Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multi-analyte. Les trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif est ainsi présenté, basé sur deux modélisations différentes, associées à plusieurs outils de calcul analytique et numérique. La première modélisation, basée sur l’approximation des interactions faibles, permet d’obtenir la plupart des informations nécessaires au dimensionnement du dispositif. La seconde modélisation, sans approximation, permet de valider le premier modèle approché et de compléter et affiner le dimensionnement. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Un dispositif est obtenu présentant des sensibilités volumiques entre 1000 nm/RIU et 6000 nm/RIU suivant l’indice de réfraction de l’analyte. L’intégration 3D du guide grâce à son enterrage sélectif dans le verre confère au dispositif une grande compacité, le rendant adapté à la cointégration avec un microcalorimètre en particulier. Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés.
Abstract : In spite of the growing number of available biosensors, many biochemical reactions and biological components have not yet been studied in detail. Among them, some require the combination of several detection techniques in order to retrieve enough information to characterize them fully. An unknown reaction based, for example, on DNA hybridization could be characterized with an electrochemical sensor, a mechanical sensor and an optical sensor, each giving a different type of information. The main objective of the work presented here is to design, fabricate and characterize a flexible integrated optical biosensor based on surface plasmon resonance, intended to be then combined with other detection techniques, and in particular, a microcalorimeter. Surface Plasmon Resonance (SPR) is well known to be a sensitive technique for surface-based biochemical detection. It has the advantage to be an unlabeled method and provides real time information on the kinetics of a reaction. The flexibility of the proposed SPR biosensor comes from the fact that it is designed for a large range of analyte refractive indices, from 1.33 to 1.48. These values are suitable for most biological entities and their ligand layers, and especially for hydrophilic polymer matrices used to trap DNA or protein entities and introduced in this work. As several biochemical studies require the simultaneous comparison of measurements to a reference or to another measurement, the second objective of this project is to study the potential of multi-analyte detection in an integrated SPR device on glass. The first three chapters of the thesis are focused on the main objective. The design based on two different models is presented, at the same time as the related simulation tools. The first model is based on the weak coupling approximation and permits to obtain most of the information for the device’s design. The second model, having no approximation, is used to validate the first model and complete and refine the design. The fabrication process of the glass chip is then introduced, as well as the characterization instruments and protocols. A device is obtained, with a volumetric sensitivity between 1000 nm/RIU and 6000 nm/RIU depending on the analyte refractive index. The 3D integration of the waveguide within the glass substrate makes the device extremely compact and adapted to the integration with the microcalorimeter in particular. The last chapter describes the study of several spectral multiplexing techniques adapted to an integrated SPR system using the glass technology. The goal is to provide at least two simultaneous measurements. Several detection techniques are examined and the related devices are designed, fabricated and characterized.
APA, Harvard, Vancouver, ISO, and other styles
28

Bonnault, Sandie de. "Conception, fabrication et caractérisation d'un biocapteur SPR à base de guides d'ondes photoniques sur substrat de verre." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT040/document.

Full text
Abstract:
Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, de nombreuses réactions n’ont pas encore été correctement identifiées et étudiées. C’est entre autres le cas des interactions intermoléculaires à l’interface liquide/solide trouvées dans les chimies de surface utilisées pour les méthodes de diagnostics médicaux et l’identification de divers processus biologiques. Afin de correctement comprendre les mécanismes en jeux, il est important de pouvoir croiser différentes méthodes de détection pour obtenir des informations complémentaires.MuLe principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche, particulièrement les matrices de polymères. Ces matrices sont de plus en plus utilisées non seulement pour leur capacité à augmenter la densité d’analytes présents à la surface du capteur, mais aussi pour leurs propriétés favorisant l’adsorption spécifique et leur utilisation comme élément actif de reconnaissance biologique.Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multianalyte.MuLes trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif suivant un cahier des charges préétabli est présenté, ainsi que les outils de simulation. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Une comparaison est faite entre les simulations et les résultats expérimentaux, et les performances des outils numériques ainsi que celles du dispositif sont évaluées.Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés
In spite of the growing number of available biosensors, many biochemical reactions and biological components have not yet been studied in detail. Among them, some require the combination of several detection techniques in order to retrieve enough information to characterize them fully. An unknown reaction based, for example, on DNA hybridization could be characterized with an electrochemical sensor, a mechanical sensor and an optical sensor, each giving a different type of information.MuThe main objective of the work presented here is to design, fabricate and characterize a flexible integrated optical biosensor based on surface plasmon resonance, intended to be then combined with other detection techniques. Surface Plasmon Resonance (SPR) is well known to be a sensitive technique for surface-based biochemical detection. It has the advantage to be an unlabeled method and provides real time information on the kinetics of a reaction. The use of an integrated technology enables us to integrate several sensors on the same chip for the same sample, making them compact and low-cost. The flexibility of the proposed SPR biosensor comes from the fact that it is designed for a large range of analyte refractive indices, from 1.33 to 1.48 in the 600 nm-1000 nm wavelength range. These values are suitable for most biological entities and their ligand layers, and especially for hydrophilic polymer matrices used to trap DNA or protein entities. These biochemical matrices are used more and more for their ability to trap high densities of analyte, provide a strong binding and serve as an active detection medium with good anti-fouling properties.MuAs several biochemical studies require the simultaneous comparison of measurements to a reference or to another measurement, the second objective of this project is to study the potential of multianalyte detection in an integrated SPR device on glass.The first three chapters of the thesis are focused on the main objective. The design according to predefined specifications is presented, at the same time as the simulation tools. The fabrication process of the glass chip is introduced, as well as the characterization instruments and protocols. Simulation and experimental results are then compared, and the device performance is assessed.The last chapter describes the study of several spectral multiplexing techniques adapted to an integrated SPR system using the glass technology. The goal is to provide at least two simultaneous measurements. Several detection techniques are examined and the related devices are designed, fabricated and characterized
APA, Harvard, Vancouver, ISO, and other styles
29

Beamer, Diane Krupp. "MINIMALLY INVASIVE OPTICAL SENSING OF GOLD AND SILVER NANOPARTICLE AGGREGATION:A PRELIMINARY INVESTIGATION." Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1376405013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Moura, André de Távora Vasconcelos de. "Development of Plasmonic Nanosandwiches for Biosensing Applications." Master's thesis, 2018. http://hdl.handle.net/10362/58086.

Full text
Abstract:
Structures composed of two gold disks with different diameters and separated by a thin alumina layer were studied for protein biodetection. The small top disk will be used as the biosensing element since it has a shorter decay length (and thus, it has a higher sensitivity) whereas the big bottom one will give a high signal due to its bigger interaction with light. The interaction between both disks will happen through plasmon hybridisation. The samples were prepared using colloidal lithography and material deposition was made through an electron beam assisted evaporation system. A fabrication method was developed to spatially isolate the bottom disk from the sensing medium to fully exploit the small disk’s higher sensitivity. Sample’s characterisation consisted in a morphologic analysis by scanning electronic microscopy (SEM), the optical response was studied experimentally and by finite-domain time-difference (FDTD) simulations and also the electric field distribution was analysed in three types of structures. Structures with the upper disk centred relative to the lower disk and at the edge of it. The oxide’s thickness effect was studied (3 and 6 nm). The low energy peak is mainly given by a plasmonic gap dipole mode, whereas as the high energy peak is given by a contribution from a gap mode and the structure’s overall net dipole. The structure with a smaller separation and the top disk centre regarding the bottom disk was found to have a higher electric field enhancement around it and should be the one to be used as a biosensor.
APA, Harvard, Vancouver, ISO, and other styles
31

Nehl, Colleen Lorraine. "Single nanoparticle spectroscopy: Plasmonic properties and biosensing applications." Thesis, 2008. http://hdl.handle.net/1911/22227.

Full text
Abstract:
Single particle dark field spectroscopy has been combined with high-resolution scanning electron and atomic force microscopy to study the scattering spectra of individual gold nanoparticles. This technique has been applied to single gold/silica nanoshells, and single gold nanostars. For nanoshells, the plasmon resonant peak energies match those calculated by Mie theory based on the nanoshell geometry. The resonance line widths fit Mie theory without the inclusion of a size-dependent electron surface scattering term, which is often included to fit ensemble measurements. Single particle spectroscopy has also been applied to star-shaped gold nanoparticles which are ca. 100 nm in diameter. The gold nanostars were fabricated by a modified seed-mediated, surfactant-directed synthesis which is similar to a method known to produce gold nanorods in high yield. The yield, monodispersity, and initial investigations into the growth mechanism of the nanostar synthesis are described in detail. Through correlated structural characterization by electron microscopy, each scattering component can be assigned to different points on the nanostars. The plasmon resonances were also found to be extremely sensitive to the local dielectric environment, yielding sensitivities as high as 1.41 eV photon energy shift per refractive index unit. These properties suggest that gold nanostars may be highly valuable for certain biosensing and microscopic imaging paradigms. To test their properties as molecular sensors, single nanostar spectra were monitored upon exposure to alkane thiols (mercaptohexadecanoic acid) and proteins (bovine serum albumin) known to bind gold surfaces. The observed shifts are consistent with the effects of these molecular layers on the surface plasmon resonances in continuous gold films. The results suggest that localized surface plasmon resonance sensing with single nanoparticles is analogous to the well developed field surface plasmon resonance sensors, and will push the limits of sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
32

Stewart, Matthew E. "Quantitative multispectral biosensing and imaging using plasmonic crystals /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337931.

Full text
Abstract:
Thesis (Ph. D.)--University of Illinois at Urbana-Champaign, 2008.
Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6761. Adviser: Ralph G. Nuzzo. Includes bibliographical references. Available on microfilm from Pro Quest Information and Learning.
APA, Harvard, Vancouver, ISO, and other styles
33

Roy, Pradip Kumar, and 雷浦褆. "Graphene and gold nanoparticle fractal based electrochemical and plasmonic biosensing." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/68598809814886365843.

Full text
Abstract:
博士
國立陽明大學
生醫光電研究所
103
Nanomaterials for biosensing Nanostructures provide us very high surface to volume ratio, assisting higher interaction with the analytes, enhanced catalytic, and optoelectronic properties, which are extremely important for sensing applications. In this thesis, we demonstrate two class of nanomaterials namely, the graphene nanowalls, and the gold nanoparticle fractals with which we demonstrate the electrochemical sensing of dopamine, uric acid and ascorbic acid, in the former, and surface enhanced Raman scattering (SERS) based detection of melamine in the latter. 1. Edge promoted electrochemical detection of organic bio-molecules Pure carbon based sensors, such as graphene with a hexagonal sp2 structure, should be a better choice for the detection of organic analytes, having aromatic or heterocyclic ring structures, that facilitates a strong Pi-Pi interaction between the two. Pristine epitaxial graphene nanowalls with unique three-dimensional (3D) configuration and highly edge-oriented structures could provide an ideal choice of electrode for electro-catalytic as well as sensing applications. There are two reasons for choosing dopamine (DA), uric acid (UA) and ascorbic acid (AA). First, these molecules express ring or heterocyclic structures with demonstrated Pi-Pi interaction with graphene, and secondly, all three of these have important roles in human metabolism. We report the simultaneous electrochemical detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) on three dimensional (3D) unmodified ‘as-grown’ epitaxial graphene nanowall arrays (EGNWs). The 3D few layer EGNWs, unlike the 2D planar graphene, offers an abundance of vertically oriented nano-graphitic-edges that exhibit fast electron-transfer kinetics and high electroactive surface area to geometrical area (EAA/GA ~ 134%), as evident from the Fe(CN)6 3-/4- redox kinetic study. The hexagonal sp2-C domains, on the basal plane of the EGNWs, facilitate efficient adsorption via spontaneous Pi-Pi interaction with the aromatic rings in DA and UA. Such affinity together with the fast electron kinetics enables simultaneous and unambiguous identification of individual AA, DA and UA from their mixture. The unique edge dominant EGNWs result in an unprecedented low limit of detection (experimental) of 0.033 nM and highest sensitivity of 476.2 µA/µM/cm2, for UA, which are orders of magnitude higher than comparable existing reports. A reaction kinetics based modeling of the edge-oriented 3D EGNW system is proposed to illustrate the superior electro-activity for bio-sensing applications. 2. Detection of melamine by surface-enhanced Raman scattering On the other hand surface enhanced Raman spectroscopy (SERS) is one of the very powerful tools for biosensing application. The target analyte Melamine, at higher concentrations (more than 1 ppm/day for child and 3 ppm/day for adult) may produce complexes and will aggregate in the kidneys and form kidney stones causing urinary system inflammation. The target analyte, melamine, has a special property which can induce agglomeration in unmodified gold nanoparticles, resulting in fractals on solid support in air, enabling target detection by SERS. Therefore, a simple way of detecting melamine in raw milk is demonstrated via surface-enhanced Raman spectroscopy (SERS) using fractals of bare and nonfunctionalized ~ 30 nm gold nanoparticles (AuNP) distributed on a solid support. The technique demonstrates the formation of AuNP fractals, from a random distribution, upon exposure to melamine, that enhance the Raman scattering cross-section to enable detection by SERS. The agglomeration, which is pronounced at higher melamine concentrations, is demonstrated directly through imaging and the red-shift of the plasmon absorption peak of the AuNP fractal away from 530 nm by finite difference time domain (FDTD) calculations. The agglomeration results in a strong plasmon field, shown by FDTD, over the interparticle sites that enhances the Raman scattering cross-section of melamine and ensures unambiguous detection. Limit of detection of 100 ppb could be achieved reproducibly.
APA, Harvard, Vancouver, ISO, and other styles
34

WU, Tzu-Heng, and 吳子珩. "Smart Plasmonic Lab-on-a-Chip System for DNA based Biosensing." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/m6hrck.

Full text
Abstract:
博士
國立臺灣大學
生醫電子與資訊學研究所
105
This thesis is dedicated to integrate consumer electronics devices (CED) with advanced plasmonic sensors into Lab-On-a-Chip system for point-of-care application, with a main focus on design of compact plasmonic sensor. In the first part of the thesis, a short strand DNA biosensor combining single-wavelength colorimetry and digital Lock-in Amplifier within a smartphone is proposed. The principle of the detection is that single strand DNA tends to protect gold nano-particle from salt induced aggregation, as compare to double strand DNA. The salt induced aggregation is then detected from absorbance at 650 nm wavelength. Using 3.5 mm audio channel to integrate laser driver and photo-detector, together with a tailor-made software lock-in amplifier (sLIA), we have achieved a 15 mer DNA detection down to 0.77 nM within 15 minutes on smartphone. Due to sLIA, the measurement noise-to-signal ratio is greatly reduce to -63 dB, which lead to four times smaller limit-of-detection as compared to a desktop UV-Vis spectrometer. Encouraged by the results of the first part, we proceed to explore the possibility of smartphone based interferometric plasmonic sensor. Conventionally, phase sensitive Surface Plasmon Resonance (SPR) biosensor is not viable outside laboratory setting due to cost and performance consideration. Therefore, to pursue portable SPR application with high sensitivity, in the second part of the thesis, a Shearing Interferometer based Surface Plasmon Resonance (SiSPR) biosensor, which has not been reported elsewhere, is proposed. The SiSPR chip uses shearing interferometer without the need of extra optical parts. This design together with differential interferometry greatly reduce noises. To avoid the use of costly phase modulator, a current induced sinusoidal wavelength modulation is applied with a novel phase extraction method. We demonstrate that the detection limit of the SiSPR, at 47 nm of plasmonic layer thickness is down to 1.26x10-6 RIU, about 20 times better than amplitude sensing. From our data, we estimate that SiSPR can be more sensitive if film thickness is near 49 nm. We have also demonstrated preliminary results on protein sensing using aptameric probe. The further integration of SiSPR with CED and future perspectives are incorporated in the end of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Jhih-Wei, and 張志瑋. "Applications of Label-Free Biosensing and Development of Low-Cost Plasmonic Sensing Platforms." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/03793057109094689392.

Full text
Abstract:
碩士
國立陽明大學
生醫光電研究所
102
Nanostructure-based surface plasmon resonance sensors are capable of sensitive and label-free detection for chemical and biological sensing applications. However, low-cost mass-production techniques and development of portable low-cost sensing platforms are the main issues which should be addressed. In this study, double-layer gold nanoslit arrays were fabricated on a cyclic olefin polymer (COP) film using hot embossing nanoimprinting lithography and metal sputtering techniques and then utilized to detect methicillin-resistant staphylococcus aureus (MRSA). In the experiment, penicillin-Binding Protein 2α present in MRSA was detected using the plasmonic biochips and the minimum detectable concentration of penicillin-Binding Protein 2α was 100 ng/mL. In order to improve the sensitivity of the biochips, double-layer gold nanoslit array with a period of 1000 nm was fabricated and tested. The result shows that the wavelength sensitivity of the chip was 926 nm/RIU and the figure of merit value was up to 272. In addition, we combined an inexpensive transmission-type scanner, a 632.8 nm laser line filter and plasmonic biochips to establish a portable low-cost sensing platform capable of high-throughput detection. An antigen-antibody interaction experiment in aqueous environment was conducted using the platform to verify the detection sensitivity in surface binding event. The proposed sensing platform has the advantages of label-free high-throughput detection, simple operation method, quick detection, low price and portable. It can benefit various sensing applications and is suitable for point-of-care detection.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Yu-Kun, and 陳育坤. "Surface Plasmon for MicroRNA Biosensing Applications." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/82234549147186329655.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
103
Biosensors should identify the biomolecules and then immobilize them onto the surface for sensing. The biological interactions and matching demonstrate the specification and high sensitivity. Then the reaction in optical, electrical, magnetic, ... etc., will be conducted in qualitative or quantitative composition analysis. Surface plasmon is a physical phenomenon that happens in the interface between metal and dielectric materials. This interaction is real time, high sensitivity and label-free detection and suitable for surface plasmon biosensing on small amount of biological and immunochemistry materials. There are three light coupling in the surface plasma resonance, grating, waveguide and prism. Due to the limit process for the grating coupler, the biosensor will only explore the coupling from the waveguide interference and prism wavelength modulation of surface plasmon resonance. In this thesis the biosensor is implemented by the waveguide coupled surface plasmon. The functions of FDTD (Finite Difference Time Domain) and FDM (Finite Difference Method), built in the commercial software of OmniSim and FIMMWAVE, were taken to calculate the surface plasmon effect using the metal thickness, waveguide length and width of the plasma waveguides. The optimization showed that the waveguide width of 450 nm, the Al-Si-Cu thickness of 60 nm, and the waveguide length of 10 m from 1520 nm to 1570 nm of the optical fiber communication wavelength. The prism coupling was used to produce biological sensing through the surface plasmon. The SPR wavelength modulation was implemented by the fiber-optic communication wavelengths due to its deep penetration depth and high sensitivity compared with the visible light. In order to facilitate the characterization of the synthetic miR-21 and breast cancer plasma, the SPR sensitivity was 1.04 nm/(g/mL) and 3.58 nm/(g/mL), respectively, for the large base pair MTB DNA (approximately several hundred nucleotides) and small base pair miR-21 DNA (approximately 21 to 25 nucleotides) after probing through 1550-nm tunable laser source. The interaction with the telecommunication wavelength on the small base pair miR-21 DNA should be smaller than the large base pair MTB DNA. The sensitivity of miR-21 DNA was better than MTB DNA and could be explained by the longer propagation length in surface plasmon of miR-21 DNA.
APA, Harvard, Vancouver, ISO, and other styles
37

Wei, Chih-an, and 魏志安. "Surface Plasmon Biosensing for Immobilized GOD." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/42048237792131619580.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
102
In recent years, the surface plasmon resonance (SPR) technology is demonstrated with high sensitivity and widely utilized in biosensing, drug development/screening, food testing, environmental pollution monitoring and disease detection. One person passed away per hour from diabetes in the world, which is a serious disease for human beings. Blood glucose concentration measuring is the way to tell if one have pre-diabetes or diabetes. A normal glucose level is 110 milligrams per deciliter (mg/dL) or below, a diabetic level is 126 mg/dL or higher, and a pre-diabetes level is between 110 mg/dL and 125 mg/dL. In this thesis, the glucose oxidase (GOD) was utilized for immobilization for higher sensitive glucose sensing. In the SPR characterization technique, two modulation approached are commonly used, angle and wavelength. Due to the angular resolution and repeatability from the step motor, the wavelength modulation was utilized for testing. The telecommunication wavelength range was then chosen because of its high sensitivity compared with visible light. First of all, the commercial software, matlab, was used to simulate SPR phenomena with various metals and their thickness. In this thesis, the stable metal, gold, was simulated to illustrate the reflection coefficient of 0.0196 and resonance angle of 61.9 degree with 30-nm thickness at 1550-nm operating wavelength. Glucose oxidase (GOD) on the prism gold metal surface was immobilized by chemical reaction, MUA, EDC/NHS, and PBS. The sensitivity and resolution from various glucose concentrations of 10, 100, and 200 mg/dL were showing 0.0423 nm/(mg/dL) and 0.023 mg/dL, respectively. Compared with the SPR glucose fiber sensor with the resolution of 0.099 mg/dL, our SPR was demonstrating at least 4 times better. The sensing limit from our SPR sensor with telecommunication wavelength was showing 0.01 mg/dL with 1000 times better than Roche ACCU-CHEK blood glucose meter.
APA, Harvard, Vancouver, ISO, and other styles
38

Syu, Yu-Sian, and 許育憲. "Surface Plasmon Resonance Spatial Correlation for Biosensing." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9f2hjd.

Full text
Abstract:
碩士
國立臺灣科技大學
光電工程研究所
107
Early diagnostics of the disease can discover the body malfunctions and apply the appropriate treatment in an early stage. MicroRNA (miRNA) is a small non-coding RNA which functions in post-translational regulation of gene expression. The detection of miRNA expression level could be useful for cancer diagnosis in early stage. For disease diagnosis, the serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases. However, the time cost of PCR (Polymerase chain Reaction)-based miRNA detection method still needs improved. The surface plasma resonance (SPR) sensor could detect the small dielectric constant variation at the interface between the solid and liquid or the solid and gas. The SPR spatial imaging system proposed in this project can observe the phase change from reflected light for miRNA-21 detection in real time and biomarkers free with high sensitivity. The typical SPR image sensor is using the multi-step algorithm to resolve the sensitivity and resolution through interference fringe images. A novel SPR image sensing system is proposed to utilize the prism for spatial correlated image analyses. The main functions are taking the windowed Fourier transform to analyze relative images interference displacements from various analytes besides the fringe visibility optimization through optical spectrum analyzer. In this thesis, the interference phase and image sensitivity for microRNA-21 DNA are characterized as -0.067 (rad/μM) and-7.5"×" 〖"10" 〗^"-2" (μm/μM) respectively.
APA, Harvard, Vancouver, ISO, and other styles
39

Jian, Zhi-Hao, and 簡志浩. "Biosensing Study of Waveguide-Coupled Surface Plasmon Resonance." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/55918081968839033846.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
103
Surface plasmon resonance (SPR) is a physical phenomenon that happens between the interface of metal and non-conductive materials and can be induced by external electrons or photons injection. When the light wave is propagating from the high to low refractive index in the material and the incident angle is larger than the total internal reflection, the free electrons in the metal will be excited and resonate in the longitudinal direction at the specific angle. The attenuated total reflection is typically utilized to generate the non-radiative surface plasmon wave. We can say that the incident light angle is large than the total internal reflection, the evanescent wave in the transmitted medium will penetrate into half of the wavelength. When the propagation constants between the evanescent and surface plasmon waves are the same, the surface plasmon resonance is happening and the reflective light will rapidly drop to the minimum. By applying this feature onto the biosensing applications, the real-time, high sensitivity and label-free detection are possessed. Therefore, it has been extensively utilized in bio-detection and immunochemistry for its efficiency in analyzing the small refraction index variation of detected materials. Typically there are two modulations, angle and wavelength, for surface plasma resonance, which were sensing the analytes using the smallest reflection at the resonance angle and wavelength. In this thesis, the 1550-nm wavelength for fiber optic communications, used as the light source, was injected on the prism interface to generate the surface plasmon between the metal and non-metal materials. The SPR wavelength modulation was implemented by the fiber-optic communication wavelengths due to its deep penetration depth and high sensitivity compared with the visible light. In this thesis the biosensor will only explore the prism coupling with the wavelength modulation for characterize the surface plasmon resonance. In order to sense the small amount of analytes, such as short base pair synthetic miR-21 DNA, the waveguide coupled surface plasmon resonance demonstrated more sensitivity than the traditional one because of its additional guided wave and metal layers to enhance the evanescent wave between the layers of metal and guide wave for narrow reflective spectrum. After the simulation from the commercial software Matlab, the full width at half maximum from the waveguide coupled surface plasmon resonance is 2.11 times than the tradition one. The system resolution is also improved up to 2.13 times for better sensitivity in biosensing. Our experimental data showed that the thickness of metal directly on the prism would significantly affect the linewidth. On the other hand, the wavelength modulation sensitivity on the waveguide coupled surface plasmon resonance is less sensitive to injected angle variation compared with the traditional one.
APA, Harvard, Vancouver, ISO, and other styles
40

Kaur, Kanwarjeet. "Optical Biosensing Using Localized Surface Plasmon Resonance of Gold Nanoparticles." Thesis, 2011. http://hdl.handle.net/10012/5983.

Full text
Abstract:
This thesis describes some experiments developed to probe the fundamental aspects of the interfacial behaviour of proteins. The contents of this thesis can be broadly divided into two parts. In the first part, we studied how the size of the nanoparticles and other variables such as pH and bulk protein concentration affect the structure of the adsorbed protein layers. We also probed how these factors can influence the binding activity of adsorbed proteins. Study on the adsorption of IgG, Protein A and streptavidin on gold nanoparticles reveals that not all proteins are similarly affected by the size of the adsorbing surface. We found that though the optical properties of all the proteins vary with the size of the nanoparticle, their functionalities are not similarly affected by nanoparticle curvature. Protein A and streptavidin retain their binding capacity to IgG and biotin, respectively, irrespective of the size of the gold nanoparticle that they are attached to. On the other hand, a reduction/ loss in binding of adsorbed IgG to Protein A molecules is observed. The reduction in biological activity further depends on the radius of curvature of the adsorbing surface. The second part of the thesis describes how nanoparticles can used as a probe to study the complex interfacial behaviour of proteins. We have utilized the extreme sensitivity of localized surface plasmon resonance (LSPR) of gold nanoparticles to local refractive index to determine the optical properties of BSA adsorbed on various polymer surfaces. The dielectric properties of the adsorbed protein depend on the nature of the substrate. Further, we have developed a model to determine the refractive index profile of adsorbed protein as a function of the distance from the substrate.
APA, Harvard, Vancouver, ISO, and other styles
41

Sher, Chih-Lun, and 佘智倫. "Antimicrobial Susceptibility Test Using Near-Infrared Surface Plasmon Resonance Biosensing." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/12067349069170195693.

Full text
Abstract:
碩士
國立陽明大學
生醫光電研究所
100
It is necessary to use antibiotics to treat patients in clinical therapy. However, under the excessive use of antibiotics, more bacteria become drug resistant. Therefore, it is important to distinguish if the microorganism is susceptible or resistant to antibiotics. The two most common methods of antimicrobial susceptibility test in clinical laboratory are dilution tests, antimicrobial gradient method and disk diffusion test. All methods are time-consuming. All of them take 3 to 4 days or more to identify. On the basis of this defect, we report a method utilizing Surface Plasmon Resonance (SPR) which is high sensitivity and real-time examination to differentiate between resistant and susceptible strains. The main theory and technique we used in this thesis is based on surface plasmon resonance biosensing. We use self-assembled monolayers to combine antibody which provides specific binding to E. coli on gold films in antimicrobial susceptibility test. For achieving better SPR resolution, we also developed a near-infrared SPR biosensor using dual-off-axis parabolic mirror scanning system that replaced red light SPR biosensor using two-arms scanning system. This technique, including the surface plasmon resonance biosensor system and experimental protocol, can be used to examine other clinical bacteria more efficiently.
APA, Harvard, Vancouver, ISO, and other styles
42

"Surface plasmon enhanced effects in photonic biosensors." Thesis, 2008. http://library.cuhk.edu.hk/record=b6074665.

Full text
Abstract:
Detection of oligonucleotide target has been performed with a sandwich assay scheme. We compare the detection performance of strategies using probe oligonucleotide with or without gold nanoparticles (Au-NPs, 20nm) capped on 3'. Our experimental results reveal that while the DNA detection implemented with NIS can provide high sensitivity, both dynamic range and detection limit can be amplified with the aid of Au-NPs on 3' of the probes. The current detection limits of NIS with and without Au-NPs are 0.4 femtomole and 1 nanomole respectively. (Abstract shortened by UMI.)
Finally, this work presents a systematic study of the surface-enhanced Raman-scattering (SERS) properties of nanoparticle island substrates (NIS) and their application for oligonucleotide target detection. To effectively implement SERS on NIS and identify an optimal condition for DNA detection, the relationship between extinction maximum (lambdamax) and SERS enhancement factor (EF) will be explored in detail. This work demonstrates high S/N ratio SERS spectra can be achieved with NIS that has lambdamax located within a spectral window (∼60nm) defined by the excitation wavelength (514nm) and the scattered Raman wavelength. The highest EF measured is about 4x10 8 with a thickness of Ag being 50 A.
In addition, a surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) has been explored. We showed that the polarization parameters of a laser beam, tan psi, cos Delta and ellipse orientation angle &phis;, can be directly measured by detecting the modulation signals at the 1st and 2nd harmonics of the modulation frequency under a certain birefringence geometry. This leads to an accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling biosensing applications. Our experimental results confirm that the new scheme offers a decent detection limit of 2x10-7 refractive index unit (RIU) or 5ng/ml of biomolecule solute concentration without any compromise in dynamic range.
We have demonstrated that the sensitivity limit of intensity-based SPR biosensors can be enhanced when we combine the contributions from phase with that of amplitude instead of just detecting the amplitude or phase variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems.
We have developed a novel design of multi-pass surface plasmon resonance (SPR) biosensor with differential phase interrogation based on multi-pass interferometry. This new configuration provides an intrinsic phase amplification effect of over two-fold by placing the SPR sensor head in a signal arm of the interferometer so that the interrogating optical beam will traverse the sensor surface infinite number of times. Experimental interferometers based on the Michelson and Fabry-Perot configurations have been employed to experimentally verify this amplification effect through the comparison with the Mach-Zehnder configuration. Results obtained from the salt-water mixtures, antibody-antigen, and protein-DNA binding reaction have confirmed the expected phase measurement enhancement.
Yuan, Wu.
Adviser: H. P. Ho.
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3582.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 115-132).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
APA, Harvard, Vancouver, ISO, and other styles
43

Yaseen, Mohammad Tariq, and 彥森. "Nano Photonic and Plasmonic structures: Design, Fabrication, and Characterization toward Biosensg." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/xk7kjg.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hsu, Cheng-Yu, and 徐承宇. "The Nanoslit Surface Plasmon in Aqueous Phase and It’s Biosensing Application." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/48846z.

Full text
Abstract:
碩士
國立陽明大學
生醫光電工程研究所
97
Abstract Surface Plasmon Resonance has got lots of attention in last few years. It provides label-free and high surface sensitivity. However, decreasing the cost, high-throughput detection, and improving sensitivity are the main trends for everyone wants to achieve. In this the thesis, I fabricate the period nanostructure on silicon subtract by E-beam lithography and RIE etching and then using the nanoinprint technology to replcate the nanostructure to glass subtract. In this way, it can not only decrease the time for fabricating the nanostructure sample but also the cost. The sensitivity of nanostructure base chip is done by glycerol solution in diffirent concentration. The result shows the sensitivity has no significant different performance between wavelength detection (3.1×10-5) and intensity detection (8.5×10-5) ,however, the intensity detection has the potential for high-throughput sensing development. In the protein array sensing experiment, BSA and anti-BSA as the demonstration of molecular interaction dynamic detection, the BSA concentration is 7 nM and anti-BSA is 2.5 nM. The wavelength in 846 nm of LED as the light source in this experiment setup. The CCD records the image and analysising the image to get the intensity changing during the experiment. In the end, I perform the three slit array detection result. The anti-BSA detecting limitation is 35pM in assuming the light stability is 0.2%.
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Yu-Chung, and 黃昱中. "Development of Reflection-Based Tubular Waveguide Particle Plasmon Resonance Biosensing Platform." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/29jp5z.

Full text
Abstract:
碩士
國立中正大學
化學暨生物化學研究所
102
The objective of this work is to develop a novel chemical and biochemical sensing platform, namely, a reflection-based tubular waveguide particle plasmon resonance (RTW-PPR) biosensing platform, which is based on the tubular waveguide particle plasmon resonance (TW-PPR) biosensor. The working principle of this invention is given by the following processes: 1. a light emitting diode (LED) emits light with an excitation wavelength corresponds to the particle plasmon resonance (PPR) of gold nanoparticle; 2. the light is transmitted by optical fibers and coupled into a glass tube; 3. the light traveled in the tube wall by multiple total internal reflections (TIRs); 4.The evanescent wave excites the PPR of gold nanoparticles on the surface of the tube wall. When the refractive index of the medium surrounding the nanoparticles changes (eg. adsorption of biomolecules on nanoparticle surface), the peak wavelength and extinction cross-section of the particle plasmon resonance (PPR) band changes. To construct the sensor tube, the bottom of the tube will be modified with a reflective layer. When the incident light reaches the reflective layer, the light will travel to opposite direction. The PPR effect increases through an increase of optical path length by reflection, when the sensor length is the same, thus effectively enhances the sensitivity of the sensing system. The light is finally detected by a photodiode (PD) through fiber optics. This system does not require labeling (eg. modified fluorescent molecular). Hence, the RTW-PPR biosensing platform can achieve label-free and real-time detection with high sensitivity. In this work, we optimized the optical and sensing elements of the system. System stability, reproducibility, sensor sensitivity and sensor resolution (SR) will be tested by a series of refractive index (RI) experiments and biochemical detection experiments. In the RI experiment, using different weight percents of sucrose in pure water, a refractive index resolution of 2.21x10-5 RIU and a sensor sensitivity of -6.17 RIU-1 have been achieved by the sensor. In the biochemical detection experiments, OVA were used to functionalize the gold nanoparticle in order to detect anti-OVA antibody. Results show that the calibration curve is linear (R2>0.99) and the limit of detection (LOD) is about 5.71x10-7 g/mL (3.81x10-9 M). In summary, we have developed a novel RTW-PPR biosensing platform successfully, and its feasibility in biosensing has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
46

SANG, JIA-YU, and 宋家裕. "Development of Reflection-Based Optical Waveguide Particle Plasmon Resonance Biosensing Platforms." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/68801620211485505316.

Full text
Abstract:
碩士
國立中正大學
化學暨生物化學研究所
104
The objectives of this work are to develop two novel multiplex chemical and biochemical sensing platforms, namly a reflection-based tubular waveguide particle plasmon resonance (RTW-PPR) biosensing platform, and a reflection-based fiber optic particle plasmon resonance (RFO-PPR) biosensing platform. The principle of inventions are based on measuring the light intensity after consecutive total internal reflections (TIRs) along a noble metal nanoparticles-modified waveguide (tube or optical fiber), wherein the evanescent wave excites the particle plasmon resonance of the nanoparticles at the reflection interface. When a noble metal nanoparticle is influenced by the change of the refractive index on its surrounding environment, its particle plasmon resonance condition will change. This phenomenon can be used as the basis of chemical and biological sensing. In the first part :we used Poly(methyl methacrylate) PMMA as waveguide material to form a tubular waveguide and utilized 3-mercaptopropylsilatrane (MPS) to reduce the modification time. A variety of experiments were carried out to validate the sensitivity and refractive index resolution of the sensing platform. Using different weight percent of sucrose in pure water as samples, a refractive index resolution of 4.34×10-5 RIU and a sensor sensitivity of 5.39 RIU-1 have been achieved by the platform. In the biochemical detection experiments, OVA was used to functionalize the gold nanoparticle in order to detect anti-OVA. Results show that the calibration curve is linear (R2>0.99) and the limit of detection (LOD) is about 4.64×10-6 g/mL (3.09×10-8 M). In the second part:the RFO-PPR platform has achieved the absorbance sensitivity of 4.83 AU/RIU-1 and the sensor resolution of 4.6×10-5 RIU by using gold nanospheres as the sensing element. By the similar configuration, but using gold nanorods as the sensing element, the absorbance sensitivity of 3.81 AU/RIU-1 and the sensor resolution of 3.7×10-5 RIU have been achieved. In the biochemical detection experiments, DNP was used to functionalize the gold nanorods in order to detect anti-DNP antibody. Results show that the calibration curve is linear (correlation coefficient >0.99) and the detection limit is less than 3.88×10-10 M.
APA, Harvard, Vancouver, ISO, and other styles
47

Tsai, Hong-Sin, and 蔡宏欣. "Biosensing Sensitivity Study in Surface Plasmon Resonance and Fabry-Perot Interference." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/22895586805610428204.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
104
Biosensors need to own the capability to recognize the biomolecules immobilized to the surface as the sensing element. Through biological interactions and matching molecules the specificity and high sensitivity for analyte could be demonstrated in optical, electrical, and magnetic properties with qualitative or quantitative composition analysis. Surface plasmon resonance (SPR), occurring in the interface between the metal film and the dielectric material, demonstrates the characteristics of label-free, immediate inspection, specificity and high sensitivity. There are three coupling approaches in SPR : grating, optical waveguide, and prism coupling. In this thesis, a prism coupling with the telecommunication wavelength modulation, deeper penetration depth and higher sensitivity than traditional optical source, is utilized to demonstrate SPR biosensing. The analytes will include the large molecules MTB DNA (about hundreds of nucleotides) and small molecule miRNA-21 (about 21 to 25 nucleotides) through the SPR wavelength modulation and Fabry-Perot interferometer (FPI) for sensitivity comparison. The Fourier filtering function of Origin software and matlab are also used for data analysis, respectively, for SPR and FPI. The experimental data show that the immobilized probe gets higher sensitivity. A comparison and analyses between SPR and FPI will be further studied. The longer wavelength owns the good sensitivity on the large molecule. Our data successfully demonstrate the significant signal from small molecule biosensing under telecommunication wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Cheng-Lung, and 陳正隆. "The Study of Surface Plasmon Resonance in Gold NanoParticles and DNA Biosensing." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/17145509928625692147.

Full text
Abstract:
碩士
國立暨南國際大學
生物醫學科技研究所
97
Recently, the nano-metal structures that can produce some interested near-optical properties have been widely and deeply studied. In our work, we used two methods , nanosphere lithography and chemical reduction, to fabricate nano-metal structure ans study their localize surface plasmon resonance (LSPR) by characterizing the absorption spectra. Since the LSPR is sensitive to the refractive index modulation, we further proved our fabricated nano-metal structure could be used as a DNA sensor. Nanosphere lithography has to use a self-assembly technique to generate a mono-layered and nano-sized polystyrene (PS) thin film which serves as a mask for fabricating the nano-metal structure. However, due to the limitation of etching equipment we were unable to successfully fabricate the nano-metal structure. After a long effort, we changed the fabrication procedure by using a chemical reducation method and a particle size of about 10 ~ 15nm nanometer gold particle solution was successfully fabricated. In the experiment, we compared the optical properties of LSPR in the nano-gold solution which could be fabricated either in the water phase or the organic phase. The gold nanoparticles were self-assembled in the glass substrate which was expected to make a microfluidic channel device for DNA sensing. The resurts indicated a successful DNA sensor which has a detectable wavelength shift of DNA signal from 100 nM target DNA.
APA, Harvard, Vancouver, ISO, and other styles
49

Jian, Meng-Syuan, and 簡孟萱. "Novel Spatial Phase Biosensing on Surface Plasmon Resonance through Windowed Fourier Transform." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/dm3uxa.

Full text
Abstract:
碩士
國立臺灣科技大學
電子工程系
106
Surface plasmon resonance (SPR) is a physical phenomenon that occurs between the interface of metal and dielectric materials. It has been extensively utilized in bio-detection and immunochemistry for its great efficiency of analyzing the refraction index of detected materials. The typical SPR image sensor is utilizing the five-step algorithm to resolve the sensitivity and resolution through interference fringe images caused various phases. However, in the process of image capture, the system is susceptible to environmental quality and the phase retrieval is more complex. In this thesis, a novel approach to improve SPR spatial phase biosensing was demonstrated. Because of the stability and resolvability of low coherence light source, we utilized the low coherence light source and laser source for reference and sensing, respectively through the cascaded optical fiber low coherence interferometry (OFLC), which the conventional SPR sensor could not monitor the sensing result in real-time. Unlike the complicated Hariharan five-frame algorithm in the conventional SPR, a windowed Fourier transform was utilized to analyze the phase information from the sensing light field to detect different interference fringes. Moreover, the telecommunication wavelength possessing the remote sensing feature will be taken in OFLCI for better sensitivity than visible light source. We successfully demonstrated the Capture DNA phase sensitivity before and after immobilization. The Capture DNA could bond with the gold film surface through Thiol-Modified Oligonucleotide Reduction and then capture Target DNA. Moreover, the excellent specificity between Capture DNA and Target DNA is also experimentally illustrated. Finally, the sensitivity and resolution are shown 4.62×〖10〗^6 (rad /RIU) and 1.75×〖10〗^(-8) (RIU), respectively.
APA, Harvard, Vancouver, ISO, and other styles
50

"Surface plasmon resonance photonic biosensors based on phase-sensitive measurement techniques." 2005. http://library.cuhk.edu.hk/record=b5892392.

Full text
Abstract:
Law Wing Cheung.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references.
Abstracts in English and Chinese.
Abstract --- p.I
Acknowledgements --- p.V
List of Publications related to this project --- p.VI
Contents --- p.VII
Chapter Chapter 1 --- Introduction --- p.1-1
Chapter Chapter 2 --- Literature Review
Chapter 2.1 --- Surface Plasmon Waves --- p.2-2
Chapter 2.2 --- Excitation of Surface Plasmon --- p.2-4
Chapter 2.2.1 --- Surface Plasmon Coupling Schemes --- p.2-6
Chapter 2.3 --- Detection Techniques used in SPR sensors --- p.2-13
Chapter 2.3.1 --- Angular Interrogation --- p.2-14
Chapter 2.3.2 --- Wavelength Interrogation --- p.2-15
Chapter 2.3.3 --- Intensity Interrogation --- p.2-16
Chapter 2.3.4 --- Phase Interrogation --- p.2-16
Chapter 2.3.5 --- Commercial SPR biosensors --- p.2-18
Chapter 2.3.6 --- Comparison between Detection Techniques --- p.2-19
Chapter 2.4 --- Applications of SPR biosensors --- p.2-21
Chapter Chapter 3 --- Principle of Surface Plasmon Resonance Sensing Technology
Chapter 3.1 --- SPR Phenomenon --- p.3-1
Chapter 3.2 --- Conditions for Surface Plasmon Resonance --- p.3-5
Chapter 3.3 --- Wave-vectors --- p.3-7
Chapter 3.4 --- Surface Plasmon Resonance described by Fresnel's Theory --- p.3-8
Chapter 3.5 --- Concept of Surface Plasmon Resonance Biosensing --- p.3-10
Chapter Chapter 4 --- Experiments
Chapter 4.1 --- Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on Mach-Zehnder configuration --- p.4-1
Chapter 4.1.1 --- Materials required --- p.4-1
Chapter 4.1.2 --- Experimental Setup --- p.4-2
Chapter 4.1.3 --- Principle of Differential Phase Measurement --- p.4-3
Chapter 4.1.4 --- Photodetector Circuitry --- p.4-6
Chapter 4.1.5 --- Digital Signal Processing --- p.4-7
Chapter 4.1.6 --- Polymer based Micro-fluidic System Integrated with SPR Biosensor --- p.4-9
Chapter 4.2 --- Phase-sensitive Surface Plasmon Resonance Biosensor using the Photoelastic Modulation Technique --- p.4-12
Chapter 4.2.1 --- Materials required --- p.4-12
Chapter 4.2.2 --- Experimental Setup --- p.4-13
Chapter 4.2.3 --- Principle of Photoelastic Modulation Technique and Signal Processing --- p.4-14
Chapter 4.2.4 --- Operation Principle of Photoelastic Modulator --- p.4-17
Chapter 4.3 --- Sample Preparations --- p.4-18
Chapter 4.3.1 --- Glycerin-water Mixtures --- p.4-18
Chapter 4.3.2 --- "PBS, BSA and BSA antibody" --- p.4-19
Chapter 4.3.3 --- "RPMI, Trypsin, Cells and SDS" --- p.4-20
Chapter Chapter5 --- Results amd Discussions
Chapter 5.1 --- Experimental setup I: Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on Mach-Zehnder configuration --- p.5-1
Chapter 5.1.1 --- Measuring various glycerin-water concentration mixture with silver-gold sensing layer --- p.5-1
Chapter 5.1.2 --- Comparison between the sensitivity of our setup and reported setup based on phase detection --- p.5-4
Chapter 5.1.3 --- Discussion on 0.01° system resolution --- p.5-7
Chapter 5.1.4 --- Experiment on monitoring BSA-BSA antibody binding reaction --- p.5-9
Chapter 5.1.5 --- Matching oil and glass slide --- p.5-11
Chapter 5.1.6 --- Experiments on monitoring BSA-BSA antibody binding reaction with integrated microfluidic system --- p.5-12
Chapter 5.1.7 --- Experiment on observing cell adhesion properties on gold surface under the influence of trypsin --- p.5-14
Chapter 5.1.8 --- Discussion on the non-specific binding between trypsin and gold surface --- p.5-16
Chapter 5.1.9 --- Modifying the gold surface with BSA layer --- p.5-17
Chapter 5.1.10 --- Experiment on observing cell adhesion properties on the gold surface under the influence Sodium Dodecyl Sulfate (SDS) --- p.5-18
Chapter 5.2 --- Experimental setup II: Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique --- p.5-21
Chapter 5.2.1 --- Measurement on difference glycerin-water concentration mixture --- p.5-21
Chapter 5.2.2 --- Experiment on monitoring BSA-BSA antibody binding reaction --- p.5-23
Chapter Chapter 6 --- Conclusions and Future Works
Chapter 6.1 --- Conclusions --- p.6-1
Chapter 6.2 --- Future Works --- p.6-2
References --- p.R-1
Appendix
Chapter A. --- Phase Extraction Routine written by Matlab --- p.A-1
Chapter B. --- Mathematical expressions for calculating the phase angle in the experiment of SPR biosensor using the Photoelastic Modulation Technique --- p.A-6
Chapter C. --- Relationship between Concentration and Refractive Index of Glycerin-Water Mixture --- p.A-11
Chapter D. --- Physical Properties of Bovine Serum Albumin --- p.A-12
Chapter E. --- Simulation Curve written by Matlab --- p.A-13
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography