Academic literature on the topic 'Plastic value-chain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plastic value-chain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Plastic value-chain"
Brouwer, Marieke T., Eggo U. Thoden van Velzen, Kim Ragaert, and Roland ten Klooster. "Technical Limits in Circularity for Plastic Packages." Sustainability 12, no. 23 (November 30, 2020): 10021. http://dx.doi.org/10.3390/su122310021.
Full textFoschi, Eleonora, and Alessandra Bonoli. "The Commitment of Packaging Industry in the Framework of the European Strategy for Plastics in a Circular Economy." Administrative Sciences 9, no. 1 (February 17, 2019): 18. http://dx.doi.org/10.3390/admsci9010018.
Full textKajaste, R., and P. Oinas. "Plastics value chain - Abatement of greenhouse gas emissions." AIMS Environmental Science 8, no. 4 (2021): 371–92. http://dx.doi.org/10.3934/environsci.2021024.
Full textMilios, Leonidas, Lena Holm Christensen, David McKinnon, Camilla Christensen, Marie Katrine Rasch, and Mikael Hallstrøm Eriksen. "Plastic recycling in the Nordics: A value chain market analysis." Waste Management 76 (June 2018): 180–89. http://dx.doi.org/10.1016/j.wasman.2018.03.034.
Full textParaschiv, Maria, Radu Kuncser, Mohand Tazerout, and Tudor Prisecaru. "New energy value chain through pyrolysis of hospital plastic waste." Applied Thermal Engineering 87 (August 2015): 424–33. http://dx.doi.org/10.1016/j.applthermaleng.2015.04.070.
Full textMaritz, M., V. Eriksson, and V. Barnes. "PET PLASTIC IN FOOD AND BEVERAGE PACKAGING DESIGN: A REVIEW OF LEGISLATION, LITERATURE AND INDUSTRY REPORTING COMPARING EUROPEAN AND SOUTH AFRICAN INDUSTRIAL PRACTICE." Proceedings of the Design Society: DESIGN Conference 1 (May 2020): 2049–58. http://dx.doi.org/10.1017/dsd.2020.83.
Full textWinterstetter, Andrea, Marie Grodent, Venkatesh Kini, Kim Ragaert, and Karl C. Vrancken. "A Review of Technological Solutions to Prevent or Reduce Marine Plastic Litter in Developing Countries." Sustainability 13, no. 9 (April 27, 2021): 4894. http://dx.doi.org/10.3390/su13094894.
Full textRahman, MA, M. Islam, MM Begum, and S. Arfin. "Technical and economic feasibility of improved postharvest management practices in enhancing the eggplant value chain of Bangladesh." International Journal of Agricultural Research, Innovation and Technology 9, no. 2 (February 9, 2020): 35–41. http://dx.doi.org/10.3329/ijarit.v9i2.45408.
Full textKneppers, Ben Robert, and Moacyr Bartholomeu Laruccia. "NetPlus." International Journal of Social Ecology and Sustainable Development 12, no. 1 (January 2021): 12–20. http://dx.doi.org/10.4018/ijsesd.2021010102.
Full textLau, Winnie W. Y., Yonathan Shiran, Richard M. Bailey, Ed Cook, Martin R. Stuchtey, Julia Koskella, Costas A. Velis, et al. "Evaluating scenarios toward zero plastic pollution." Science 369, no. 6510 (July 23, 2020): 1455–61. http://dx.doi.org/10.1126/science.aba9475.
Full textDissertations / Theses on the topic "Plastic value-chain"
Braglia, Michele. "Assessment of circular economy indicators in a multi-criteria approach along the plastic packaging value chain." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textRodriguez, Novoa Esteban Alejandro. "Expansion of the Swedish Deposit Return System for plastic packaging : Challenges and enablers along the value chain of plastics." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288406.
Full textPlastmaterial används ofta i olika applikationer av industrin med tanke på dess olika egenskaper. Miljömässigt innebär några av dessa egenskaper en utmaning för återvinning av dessa material. Under åren har pantsystem (Deposit Return Systems (DRS)) formulerats och utvecklats för att öka återvinningsgraden för dessa material. Denna studie syftar till att avgöra om expansionen av DRS för plastmaterial kan hantera nuvarande tekniska och logistiska utmaningar som hindrar återvinningsbarheten av dessa material i Sverige. Specifikt kartlägger uppsatsen de aktörer som är involverade i plastvärdekedjan och identifierar nuvarande utmaningar som påverkar materialens återvinningsbarhet, men också möjligheter att öka återvinningsgraden och slutligen efter att ha studerat olika DRS implementerade runt om i världen ges rekommendationer om huruvida vissa av dem är lämpliga för det svenska sammanhanget. Baserat på en litteraturstudie studeras den nuvarande svenska plastvärdekedjan och tekniska och logistiska utmaningar identifieras längs den. Samtidigt undersöker studien teknisk utveckling och innovationer som syftar till att förbättra återvinningsbarheten hos plastmaterialen. En av de viktigaste utmaningarna som identifierats är fragmenteringen och underutvecklingen längs värdekedjan, särskilt återvinningssektorn. Denna information är användbar för att fastställa trender i branschen men är också viktig att tänka på i formuleringen av en expansion av DRS i Sverige. På samma sätt, efter att ha beskrivit de olika DRS-alternativen, ges rekommendationer för dess genomförande. En slutsats är att med tanke på det nuvarande sammanhanget som inkluderar start av en stor sorteringsanläggning är det mer genomförbart att välja en modell för DRS som integreras i nuvarande kommunala avfallshantering och inte kräver större investeringar i infrastruktur. Systemet ska bygga på att skapa incitament för återvinningsbar design såväl som för ytterligare sortering. Andra alternativ avfärdas inte, men dessa kan vara mer kostsamma eller mer tekniskt utmanande och kräver mer forskning.
Books on the topic "Plastic value-chain"
Mofo, Liako. Future-proofing the plastics value chain in Southern Africa. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/905-1.
Full textBook chapters on the topic "Plastic value-chain"
Hopmann, Christian, and Mauritius Schmitz. "Complex Value Chain." In Plastics Industry 4.0, 221–63. München: Carl Hanser Verlag GmbH & Co. KG, 2020. http://dx.doi.org/10.3139/9781569907979.007.
Full textBell, Jason, Lorenza Monaco, and Pamela Mondliwa. "Leveraging Plastics Linkages for Diversification." In Structural Transformation in South Africa, 78–99. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192894311.003.0004.
Full textLopez, Clara, Franz Jäeger, Karina Ramirez, and Mario Chong. "A Plan to Improve Recycled Raw Material Supply in a Production Company of RPET." In Handbook of Research on Industrial Applications for Improved Supply Chain Performance, 27–45. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0202-0.ch002.
Full text"maize, 1.4-2.7%; of waxy barley, 2.1-8.3%; and of waxy swell only slightly in cold water. Granules differ in size rice 0-2.3%; thus the range of amylose contents of the and shape among plants. For example, corn starch has an waxy wheats is comparable to that of other waxy cereal average diameter of about 15 1.1,M, wheat starch has a bi-grains. Biochemical features of starch from waxy wheats modal size distribution of 25-40 and 5-10 [tm, potato are similar to those of waxy maize [71]. starch has an average size of 40 WTI, and rice starch has an Starch from barley contains 22-26% amylose, the rest average size of 5µm [99]. being amylopectin [28]. However, samples of 11-26% The particle sizes of starch granules have recently re-amylose are known, and starch from waxy barley contains ceived much attention because of their important roles in only 0-3% amylose, while high-amylose starches contain determining both the taste and mouthfeel of fat substitutes up to 45%. and the tensible properties of degradable plastic films. Amylose content of rice is categorized as very low Daniel and Whistler [39] reported that small-granule (0-9%), low (9-20%), intermediate (20-25%), or high starch about 2 !um in diameter, or similar in size to the lipid (25-33%) [124]. The amylose content of long grain rice micelle, had advantages as a fat substitute. Lim et al. [117] ranges from 23 to 26%, while medium grain ranges from investigated the use of starches of different particle size in 15 to 20% and short grain ranges from 18 to 20% [103]. degradable plastic film. They reported that a linear correla-Oat amylose content (16-27%) is similar to that of tion between film thickness and particle size and an in-wheat starch, but oat amylose is more linear and oat amy-verse linear correlation between film thickness and particle lopectin is more branched than that found in wheat [121]. size. Small-granule starches may also be used as face pow-Most sorghum starch is similar in composition to corn der or dusting powder, as a stabilizer in baking powder, and contains 70-80% branched amylopectin and 21-28% and as laundry-stiffening agents. amylose [127]. However, waxy or glutinous sorghum con-The size of the wheat starch granule is 1-30 lam, the tains starch with 100% amylopectin and has unique prop-size distribution being bimodal. Such a bimodal size distri-erties similar to waxy corn [158]. Badi et al. [11] reported bution is characteristic of wheat starch, as well as of rye 17% amylose in starch from one pearl milled population. and barley starches. Wheat starch consists of two basic Gracza [69] reviewed the minor constituents of starch. forms: small spherical granules (about 5-10 wri) and larg-Cereal starches contain low levels of lipids. Usually, the er lenticular granules (about 25-4011m). The small B-gran-lipids associated with starch are polar lipids. Generally, the ules are spherical and have a diameter of less than 10 wrt; level of lipids in cereal starch is between 0.5 and 1%. Be-a mean value of about 4 lam has been reported. The large sides low levels of other minerals, starches contain phos-A-granules are lenticular and have a diameter greater than phorus and nitrogen. In the cereals, phosphorus occurs 10 lam, with a mean 14.11.1m. In reality, the granules have a mostly in the form of phospholipids. The nitrogen is gener-continuous distribution of granule size within the range ally considered to be present as protein, but it may also be designated for that starch. Amylose and amylopectin are a constituent of the lipid fraction. intermixed and distributed evenly throughout the granule. The interaction between amylose and lipids is more Many believe that the composition and properties of small powerful by far than that between amylopectin and lipids and large granules are similar, but this is a subject of some [55]. It is well established that polar lipids (e.g., mono-argument and the subject of many research studies [42]. glycerides, fatty acids, and similar compounds) form a hel-Kulp [110] evaluated the fundamental and bread-mak-ical inclusion complex with the amylose molecule, be-ing properties of small wheat starch granules and com-tween the hydrocarbon chain of the lipid and the interior of pared them with those of regular starch. Small granules the amylose helix. were found to be lower in iodine affinity, indicating differ-ences in amylose levels or some fundamental structural differences. Gelatinization temperature ranges, water-binding capacities, and enzymic susceptibilities of small Starch is laid down in the shape of particles in special amy-granules were higher than those of regular ones. loplast cells in the plant. These particles are called gran-Rice has one of the smallest starch granules of cereal ules, and they are the means by which the plant stores en-grains, ranging in size from 3 to 5 pm in the mature grain, ergy for the carbohydrate in a space-saving way, but also to although the small granules of wheat starch are almost the make the energy easily accessible when the seed germi-same size [33]. The small granule size of that starch results nates [57]. One starch granule is synthesized in each amy-in physical properties that make it useful as a dusting flour loplast, and the shape and size of a starch granule is typical in bakeries. Rice starch amyloses have degree of polymer-of its botanical origin. ization (DP) values of 1000-1100 and average chain Starch granules are relatively dense, insoluble, and lengths of 250-320. These structural properties of amylose." In Handbook of Cereal Science and Technology, Revised and Expanded, 405–32. CRC Press, 2000. http://dx.doi.org/10.1201/9781420027228-41.
Full textConference papers on the topic "Plastic value-chain"
Stephen, Okocha, Ebenezer Okonkwo, and Joel Ogbonna. "Completing the Value Chain for Plastic Recyclers in Nigeria: An Integration of Renewable Solar and Conventional Gas Energy Sources for Fuel Production." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/193436-ms.
Full textKarania, Ruchi, David Kazmer, and Christoph Roser. "Plastics Product and Process Design Strategies." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57755.
Full textTietze, Matthias Rolf, Frank Schladitz, Manfred Curbach, Alexander Kahnt, and Robert Zobel. "Future applications in Carbon reinforced concrete (CRC)." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0356.
Full text