Academic literature on the topic 'Plasmonic nanoantennas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plasmonic nanoantennas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plasmonic nanoantennas"

1

Sanders, Stephen, and Alejandro Manjavacas. "Nanoantennas with balanced gain and loss." Nanophotonics 9, no. 2 (2020): 473–80. http://dx.doi.org/10.1515/nanoph-2019-0392.

Full text
Abstract:
AbstractThe large cross sections and strong confinement provided by the plasmon resonances of metallic nanostructures make these systems an ideal platform to implement nanoantennas. Like their macroscopic counterparts, nanoantennas enhance the coupling between deep subwavelength emitters and free radiation, providing, at the same time, an increased directionality. Here, inspired by the recent works in parity-time symmetric plasmonics, we investigate how the combination of conventional plasmonic nanostructures with active materials, which display optical gain when externally pumped, can serve t
APA, Harvard, Vancouver, ISO, and other styles
2

Barho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, et al. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin." Nanophotonics 7, no. 2 (2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.

Full text
Abstract:
AbstractTailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and
APA, Harvard, Vancouver, ISO, and other styles
3

Klemm, Maciej. "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links." International Journal of Optics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/348306.

Full text
Abstract:
Optical nanoantennas are emerging as one of the key components in the future nanophotonic and plasmonic circuits. The first optical nanoantennas were in a form of simple spherical nanoparticles. Recently more complex Yagi-Uda nanoantenna structures were demonstrated. These nanoantennas enhance radiation of single emitters and provide well-defined directional radiation. In this contribution, we present the novel design of the directional nanoantenna, which is excited from the propagating mode of the plasmonic waveguide. The nanoantenna design is based on thetravelling waveprinciple, well known
APA, Harvard, Vancouver, ISO, and other styles
4

Lereu, Aude L., Jacob P. Hoogenboom, and Niek F. van Hulst. "Gap Nanoantennas toward Molecular Plasmonic Devices." International Journal of Optics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/502930.

Full text
Abstract:
Recently we have demonstrated that single fluorescent molecules can be used as non-perturbative vectorial probes of the local field. Here, we expand on such experiments exploiting fluorescence lifetime of single molecules to probe various types of gap nanoantennas. First, studies of the nanoantennas are carried out to evaluate the electric field. We then investigate hybrid systems composed by nanoantennas and randomly positioned fluorescent molecules. Finally, we present a fabrication scheme for the controlled placement of fluorescent molecules at welldefined positions with respect to the dime
APA, Harvard, Vancouver, ISO, and other styles
5

Pacheco-Peña, Victor, Rúben A. Alves, and Miguel Navarro-Cía. "From symmetric to asymmetric bowtie nanoantennas: electrostatic conformal mapping perspective." Nanophotonics 9, no. 5 (2020): 1177–87. http://dx.doi.org/10.1515/nanoph-2019-0488.

Full text
Abstract:
AbstractPlasmonic nanoantennas have revolutionized the way we study and modulate light–matter interaction. Due to nanofabrication limitations, dimer-type nanoantennas always exhibit some degree of asymmetry, which is desirable in some cases. For instance, in sensing applications, asymmetry is sometimes induced by design in plasmonic nanoantennas to favor higher order nonradiative modes with sharp Fano line shapes. Regardless of the actual origin of the asymmetry, unintentional or intentional, an analytical frame that can deal with it in a seamless manner would be beneficial. We resort to confo
APA, Harvard, Vancouver, ISO, and other styles
6

Babicheva, Viktoriia E. "Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement." Nanomaterials 14, no. 18 (2024): 1539. http://dx.doi.org/10.3390/nano14181539.

Full text
Abstract:
This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic material. An analytical approach was used to determine the mode profile and type of cuboid nanoantenna resonances. An electric quadrupolar mode was demonstrated to be associated with a resonant magnetic response of the nanoantenna, which resembles the induction of resonant magnetic modes in high-refractive-index
APA, Harvard, Vancouver, ISO, and other styles
7

da Silva, Marcelino L. C., Victor Dmitriev, and Karlo Q. da Costa. "Application of Plasmonic Nanoantennas in Enhancing the Efficiency of Organic Solar Cells." International Journal of Antennas and Propagation 2020 (March 10, 2020): 1–9. http://dx.doi.org/10.1155/2020/2719656.

Full text
Abstract:
It is known that the periodic use of silver nanoantennas in organic solar cells increases the efficiency of light absorption. In this study, we performed a geometric parametric analysis of nanoantennas using the finite element method. Based on the study of the convex truncated cone nanoantenna, we have found that a nanoantenna arrangement formed by the convex truncated cone nanoantenna along with a pyramidal nanoantenna provides a better solution for different angles of light incidence compared to a single nanoantenna. We obtained a mean increase in the absorption efficiency of this organic so
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Pai-Yen, Christos Argyropoulos, and Andrea Alù. "Enhanced nonlinearities using plasmonic nanoantennas." Nanophotonics 1, no. 3-4 (2012): 221–33. http://dx.doi.org/10.1515/nanoph-2012-0016.

Full text
Abstract:
AbstractIn this paper, we review and discuss how nanoantennas may be used to largely enhance the nonlinear response of optical materials. For single nanoantennas, there have been tremendous advancements in understanding how to exploit the local field enhancement to boost the nonlinear susceptibility at the surface or sharp edges of plasmonic metals. After an overview of the work in this area, we discuss the possibility of controlling the optical nonlinear response using nanocircuit concepts and of significantly enhancing various nonlinear optical processes using planar arrays of plasmonic nano
APA, Harvard, Vancouver, ISO, and other styles
9

Damasceno, Gabriel H. B., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications." Sensors 22, no. 19 (2022): 7336. http://dx.doi.org/10.3390/s22197336.

Full text
Abstract:
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi–Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi–Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, a
APA, Harvard, Vancouver, ISO, and other styles
10

Berini, Pierre. "(Invited) Plasmonic Metasurfaces Based on Epsilon-Near-Zero Materials." ECS Meeting Abstracts MA2024-02, no. 35 (2024): 2495. https://doi.org/10.1149/ma2024-02352495mtgabs.

Full text
Abstract:
We report work on tunable plasmonic metasurfaces exploiting epsilon-near-zero effects in metal-oxide-semiconductor structures fabricated using conductive oxides. The tunable metasurfaces comprise subwavelength pixels that produce no grating diffraction and are used in reflection to control the magnitude and phase of the reflected beam. Applications include optical phased arrays, spatial light modulators, beam steering devices and wavefront shaping devices. Resonant nanometallic structures, such as plasmonic nanoantennas, are essential to convert light to surface plasmon-polaritons (SPPs) local
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plasmonic nanoantennas"

1

Wang, Jiyong. "Plasmonic Nanoantennas." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0021.

Full text
Abstract:
Les réponses optiques linéaires et non linéaires de nanoparticules (NPs) plasmoniques fabriquées lithographiquement sont étudiées. La diffusion élastique donne une empreinte digitale des plasmons de surface des NPs, ces derniers exaltant les signaux optiques non linéaires. La dépendance en polarisation de la génération de seconde harmonique (SHG) montre un effet de basculement, qui est analysé à partir des décalages spectraux entre l’excitation et les resonances et des effets d'interférence de SHG. En régime de faible excitation, en plus d'un processus de recombinaison de paires électron-trou
APA, Harvard, Vancouver, ISO, and other styles
2

Peter, Manuel [Verfasser]. "Active Plasmonic and Dielectric Nanoantennas / Manuel Peter." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1149154187/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Massa, Enrico. "Plasmonic nanoantennas for absorption and emission manipulation." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24720.

Full text
Abstract:
Light manipulation via nanoantennas, especially plasmonic nanoantennas, is an exciting new field, which aims to provide the same benefits at optical frequencies as those given by standard antennas in the radio and microwave frequency regimes. While at lower frequencies metals behave as perfect conductors, with negligible field penetration and absorption, at optical frequencies the electromagnetic field is able to excite plasmons which combine the electromagnetic wave with electronic excitations, giving raise to new properties such as high scattering and field confinement. This thesis focuses o
APA, Harvard, Vancouver, ISO, and other styles
4

Siadat, Mousavi Saba. "Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22814.

Full text
Abstract:
Optical nanoantennas have raised much interest during the past decade for their vast potential in photonics applications. This thesis investigates the response of periodic arrays of nanomonopoles and nanodipoles on a silicon substrate, covered by water, to variations of antenna dimensions. These arrays are illuminated by a plane wave source located inside the silicon substrate. Modal analysis was performed and the mode in the nanoantennas was identified. By characterizing the properties of this mode certain response behaviours of the system were explained. Expressions are offered to predict ap
APA, Harvard, Vancouver, ISO, and other styles
5

Knittel, Vanessa [Verfasser]. "Ultrafast nonlinear response of plasmonic nanoantennas / Vanessa Knittel." Konstanz : Bibliothek der Universität Konstanz, 2018. http://d-nb.info/1161343245/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Black, Leo-Jay. "Near-infrared nano-optical elements using plasmonic nanoantennas." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/410269/.

Full text
Abstract:
In recent years Nanophotonics, the behaviour of light at the nanometer scale has gathered Significant interest with recent advances in nanotechnology. Specifically, nanoantennas can help us access the near and mid-infrared wavelength range. The drivers are that it is a very attractive spectral region for a wide variety of technology applications, such as communications, environmental sensing, biosensing, security and astronomy. This thesis covers the functionality of single plasmonic nanoantennas for polarisation control and nonlinear frequency conversion, characterised by quantitative single-
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jiyong [Verfasser], and Pierre-Francois [Akademischer Betreuer] Brevet. "Plasmonic Nanoantennas / Jiyong Wang ; Betreuer: Pierre-Francois Brevet." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203623054/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Metzger, Bernd [Verfasser], and Harald [Akademischer Betreuer] Giessen. "Ultrafast nonlinear plasmonics : from dipole nanoantennas to hybrid complex plasmonic structures / Bernd Metzger. Betreuer: Harald Giessen." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/1062951379/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jeannin, Mathieu Emmanuel. "Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.

Full text
Abstract:
Ce travail de thèse porte sur l'étude du couplage entre des boîtes quantiques (BQs) insérées dans des nanofils à semiconducteurs et des antennes plasmoniques. Un couplage efficace requiert une caractérisation complète des leurs propriétés optiques respectives, pour assurer un recouvrement spectral et spatial de l'émission de la boîte et du mode de l'antenne et l'alignement de la polarisation du mode plasmonique avec l'émission de la BQ.Les propriétés optiques d'antennes patchs plasmoniques circulaires ont été étudiées par cathodoluminescence (CL). Nous avons montré avec un modèle analytique de
APA, Harvard, Vancouver, ISO, and other styles
10

Gmeiner, Benjamin [Verfasser], and Vahid [Gutachter] Sandoghdar. "Coherent Spectroscopy of Single Molecules in the Near-Field of Plasmonic Nanoantennas / Benjamin Gmeiner ; Gutachter: Vahid Sandoghdar." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1139492551/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plasmonic nanoantennas"

1

Werner, Douglas H., Sawyer D. Campbell, and Lei Kang, eds. Nanoantennas and Plasmonics: Modelling, design and fabrication. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Werner, Douglas H., Sawyer D. Campbell, and Lei Kang. Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nanoantennas and Plasmonics: Modelling, Design and Fabrication. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Pan Stanford Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Taylor & Francis Group, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pucci, Annemarie, and Marc Lamy de la Chapelle. Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications. Jenny Stanford Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plasmonic nanoantennas"

1

Sarychev, Andrey K., and Vladimir M. Shalaev. "Plasmonic Nanoantennas." In Continuum Models and Discrete Systems. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Hancong. "Coupled Plasmonic Nanoantennas." In Advances in Intelligent Systems and Computing. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48499-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeannin, Mathieu, Pamela Rueda-Fonseca, Rudeesun Songmuang, Edith Bellet-Amalric, Kuntheak Kheng, and Gilles Nogues. "Coupling Semiconducting Nanowires to Plasmonic Nanoantennas." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Munárriz Arrieta, Javier. "Optical Nanoantennas with Tunable Radiation Patterns." In Modelling of Plasmonic and Graphene Nanodevices. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07088-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozel, Tuncay. "Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas." In Coaxial Lithography. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45414-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soavi, Giancarlo, Giuseppe Della Valle, Paolo Biagioni, et al. "Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas." In Springer Proceedings in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hegde, Ravi Sadananda. "Fractal Plasmonic Nanoantennae." In Reviews in Plasmonics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48081-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Biswas, Richard Victor. "A Waveguide-Fed Hybrid Graphene Plasmonic Nanoantenna for On-Chip Wireless Optical Communication." In Proceedings of International Conference on Information and Communication Technology for Development. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7528-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Foti, Antonino, C. D’Andrea, A. Toma, et al. "Polarization Properties of the SERS Radiation Scattered by Linear Nanoantennas with Two Distinct Localized Plasmon Resonances." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0850-8_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GREFFET, JEAN-JACQUES. "Plasmonic Nanoantennas." In World Scientific Handbook of Metamaterials and Plasmonics. World Scientific, 2017. http://dx.doi.org/10.1142/9789813228726_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plasmonic nanoantennas"

1

Roggero, Ursula F. S., Mario Zapata-Herrera, Aitzol García-Etxarri, Andreas Seifert, and Hugo E. Hernández-Figueroa. "Plasmonic nanoantennas for biosensing and monitoring of cell activity." In 2024 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2024. http://dx.doi.org/10.1109/omn61224.2024.10685249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ortolani, Michele, Andrea Rossetti, Tommaso Venanzi, et al. "Nonlinear Hydrodynamics of Free Electrons in Plasmonic Semiconductor Nanoantennas." In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Morris M., Demid Sychev, Xiaohui Xu, et al. "Plasmonically Enhanced Second Harmonic Generation of Weyl Semimetal TaAs through field confinement." In CLEO: Science and Innovations. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf4k.1.

Full text
Abstract:
We demonstrate 300 percent increase of second-harmonic generation from Weyl semimetal TaAs surface by distributing plasmonic silver nanoantennas on TaAs. Normalizing laser spot size area over silver nanoantenna areas yields actual SHG enhancement is 90-fold.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Kuo-Ping, Vladimir P. Drachev, Joshua D. Borneman, Alexander V. Kildishev, and Vladimir M. Shalaev. "Improving Plasmonic Nanoantennas." In Quantum Electronics and Laser Science Conference. OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtuf3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dayal, Govind, Ikki Morichika, and Satoshi Ashihara. "Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode." In JSAP-OSA Joint Symposia. Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.

Full text
Abstract:
We report on strong coupling between molecular vibrational resonances of polymethyl methacrylate (PMMA) molecules and gap plasmon resonance of an ultrathin plasmonic cavity in the midinfrared range. The strong coupling is achieved when the molecular vibrational mode and plasmonic cavity exchange energy faster than their relaxation rates and it is maximum when two relaxation rates are equal [1]. In this work, we designed, fabricated and characterized a composite medium consisting of a thin PMMA layer sandwiched between the nanoantenna array and a continuous metallic thin film to achieve vibrati
APA, Harvard, Vancouver, ISO, and other styles
6

Mekawey, Hosameldin I., Yehea Ismail, and Mohamed A. Swillam. "silicon-based plasmonic nanoantennas." In Silicon Photonics XIV, edited by Graham T. Reed and Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2509341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Podolskiy, V. A., A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev. "Light manipulation with plasmonic nanoantennas." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maccaferri, Nicolò, Paolo Ponzellini, Giorgia Giovannini, and Xavier Zambrana-Puyalto. "FRET characterization of hollow plasmonic nanoantennas." In Plasmonics in Biology and Medicine XVI, edited by Tuan Vo-Dinh, Ho-Pui A. Ho, and Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2515296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hardy, Neil, Ahsan Habib, Tanya Ivanov, and Ahmet A. Yanik. "Electro-plasmonic Nanoantennas for In Vivo Neural Sensing." In CLEO: Applications and Technology. Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4k.2.

Full text
Abstract:
Electro-plasmonic nanoantennas (NeuroSWARM3) translate local electric fields to changes in scattering intensity to wirelessly sense neural activity with high resolution, throughput, and SSNR while operating in the NIR spectrum for deep tissue penetration.
APA, Harvard, Vancouver, ISO, and other styles
10

Choudhary, Saumya, Sylvia D. Swiecicki, Israel De Leon, et al. "Superradiance in arrays of plasmonic nanoantennas." In Frontiers in Optics. OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu3d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!