Journal articles on the topic 'Plasmons Tamm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plasmons Tamm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Balevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing." Coatings 10, no. 12 (December 5, 2020): 1187. http://dx.doi.org/10.3390/coatings10121187.
Full textBuchnev, Oleksandr, Alexandr Belosludtsev, Victor Reshetnyak, Dean R. Evans, and Vassili A. Fedotov. "Observing and controlling a Tamm plasmon at the interface with a metasurface." Nanophotonics 9, no. 4 (March 18, 2020): 897–903. http://dx.doi.org/10.1515/nanoph-2019-0514.
Full textIorsh, I., P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski. "Coupled Tamm plasmons." Technical Physics Letters 38, no. 4 (April 2012): 351–53. http://dx.doi.org/10.1134/s1063785012040074.
Full textChen, Yikai, Douguo Zhang, Liangfu Zhu, Qiang Fu, Ruxue Wang, Pei Wang, Hai Ming, Ramachandram Badugu, and Joseph R. Lakowicz. "Effect of metal film thickness on Tamm plasmon-coupled emission." Phys. Chem. Chem. Phys. 16, no. 46 (2014): 25523–30. http://dx.doi.org/10.1039/c4cp04031g.
Full textVijisha, M. V., Jagadeesan Ramesh, Chellaiah Arunkumar, and K. Chandrasekharan. "Impressive nonlinear optical responses of a cationic porphyrin derivative in a flexible all-polymer Bragg stack on optical Tamm mode coupling." Journal of Materials Chemistry C 8, no. 36 (2020): 12689–97. http://dx.doi.org/10.1039/d0tc01874k.
Full textPyatnov, Maxim V., Rashid G. Bikbaev, Ivan V. Timofeev, Ilya I. Ryzhkov, Stepan Ya Vetrov, and Vasily F. Shabanov. "Tamm Plasmons in TiO2 Nanotube Photonic Crystals." Photonics 10, no. 1 (January 6, 2023): 64. http://dx.doi.org/10.3390/photonics10010064.
Full textAuguié, Baptiste, Axel Bruchhausen, and Alejandro Fainstein. "Critical coupling to Tamm plasmons." Journal of Optics 17, no. 3 (February 13, 2015): 035003. http://dx.doi.org/10.1088/2040-8978/17/3/035003.
Full textLeuthold, Juerg, and Alexander Dorodnyy. "On-demand emission from Tamm plasmons." Nature Materials 20, no. 12 (October 21, 2021): 1595–96. http://dx.doi.org/10.1038/s41563-021-01128-7.
Full textShagurina, A., S. Kutrovskaya, I. Skryabin, and A. Kel’. "AFM lithography for TAMM plasmons observation." Journal of Physics: Conference Series 951 (January 2018): 012021. http://dx.doi.org/10.1088/1742-6596/951/1/012021.
Full textPühringer, Gerald, Cristina Consani, and Bernhard Jakoby. "Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators." Sensors 20, no. 23 (November 28, 2020): 6804. http://dx.doi.org/10.3390/s20236804.
Full textZhang, Cheng, Kai Wu, Vincenzo Giannini, and Xiaofeng Li. "Planar Hot-Electron Photodetection with Tamm Plasmons." ACS Nano 11, no. 2 (January 26, 2017): 1719–27. http://dx.doi.org/10.1021/acsnano.6b07578.
Full textLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Haiming Yuan, and Hua Zhao. "Controllable Coupling of Localized and Propagating Surface Plasmons to Tamm Plasmons." Plasmonics 7, no. 4 (June 10, 2012): 749–54. http://dx.doi.org/10.1007/s11468-012-9369-x.
Full textLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan, and Yongyuan Jiang. "Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons." Optics Express 20, no. 17 (August 6, 2012): 19160. http://dx.doi.org/10.1364/oe.20.019160.
Full textGeng, Dongling, Elena Cabello-Olmo, Gabriel Lozano, and Hernán Míguez. "Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission." ACS Photonics 6, no. 3 (February 14, 2019): 634–41. http://dx.doi.org/10.1021/acsphotonics.8b01407.
Full textKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, T. C. H. Liew, and I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton-polaritons." Superlattices and Microstructures 49, no. 3 (March 2011): 229–32. http://dx.doi.org/10.1016/j.spmi.2010.05.014.
Full textKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton polaritons." Applied Physics Letters 95, no. 25 (December 21, 2009): 251108. http://dx.doi.org/10.1063/1.3266841.
Full textGubaydullin, A. R., K. M. Morozov, and M. A. Kaliteevski. "Tamm Plasmons in Structures with Quasiperiodic Metal Gratings." JETP Letters 111, no. 11 (June 2020): 639–42. http://dx.doi.org/10.1134/s002136402011003x.
Full textPühringer, Gerald, and Bernhard Jakoby. "Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States." Materials 12, no. 6 (March 20, 2019): 929. http://dx.doi.org/10.3390/ma12060929.
Full textNormani, Simone, Francesco Federico Carboni, Guglielmo Lanzani, Francesco Scotognella, and Giuseppe Maria Paternò. "The impact of Tamm plasmons on photonic crystals technology." Physica B: Condensed Matter 645 (November 2022): 414253. http://dx.doi.org/10.1016/j.physb.2022.414253.
Full textMischok, Andreas, Bernhard Siegmund, Dhriti Sundar Ghosh, Johannes Benduhn, Donato Spoltore, Matthias Böhm, Hartmut Fröb, Christian Körner, Karl Leo, and Koen Vandewal. "Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors." ACS Photonics 4, no. 9 (August 17, 2017): 2228–34. http://dx.doi.org/10.1021/acsphotonics.7b00427.
Full textLiu, Hai, Jinsong Gao, Zhen Liu, Xiaoyi Wang, Haigui Yang, and Hong Chen. "Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons." Journal of the Optical Society of America B 32, no. 10 (September 4, 2015): 2061. http://dx.doi.org/10.1364/josab.32.002061.
Full textShao, Weijia, and Tingting Liu. "Planar narrowband Tamm plasmon-based hot-electron photodetectors with double distributed Bragg reflectors." Nano Express 2, no. 4 (November 22, 2021): 040009. http://dx.doi.org/10.1088/2632-959x/ac396b.
Full textZhang, Wei Li, Yao Jiang, Ye Yu Zhu, Fen Wang, and Yun Jiang Rao. "All-optical bistable logic control based on coupled Tamm plasmons." Optics Letters 38, no. 20 (October 9, 2013): 4092. http://dx.doi.org/10.1364/ol.38.004092.
Full textPan, Jintao, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Yaofei Chen, Heyuan Guan, Huihui Lu, Yongchun Zhong, Yunhan Luo, and Zhe Chen. "Exploiting black phosphorus based-Tamm plasmons in the terahertz region." Optics Express 28, no. 9 (April 20, 2020): 13443. http://dx.doi.org/10.1364/oe.391709.
Full textHajian, Hodjat, Humeyra Caglayan, and Ekmel Ozbay. "Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials." Journal of Applied Physics 121, no. 3 (January 21, 2017): 033101. http://dx.doi.org/10.1063/1.4973900.
Full textReshetnyak, Victor Yu, Igor P. Pinkevych, Michael E. McConney, Timothy J. Bunning, and Dean R. Evans. "Tamm Plasmons: Properties, Applications, and Tuning with Help of Liquid Crystals." Crystals 15, no. 2 (January 27, 2025): 138. https://doi.org/10.3390/cryst15020138.
Full textLUO Guoping, 罗国平, 陈星源 CHEN Xingyuan, 胡素梅 HU Sumei, and 朱伟玲 ZHU Weiling. "基于塔姆等离激元的近红外热电子光电探测器." ACTA PHOTONICA SINICA 51, no. 4 (2022): 0404002. http://dx.doi.org/10.3788/gzxb20225104.0404002.
Full textBoriskina, Svetlana V., and Yoichiro Tsurimaki. "Sensitive singular-phase optical detection without phase measurements with Tamm plasmons." Journal of Physics: Condensed Matter 30, no. 22 (May 10, 2018): 224003. http://dx.doi.org/10.1088/1361-648x/aabefb.
Full textAfinogenov, Boris I., Vladimir O. Bessonov, Irina V. Soboleva, and Andrey A. Fedyanin. "Ultrafast All-Optical Light Control with Tamm Plasmons in Photonic Nanostructures." ACS Photonics 6, no. 4 (March 5, 2019): 844–50. http://dx.doi.org/10.1021/acsphotonics.8b01792.
Full textChen, Yikai, Douguo Zhang, Dong Qiu, Liangfu Zhu, Sisheng Yu, Peijun Yao, Pei Wang, Hai Ming, Ramachandram Badugu, and Joseph R. Lakowicz. "Back focal plane imaging of Tamm plasmons and their coupled emission." Laser & Photonics Reviews 8, no. 6 (October 2, 2014): 933–40. http://dx.doi.org/10.1002/lpor.201400117.
Full textZhang, Huayue, Xin Long, Hongxia Yuan, Xiaoyu Dai, Zhongfu Li, Leyong Jiang, and Yuanjiang Xiang. "Dirac semimetals Tamm plasmons-induced low-threshold optical bistability at terahertz frequencies." Results in Physics 43 (December 2022): 106054. http://dx.doi.org/10.1016/j.rinp.2022.106054.
Full textPyatnov, Maxim, Rashid Bikbaev, Ivan Timofeev, Ilya Ryzhkov, Stepan Vetrov, and Vasily Shabanov. "Broadband Tamm Plasmons in Chirped Photonic Crystals for Light-Induced Water Splitting." Nanomaterials 12, no. 6 (March 11, 2022): 928. http://dx.doi.org/10.3390/nano12060928.
Full textParker, Matthew, Edmund Harbord, Andrew Young, Petros Androvitsaneas, John Rarity, and Ruth Oulton. "Tamm plasmons for efficient interaction of telecom wavelength photons and quantum dots." IET Optoelectronics 12, no. 1 (February 1, 2018): 11–14. http://dx.doi.org/10.1049/iet-opt.2017.0076.
Full textWang, Zhiyu, J. Kenji Clark, Ya-Lun Ho, Bertrand Vilquin, Hirofumi Daiguji, and Jean-Jacques Delaunay. "Narrowband thermal emission from Tamm plasmons of a modified distributed Bragg reflector." Applied Physics Letters 113, no. 16 (October 15, 2018): 161104. http://dx.doi.org/10.1063/1.5048950.
Full textLiang, Wenyue, Zheng Xiao, Haitao Xu, Haidong Deng, Hai Li, Wanjun Chen, Zhaosu Liu, and Yongbing Long. "Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons." Optics Express 28, no. 21 (October 5, 2020): 31330. http://dx.doi.org/10.1364/oe.400258.
Full textWu, Jipeng, Yanzhao Liang, Jun Guo, Leyong Jiang, Xiaoyu Dai, and Yuanjiang Xiang. "Tunable and Multichannel Terahertz Perfect Absorber Due to Tamm Plasmons with Topological Insulators." Plasmonics 15, no. 1 (August 10, 2019): 83–91. http://dx.doi.org/10.1007/s11468-019-01011-x.
Full textWang, Xi, Xing Jiang, Qi You, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang. "Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene." Photonics Research 5, no. 6 (October 3, 2017): 536. http://dx.doi.org/10.1364/prj.5.000536.
Full textLiu, Yamei, Qiwen Zheng, Hongxia Yuan, Shenping Wang, Keqiang Yin, Xiaoyu Dai, Xiao Zou, and Leyong Jiang. "High Sensitivity Terahertz Biosensor Based on Mode Coupling of a Graphene/Bragg Reflector Hybrid Structure." Biosensors 11, no. 10 (October 8, 2021): 377. http://dx.doi.org/10.3390/bios11100377.
Full textLheureux, G., M. Monavarian, R. Anderson, R. A. Decrescent, J. Bellessa, C. Symonds, J. A. Schuller, J. S. Speck, S. Nakamura, and S. P. DenBaars. "Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics." Optics Express 28, no. 12 (June 1, 2020): 17934. http://dx.doi.org/10.1364/oe.392546.
Full textYu, Tong, Cheng Zhang, Huimin Liu, Jianhui Liu, Ke Li, Linling Qin, Shaolong Wu, and Xiaofeng Li. "Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons." Nanoscale 11, no. 48 (2019): 23182–87. http://dx.doi.org/10.1039/c9nr07549f.
Full textJiang, Leyong, Haiqin Deng, Xinye Zhang, Pei Chen, Licheng Wu, Rongqing Yi, Pengcheng Wang, Jie Jiang, and Jun Dong. "Enhanced and tunable terahertz spin hall effect of reflected light due to tamm plasmons with topological insulators." Results in Physics 19 (December 2020): 103392. http://dx.doi.org/10.1016/j.rinp.2020.103392.
Full textYe, Yunyang, Wei Chen, Shuxin Wang, Yamei Liu, and Leyong Jiang. "Enhanced and tunable Goos-Hänchen shift of reflected light due to Tamm surface plasmons with Dirac semimetals." Results in Physics 43 (December 2022): 106105. http://dx.doi.org/10.1016/j.rinp.2022.106105.
Full textLi, Yaoyao, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou, and Weijia Shao. "Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb2S3." Micromachines 16, no. 2 (January 26, 2025): 146. https://doi.org/10.3390/mi16020146.
Full textLo, Shu-cheng, Chia-wei Lee, Ruey-lin Chern, and Pei-kuen Wei. "Hybrid modes in gold nanoslit arrays on Bragg nanostructures and their application for sensitive biosensors." Optics Express 30, no. 17 (August 4, 2022): 30494. http://dx.doi.org/10.1364/oe.465748.
Full textDrazdys, Mantas, Ernesta Bužavaitė-Vertelienė, Darija Astrauskytė, and Zigmas Balevičius. "Atomic Layer Deposition for Tailoring Tamm Plasmon-Polariton with Ultra-High Accuracy." Coatings 14, no. 1 (December 26, 2023): 33. http://dx.doi.org/10.3390/coatings14010033.
Full textPlikusienė, Ieva, Ernesta Bužavaitė-Vertelienė, Vincentas Mačiulis, Audrius Valavičius, Almira Ramanavičienė, and Zigmas Balevičius. "Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method." Biosensors 11, no. 12 (December 7, 2021): 501. http://dx.doi.org/10.3390/bios11120501.
Full textAnulytė, Justina, Ernesta Bužavaitė-Vertelienė, Evaldas Stankevičius, Kernius Vilkevičius, and Zigmas Balevičius. "High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application." Sensors 22, no. 23 (December 3, 2022): 9453. http://dx.doi.org/10.3390/s22239453.
Full textSpektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (August 2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.
Full textTomilina, O. A., A. L. Kudryashov, A. V. Karavaynikov, S. D. Lyashko, E. T. Milyukova, V. N. Berzhansky, and S. V. Tomilin. "Fabry-Perot and Tamm modes hybridization in spatially non-homogeneous magneto-photonic crystal." Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, no. 4 (November 26, 2024): 599–607. http://dx.doi.org/10.31857/s0367676524040115.
Full textBikbaev, Rashid, Stepan Vetrov, and Ivan Timofeev. "Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton." Photonics 6, no. 1 (March 9, 2019): 28. http://dx.doi.org/10.3390/photonics6010028.
Full text