Journal articles on the topic 'Plasmons (Physics) Imaging systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plasmons (Physics) Imaging systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Dexiu. "Fiber optic surface plasmon resonance sensors for imaging systems." Optical Engineering 46, no. 5 (2007): 054403. http://dx.doi.org/10.1117/1.2736302.
Full textLavrukhin, D. V., R. R. Galiev, A. Yu Pavlov, et al. "Plasmonic Photoconductive Antennas for Terahertz Pulsed Spectroscopy and Imaging Systems." Optics and Spectroscopy 126, no. 5 (2019): 580–86. http://dx.doi.org/10.1134/s0030400x19050199.
Full textShastri, Kunal, Mohamed Abdelrahman, and Francesco Monticone. "Nonreciprocal and Topological Plasmonics." Photonics 8, no. 4 (2021): 133. http://dx.doi.org/10.3390/photonics8040133.
Full textChoudhary, Dhawal, Alessandro Mossa, Milind Jadhav, and Ciro Cecconi. "Bio-Molecular Applications of Recent Developments in Optical Tweezers." Biomolecules 9, no. 1 (2019): 23. http://dx.doi.org/10.3390/biom9010023.
Full textAngelo, P., H. Derfoul, P. Gauthier, et al. "Generation of hot and dense plasmas in laser accelerated colliding foil systems." Laser and Particle Beams 16, no. 1 (1998): 21–30. http://dx.doi.org/10.1017/s0263034600011733.
Full textLee, Ha‐Neul, Hyo‐Jin Lee, Seong‐Tae Han, and Jong‐Ryul Yang. "Highly sensitive CMOS plasmon detector with a low‐gain buffer amplifier for terahertz imaging systems." Microwave and Optical Technology Letters 63, no. 10 (2021): 2587–91. http://dx.doi.org/10.1002/mop.32931.
Full textAl-Zubeidi, Alexander, Lauren A. McCarthy, Ali Rafiei-Miandashti, Thomas S. Heiderscheit, and Stephan Link. "Single-particle scattering spectroscopy: fundamentals and applications." Nanophotonics 10, no. 6 (2021): 1621–55. http://dx.doi.org/10.1515/nanoph-2020-0639.
Full textPereyra, Pedro. "On the Transmittance of Metallic Superlattices in the Optical Regime and the True Refraction Angle." Photonics 8, no. 3 (2021): 86. http://dx.doi.org/10.3390/photonics8030086.
Full textDi Donato, Loreto, David Mascali, Andrea F. Morabito, and Gino Sorbello. "A Finite-Difference Approach for Plasma Microwave Imaging Profilometry." Journal of Imaging 5, no. 8 (2019): 70. http://dx.doi.org/10.3390/jimaging5080070.
Full textTi, Chaoyang, Yao Shen, Yiming Lei, and Yuxiang Liu. "Optical Trapping of Sub−Micrometer Particles with Fiber Tapers Fabricated by Fiber Pulling Assisted Chemical Etching." Photonics 8, no. 9 (2021): 367. http://dx.doi.org/10.3390/photonics8090367.
Full textOsborne, I. S. "APPLIED PHYSICS: Imaging Surface Plasmons." Science 307, no. 5717 (2005): 1841a. http://dx.doi.org/10.1126/science.307.5717.1841a.
Full textZhuang, Ziyun, and Ho Pui Ho. "Application of digital micromirror devices (DMD) in biomedical instruments." Journal of Innovative Optical Health Sciences 13, no. 06 (2020): 2030011. http://dx.doi.org/10.1142/s1793545820300116.
Full textZhao, Dong, Zhelin Lin, Wenqi Zhu, et al. "Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces." Nanophotonics 10, no. 9 (2021): 2283–308. http://dx.doi.org/10.1515/nanoph-2021-0083.
Full textPillet, Flavien, Christophe Thibault, Sophie Bellon, et al. "Simple surface chemistry to immobilize DNA probes that significantly increases sensitivity and spots density of surface plasmon resonance imaging based microarray systems." Sensors and Actuators B: Chemical 147, no. 1 (2010): 87–92. http://dx.doi.org/10.1016/j.snb.2010.03.015.
Full textZimpel, M., and J. Barnas. "Plasmons in Randomly Layered Systems." physica status solidi (b) 155, no. 2 (1989): 581–86. http://dx.doi.org/10.1002/pssb.2221550228.
Full textLepage, Dominic, Alvaro Jiménez, Dominic Carrier, Jacques Beauvais, and Jan J. Dubowski. "Hyperspectral imaging of diffracted surface plasmons." Optics Express 18, no. 26 (2010): 27327. http://dx.doi.org/10.1364/oe.18.027327.
Full textWhite, J. A., and J. C. Inkson. "Plasmons and quasiparticles in quantum well systems." Physica Scripta T35 (January 1, 1991): 116–20. http://dx.doi.org/10.1088/0031-8949/1991/t35/025.
Full textDemetriadou, Angela, and Alexei A. Kornyshev. "Principles of nanoparticle imaging using surface plasmons." New Journal of Physics 17, no. 1 (2015): 013041. http://dx.doi.org/10.1088/1367-2630/17/1/013041.
Full textAbbas, Hasan Tahir, Xiaodong Zeng, Robert D. Nevels, and M. Suhail Zubairy. "Deep subwavelength imaging via tunable terahertz plasmons." Applied Physics Letters 113, no. 5 (2018): 051106. http://dx.doi.org/10.1063/1.5035312.
Full textVitlina, R. Z., L. I. Magarill, and A. V. Chaplik. "Short-wavelength plasmons in low-dimensional systems." Journal of Experimental and Theoretical Physics 106, no. 4 (2008): 793–99. http://dx.doi.org/10.1134/s1063776108040195.
Full textChoi, Yae Rim, Jaewon Shim, Jae-Ho Park, Young-Suk Kim, and Min Jung Kim. "Discovery of Orphan Olfactory Receptor 6M1 as a New Anticancer Target in MCF-7 Cells by a Combination of Surface Plasmon Resonance-Based and Cell-Based Systems." Sensors 21, no. 10 (2021): 3468. http://dx.doi.org/10.3390/s21103468.
Full textMatsko, Nadejda B., Franz P. Schmidt, Ilse Letofsky-Papst, Artem Rudenko, and Vikas Mittal. "In situ Determination and Imaging of Physical Properties of Soft Organic Materials by Analytical Transmission Electron Microscopy." Microscopy and Microanalysis 20, no. 3 (2014): 916–23. http://dx.doi.org/10.1017/s1431927614000348.
Full textReynoso-García, Paris Jonathan, Marisol Güizado-Rodríguez, Victor Barba, Gabriel Ramos-Ortiz, and Hugo Martínez-Gutiérrez. "Stabilization of Silver Nanoparticles with a Dithiocarbamate Ligand and Formation of Nanocomposites by Combination with Polythiophene Derivative Nanoparticles." Advances in Condensed Matter Physics 2018 (August 1, 2018): 1–9. http://dx.doi.org/10.1155/2018/4376051.
Full textDuan, Jiahua, Runkun Chen, and Jianing Chen. "Nano-infrared imaging of localized plasmons in graphene nano-resonators." Chinese Physics B 26, no. 11 (2017): 117802. http://dx.doi.org/10.1088/1674-1056/26/11/117802.
Full textGubin, M. Yu, A. V. Shesterikov, S. N. Karpov, and A. V. Prokhorov. "Features of localized plasmons formation in four-particle spaser systems." Journal of Physics: Conference Series 951 (January 2018): 012034. http://dx.doi.org/10.1088/1742-6596/951/1/012034.
Full textZHANG, XI-LI, XUE-HUA WANG, XIN-HAI LIU, and BEN-YUAN GU. "EFFECTS OF DIELECTRIC MISMATCH ON THE PLASMONS IN QUANTUM WELL SYSTEMS." International Journal of Modern Physics B 17, no. 31n32 (2003): 6073–83. http://dx.doi.org/10.1142/s0217979203023549.
Full textAntão, T. V. C., and N. M. R. Peres. "Two-level systems coupled to Graphene plasmons: A Lindblad equation approach." International Journal of Modern Physics B 35, no. 20 (2021): 2130007. http://dx.doi.org/10.1142/s0217979221300073.
Full textFried, G., and W. Bohn. "Imaging Ultrathin Organic Films on the Nanometer Level Using Surface Plasmons." Microscopy and Microanalysis 6, S2 (2000): 712–13. http://dx.doi.org/10.1017/s1431927600036059.
Full textTao, Z. H., H. M. Dong, and Y. F. Duan. "Anomalous plasmon modes of single-layer MoS2." Modern Physics Letters B 33, no. 18 (2019): 1950200. http://dx.doi.org/10.1142/s0217984919502002.
Full textSeco Gudiña, Román, Susana Yáñez Vilar, Manuel González Gómez, et al. "Versatile Mesoporous Nanoparticles for Cell Applications." Journal of Nanoscience and Nanotechnology 21, no. 5 (2021): 2824–33. http://dx.doi.org/10.1166/jnn.2021.19054.
Full textBagheri, Mehran, Hamze Mousavi, and Jamshid Moradi Kurdestany. "Plasmons in spatially separated rolled-up electron-hole double-layer systems." Journal of Applied Physics 114, no. 3 (2013): 034303. http://dx.doi.org/10.1063/1.4813215.
Full textLeiderer, P., and U. Albrecht. "Investigation of quantum systems with surface plasmons and surface state electrons." Journal of Low Temperature Physics 89, no. 1-2 (1992): 229–38. http://dx.doi.org/10.1007/bf00692595.
Full textLV, MIN, and SHOU-CHENG ZHANG. "DIELECTRIC FUNCTION, FRIEDEL OSCILLATION AND PLASMONS IN WEYL SEMIMETALS." International Journal of Modern Physics B 27, no. 25 (2013): 1350177. http://dx.doi.org/10.1142/s0217979213501774.
Full textHow Gan, Choon, and Greg Gbur. "Strategies for employing surface plasmons in near-field optical readout systems." Optics Express 14, no. 6 (2006): 2385. http://dx.doi.org/10.1364/oe.14.002385.
Full textEkiz-Kanik, Fulya, Derin Deniz Sevenler, Neşe Lortlar Ünlü, Marcella Chiari, and M. Selim Ünlü. "Surface chemistry and morphology in single particle optical imaging." Nanophotonics 6, no. 4 (2017): 713–30. http://dx.doi.org/10.1515/nanoph-2016-0184.
Full textGbur, Greg, Hugo F. Schouten, and Taco D. Visser. "Achieving superresolution in near-field optical data readout systems using surface plasmons." Applied Physics Letters 87, no. 19 (2005): 191109. http://dx.doi.org/10.1063/1.2128061.
Full textLai, Chen-Yen, S. A. Trugman, and Jian-Xin Zhu. "Optical absorption spectroscopy in hybrid systems of plasmons and excitons." Nanoscale 11, no. 4 (2019): 2037–47. http://dx.doi.org/10.1039/c8nr02310g.
Full textLewandowski, Cyprian, and Leonid Levitov. "Intrinsically undamped plasmon modes in narrow electron bands." Proceedings of the National Academy of Sciences 116, no. 42 (2019): 20869–74. http://dx.doi.org/10.1073/pnas.1909069116.
Full textMayevsky, Ari D., Timothy J. Davis, Patrycja M. Ballard, Clare A. Henderson, and Alison M. Funston. "Mesoscale surface plasmons: modelling and imaging using near-field scanning optical microscopy." Optics Express 26, no. 18 (2018): 23426. http://dx.doi.org/10.1364/oe.26.023426.
Full textCOELLO, VICTOR. "SURFACE PLASMON POLARITON LOCALIZATION." Surface Review and Letters 15, no. 06 (2008): 867–79. http://dx.doi.org/10.1142/s0218625x08011974.
Full textZhang, Xueqian, Quan Xu, Quan Li, et al. "Asymmetric excitation of surface plasmons by dark mode coupling." Science Advances 2, no. 2 (2016): e1501142. http://dx.doi.org/10.1126/sciadv.1501142.
Full textKresin, V. Z., and H. Morawitz. "Plasmons and phonons in anisotropic systems and their effect on high-Tc superconductivity." Journal of Superconductivity 1, no. 1 (1988): 89–110. http://dx.doi.org/10.1007/bf00617954.
Full textHaberfehlner, Georg, Franz-Philipp Schmidt, Gernot Schaffernak, et al. "3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography." Nano Letters 17, no. 11 (2017): 6773–77. http://dx.doi.org/10.1021/acs.nanolett.7b02979.
Full textWang, Ximiao, Zebo Zheng, Ningsheng Xu, Weiliang Wang, Huanjun Chen, and Shaozhi Deng. "A Nano‐Imaging Study of Graphene Edge Plasmons with Chirality‐Dependent Dispersions." Advanced Optical Materials 9, no. 10 (2021): 2100207. http://dx.doi.org/10.1002/adom.202100207.
Full textTappura, Kirsi. "Enhancing the Performance of Commercial Infrared Detectors by Surface Plasmons." Proceedings 2, no. 13 (2018): 63. http://dx.doi.org/10.3390/proceedings2130063.
Full textTappura, Kirsi. "Enhancing the Performance of Commercial Infrared Detectors by Surface Plasmons." Proceedings 2, no. 13 (2018): 1063. http://dx.doi.org/10.3390/proceedings2131063.
Full textGuan, Fuxin, Shulin Sun, Shaojie Ma, et al. "Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems." Journal of Physics: Condensed Matter 30, no. 11 (2018): 114002. http://dx.doi.org/10.1088/1361-648x/aaad2a.
Full textColliex, Christian, Mathieu Kociak, and Odile Stéphan. "Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale." Ultramicroscopy 162 (March 2016): A1—A24. http://dx.doi.org/10.1016/j.ultramic.2015.11.012.
Full textZhang, Fan, Dongxing Zhao, Ying Gu, Hongyi Chen, Xueyuan Hu, and Qihuang Gong. "Detuning-determined qubit-qubit entanglement mediated by plasmons: An effective model for dissipative systems." Journal of Applied Physics 121, no. 20 (2017): 203105. http://dx.doi.org/10.1063/1.4984206.
Full textDawood, A., J. B. Wu, C. D. Wood, et al. "Full-wave modelling of terahertz frequency plasmons in two-dimensional electron systems." Journal of Physics D: Applied Physics 52, no. 21 (2019): 215101. http://dx.doi.org/10.1088/1361-6463/ab0ab7.
Full text