Academic literature on the topic 'Plastic bearability of plates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plastic bearability of plates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plastic bearability of plates"
Mitsuhashi, Masato, Cylia Keller, and Tatsuo Akitaya. "Gene manipulation on plastic plates." Nature 357, no. 6378 (June 1992): 519–20. http://dx.doi.org/10.1038/357519a0.
Full textAboudi, J., and M. Paley. "Plastic buckling of ARALL plates." Composite Structures 22, no. 4 (January 1992): 217–21. http://dx.doi.org/10.1016/0263-8223(92)90058-k.
Full textChen, D. H., and S. Ozaki. "Axial plastic collapse behavior of plates." Thin-Walled Structures 48, no. 2 (February 2010): 77–88. http://dx.doi.org/10.1016/j.tws.2009.09.006.
Full textWang, C. M., Y. Xiang, and J. Chakrabarty. "Elastic/plastic buckling of thick plates." International Journal of Solids and Structures 38, no. 48-49 (November 2001): 8617–40. http://dx.doi.org/10.1016/s0020-7683(01)00144-5.
Full textBhat, Shankaranarayana U., and Paul C. Xirouchakis. "Rigid‐Plastic Analysis of Floating Plates." Journal of Engineering Mechanics 111, no. 6 (June 1985): 815–31. http://dx.doi.org/10.1061/(asce)0733-9399(1985)111:6(815).
Full textThe, Vu Van. "Rigid plastic plates at large deformations." Vietnam Journal of Mechanics 7, no. 1 (March 31, 1985): 20–23. http://dx.doi.org/10.15625/0866-7136/10381.
Full textThe, Vu Van. "Rigid plastic plates at large deformations." Vietnam Journal of Mechanics 7, no. 3 (September 30, 1985): 18–23. http://dx.doi.org/10.15625/0866-7136/10391.
Full textLellep, Jaan, and Boriss Vlassov. "Optimization of Stepped Elastic Plastic Plates." Advanced Materials Research 742 (August 2013): 209–14. http://dx.doi.org/10.4028/www.scientific.net/amr.742.209.
Full textYang, W. H. "A duality theorem for plastic plates." Acta Mechanica 69, no. 1-4 (December 1987): 177–93. http://dx.doi.org/10.1007/bf01175720.
Full textAnastasiadis, John, and Paul C. Xirouchakis. "Rigid-Plastic Response of Floating Plates." Journal of Ship Research 32, no. 03 (September 1, 1988): 168–76. http://dx.doi.org/10.5957/jsr.1988.32.3.168.
Full textDissertations / Theses on the topic "Plastic bearability of plates"
Rozsypalová, Veronika. "Výpočet plastické únosnosti desek." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226457.
Full textJowhari, Moghadam Shirin. "Plastic buckling of columns and plates." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/29865.
Full textCHAKRABARTI, SEKHAR KUMAR. "INELASTIC BUCKLING OF GUSSET PLATES." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184188.
Full textAn, Wei 1963. "Strengthening of concrete beams with composite plastic plates." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277246.
Full textBahous, André. "Plastic buckling of circular plates on elastic foundations." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123016.
Full textCette thèse traite du voilement plastique par bifurcation d'une plate circulaire qui est partiellement ou complètement liée à une fondation élastique, et qui est soumise à une pression radiale uniforme sur sa périphérie. Avant le voilement, la plaque se trouve dans un état de contraintes équibiaxiales constantes. Sous ces contraintes, le matériau de la plaque subit un écrouissage suivant une surface de plastification en expansion isotrope J2 (von Mises). Les lois constitutives incrémentales, requises pour l'analyse de bifurcation, sont écrites de façon à incorporer le comportement selon la théorie de déformation J2, les théories incrémentales de la plasticité J2 et la théorie élastique. L'équation régissant le comportement de la plaque et les conditions frontières, adaptés au voilement axisymétrique et non-axisymétrique, sont dérivés selon le principe du travail virtuel et le principe de bifurcation sous augmentation de charge de Shanley. L'analyse exacte de l'équation différentielle du 4e degré permet d'obtenir, en fonction du ratio rayon/épaisseur des plaques et du module de fondation, les contraintes de voilement pour les plaques encastrées et simplement supportées en leur périphérie.Quatre configurations de fondations sont considérées : (1) aucune fondation présente, (2) une fondation présente partout, (3) une fondation partielle présente uniquement à l'intérieur de la moitié du rayon de la plaque et (4) une fondation partielle présente à partir de la moitié du rayon jusqu'au bord de la plaque. Ces configurations sont appliquées pour des plaques simplement supportées et encastrées en périphérie. Les contraintes de voilement ainsi que les modes de déformations associés, qu'ils soient axisymétrique ou non-axisymétrique, sont obtenus pour chaque cas.L'analyse numérique présente des résultats de contraintes de bifurcation pour des plaques d'aluminium 24S-T3 et des matériaux de fondation peu rigides de type mousse synthétique. Il en ressort que l'effet de la fondation sur les contraintes de voilement est moins important dans le domaine plastique que dans le domaine élastique. Tel que prévu, les contraintes de voilement découlant de la théorie incrémentale de la plasticité J2 sont toujours supérieurs que celles basées sur la théorie de déformation J2. Pour les plaques encastrées, à l'extrémité de la courbe contrainte-déformation, la différence maximale est d'environ 10%. Étonnamment par contre, pour les plaques simplement supportées, les résultats de la théorie incrémentale de la plasticité sont plus importants par moins de 1%. Ceci veut dire que, pour les plaques simplement supportées, le paradoxe du voilement plastique ne s'applique pas et ce, même en présence d'une fondation.
Berrada, Kamal. "An experimental investigation of the plastic buckling of aluminum plates /." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63160.
Full textAbayakoon, Sarath Bandara Samarasinghe. "Large deflection elastic-plastic analysis of plate structures by the finite strip method." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26946.
Full textApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Schubak, Robert Brian. "Nonlinear rigid-plastic analysis of stiffened plates under blast loads." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/31482.
Full textApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Ahmed, Mohammed Zakaria. "Plastic buckling of plates including edge contact-frictional force effects." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185662.
Full textTropsa, Vlado. "Predicting residual stresses due to solidification in cast plastic plates." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271561.
Full textBooks on the topic "Plastic bearability of plates"
Sawzcuk, A. Limit analysis of plates. Warszawa: Polish Scientific Publishers, 1993.
Find full text1914-, Massonnet C. E., Saxce Géry de, and Saxce Géry de, eds. Plastic limit analysis of plates, shells, and disks. 2nd ed. Amsterdam: Elsevier, 1997.
Find full textSave, M. A. Atlas of limit loads of metal plates, shells, and disks. Amsterdam: Elsevier, 1995.
Find full textRoberts, Cynthia. Switch-plate covers: Dress up those ordinary switch-plates with 12 whimsical plastic canvas covers! Berne, IN: Needlecraft Shop, 2006.
Find full textMarciniak, Z. Mechanics of sheet metal forming. 2nd ed. Oxford: Butterworth-Heinemann, 2002.
Find full textPlastic Limit Analysis of Plates, Shells and Disks. Elsevier, 1997. http://dx.doi.org/10.1016/s0167-5931(97)x8001-5.
Full textGeorge, Z. Voyiadjis Pawel Woelke. Elasto-Plastic and Damage Analysis of Plates and Shells. Springer, 2008.
Find full textElasto-Plastic and Damage Analysis of Plates and Shells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79351-9.
Full textEareckson, Peter Dudley. Elasto-plastic analysis of axisymmetrically loaded circular plates using Green's functions. 1986.
Find full textBook chapters on the topic "Plastic bearability of plates"
Chakrabarty, J. "Plastic Bending of Plates." In Mechanical Engineering Series, 227–312. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77674-3_4.
Full textChakrabarty, J. "Plastic Bending of Plates." In Mechanical Engineering Series, 225–96. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3268-9_4.
Full textHanda, Kamal. "Probabilistic Analysis of Plastic Plates." In Probabilistic Methods in the Mechanics of Solids and Structures, 271–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82419-7_25.
Full textPavilainen, Galina. "Elasto-plastic deformations of ribbed plates." In Asymptotic Methods in Mechanics, 227–33. Providence, Rhode Island: American Mathematical Society, 1993. http://dx.doi.org/10.1090/crmp/003/16.
Full textLindberg, Herbert E., and Alexander L. Florence. "Plastic Flow Buckling of Rectangular Plates." In Dynamic Pulse Buckling, 349–72. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3657-7_6.
Full textLellep, Jaan, and Boriss Vlassov. "Elastic Plastic Analysis of Elliptical Plates." In Lecture Notes in Mechanical Engineering, 639–48. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75677-6_55.
Full textCyras, A., and A. Daniunas. "Mathematical Models for the Analysis and Optimization of Elasto-plastic Plates and Shells Under Complete Plastic Failure." In Inelastic Behaviour of Plates and Shells, 345–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82776-1_17.
Full textRozvany, G. I. N., and T. G. Ong. "Optimal Plastic Design of Plates, Shells and Shellgrids." In Inelastic Behaviour of Plates and Shells, 357–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82776-1_18.
Full textCalladine, C. R. "Analysis of Large Plastic Deformations in Shell Structures." In Inelastic Behaviour of Plates and Shells, 69–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82776-1_4.
Full textAlkorta, Jon, and Javier Gil Sevillano. "Optimal SPD Processing of Plates by Constrained Groove Pressing (CGP)." In Nanomaterials by Severe Plastic Deformation, 491–97. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch9b.
Full textConference papers on the topic "Plastic bearability of plates"
Corona, Edmundo. "Collapse of elastic-plastic plates with cracks." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1595.
Full textNaghdabadi, Reza, and Mohsen Shahi. "Large Elastic-Plastic Deformation Analysis of Rectangular Plates." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1203.
Full textFisher, David, and Ron Hofmann. "CNC machining plastic injection mold plates in the classroom." In 2007 37th annual frontiers in education conference - global engineering: knowledge without borders, opportunities without passports. IEEE, 2007. http://dx.doi.org/10.1109/fie.2007.4417886.
Full textChakrabarty, J. "INFLUENCE OF ANISOTROPY ON THE PLASTIC BUCKLING OF RECTANGULAR PLATES." In Proceedings of the Second International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776228_0063.
Full textYang, Ping, and Ying Peng. "Dynamic Response of Blast-Loaded Stiffened Plates by Rigid-Plastic Analysis." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-21044.
Full textNemirovsky, Yu V. "Dynamic bending of plastic polymetallic plates with piece-smooth elliptic contours." In HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117392.
Full textYuge, Kohei, Nobuhiro Iwai, and Noboru Kikuchi. "Topology Optimization Algorithm for Plates and Shells Subjected to Plastic Deformations." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dac-5603.
Full textLiu, Bin, Richard Villavicencio, and C. Guedes Soares. "Plastic Response and Failure Prediction of Stiffened Plates Punched by a Wedge." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11043.
Full textLiu, Bin, Richard Villavicencio, and C. Guedes Soares. "Experimental and Numerical Plastic Response and Failure of Laterally Impacted Rectangular Plates." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-84015.
Full textSitaram, Pattabhi, Bipin Pai, and Rachel Mok. "Elasto-Plastic Analysis of Prismatic Folded Plates by the Finite Element Method." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88195.
Full textReports on the topic "Plastic bearability of plates"
Akileh, Aiman. Elastic-plastic analysis of axisymmetrically loaded isotropic circular and annular plates undergoing large deflections. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5441.
Full textHYSTERETIC PERFORMANCE OF WEAK-AXIS CONNECTION WITH I-SHAPED PLATES IN STEEL FRAME. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.1.
Full text