Dissertations / Theses on the topic 'Plasticity transmission'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Plasticity transmission.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Trommershäuser, Julia. "A semi-microscopic model of synaptic transmission and plasticity." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963474626.
Full textRoberts, Lindsay A. "Plasticity related gene expression in the hippocampus." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360278.
Full textGleizes, Marie. "Ectonucléotidases, adénosine et transmission synaptique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30306/document.
Full textThe functions of Tissue Nonspecific Alkaline Phosphatase (TNAP) in the brain are not clearly identified. The localization and expression of TNAP at the neuronal level, however, suggests that it plays a prominent role in the development and the function in the brain. This is supported by the presence of severe epileptic seizures in humans carrying TNAP mutation. These epileptic seizures are lethal in TNAP KO mice. Studies in mice show that TNAP could regulate GABA-mediated postsynaptic inhibition and may be involved in presynaptic inhibition mediated by adenosine. Adenosine is, partly, synthesized via the successive dephosphorylation of ATP to ADP and then to AMP by ectonucleotidases. Among them TNAP and ecto-5'-nucleotidase (NT5E) are able to hydrolyze AMP into adenosine. Adenosine acts mainly at the presynaptic level via A1 receptors activation. Adenosine has an influence on synaptic transmission and thus on synaptic plasticity. This could partly explain the epileptic seizures observed in TNAP knock-out mice. The two main purposes of my thesis were: (1) to evaluate the contribution of TNAP in adenosine production in the brain; (2) to study the influence of adenosine on synaptic plasticity. Firstly, the study of the contribution of TNAP in adenosine production in the brain was carried out using two complementary approaches. A metabolomic approach (proton NMR spectroscopy) on whole brains of TNAP KO mice showed that TNAP in involved in adenosine synthesis in the brain. In a second approach, in vitro electrophysiological recordings on mouse brain slices allowed us to examine the consequences of the inhibition of the ectonucleotidases involved in adenosine synthesis. This revealed that inhibition of ectonucleotidases (TNAP and NT5E) did not suppress the inhibitory effect of AMP mediated by A1 receptors. Secondly, we studied the influence of adenosine on short-term synaptic plasticity. Field potentials were recorded in response to electrical stimulations (3.125 to 100 Hz) applied with frequencies encompassing the range of physiological oscillation. Our results show that, with high adenosine concentrations, the facilitation is emphasized compared to that observed in the control situation. This effect is observed for frequencies greater than or equal to 25 Hz. In addition, the higher the frequency, the greater the facilitation. Finally, by blocking the action of endogenous adenosine, the opposite effect was observed: a deficient facilitation with respect to the control, whose defect was increasing with stimulation frequency. All these results converge towards the hypothesis that TNAP deficiency, expressed by absence of adenosine, could contribute to the maintenance of the epileptic processes generated by an imbalance of the neuronal inhibition and the excitation due to a decrease of GABA. AMP inhibitory effect mediated by A1 receptors, would not be sufficient to counteract epileptic seizures observed in hypophosphatasic patients and TNAP KO mice
Vaccaro, V. "The role of presynaptic mitochondria in neuronal transmission and plasticity." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1468434/.
Full textFan, Kai Yoon. "GABAergic synaptic transmission, plasticity and integration in the subthalamic nucleus." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/3167/.
Full textIvanco, Tammy L. "Activity dependent plasticity in pathways between subcortical and cortical sites." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ30095.pdf.
Full textMercier, Marion. "Role of metabotropic glutamate receptor 8 in hippocampal synaptic transmission and plasticity." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665156.
Full textJiang, Jianxiong Wooten Marie W. "Essential role for P62 in AMPA receptor trafficking and synaptic plasticity." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Biological_Sciences/Dissertation/Jiang_Jianxiong_41.pdf.
Full textSweeney, Yann Aodh. "Functional relevance of homeostatic intrinsic plasticity in neurons and networks." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20982.
Full textLiu, Zhi. "Unconventional forms of synaptic plasticity in the hippocampus and the striatum." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2616.
Full textGuimond, Damien. "Les signaux extracellulaires modèlent la transmission GABAergique dans l'hippocampe en développement : le cas de la leptine." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4030/document.
Full textThe present dissertation tackles the larger question of how external cues impact the development of the central nervous system. Our specific aim was to explore the effect of leptin, an adipocyte-derived hormone, on GABAergic plasticity in the developing rodent hippocampus. We used acute hippocampal slices of newborn rats to show that leptin induces a long lasting potentiation of the frequency of miniature GABAergic activity. Using pharmacological tools we found that this event requires a postsynaptic increase in intracellular calcium as well as specific postsynaptic signaling pathways. To address the mechanistic action of leptin we confirmed the leptin-induced plasticity on hippocampal cultures and began to develop a method to measure the morphological correlate of GABAergic synapses in culture. Applying this method suggested that the leptin-induced GABAergic plasticity might occur with a constant density of postsynaptic GABAA receptor puncta. Taken together, these data show that leptin induces a potentiation of GABAergic activity in developing hippocampal neurons, perhaps by recruiting clusters of GABAA receptors expressed at the membrane to form newly functional GABAergic synapses. In addition we found that CA3 pyramidal neurons of leptin-deficient ob/ob mice exhibit lower miniature GABAergic activity compared to wild type littermates, which suggests that leptin contributes to the development of the hippocampal GABAergic circuitry in vivo. Overall, these studies shed a new light on the development of admittedly "higher-level" cerebral regions which were found here to integrate "lower-level", peripheral signals to shape their development
Vaughan, Sydney Katherine. "The role of Lynx1, an endogenous modulator of cholinergic transmission, in NMJ development, maintenance, and repair." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100742.
Full textDoctor of Philosophy
Bukalo, Olena. "The roles of extracellular matrix molecules in synaptic transmission and plasticity in the mouse hippocampus." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964891271.
Full textBhouri, Mehdi. "Plasticity of NMDA receptor-mediated transmission and metaplasticity in the CA1 region of the hippocampus." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702111.
Full textBirget, Philip Laurent Guillaume. "Evolutionary ecology of parasites : life-history traits, phenotypic plasticity, and reproductive strategies." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28805.
Full textCompans, Benjamin. "Rôle physiologique de l’organisation des récepteurs AMPA à l’échelle nanométrique à l’état basal et lors des plasticités synaptiques." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0700/document.
Full textThe brain is a complex network of interconnected neurons responsible for all our cognitive functions and behaviors. Neurons receive inputs at specialized contact zones named synapses which convert an all or none electrical signal to a chemical one, through the release of neurotransmitters. This chemical signal is then turned back in a tunable electrical signal by receptors to neurotransmitters. However, a single neuron receives thousands of inputs coming from several neurons in a spatial- and temporal-dependent manner. The precise mechanism by which neurons receive, integrate and transmit this synaptic inputs is highly complex and is still not perfectly understood. At excitatory synapses, AMPA receptors (AMPARs) are responsible for the fast synaptic transmission. With the recent developments in super-resolution microscopy, the community has changed its vision of synaptic transmission. One breakthrough was the discovery that AMPARs are not randomly distributed at synapses but are organized in nanodomains of ~80 nm of diameter containing ~20 receptors. This content is an important factor since it will determine the intensity of the synaptic response. Due to their mM affinity for glutamate, AMPARs can only be activated when located in an area of ~150 nm in front of the neurotransmitter release site. Recently, AMPAR nanodomains have been shown to be located in front of glutamate release sites and to form trans-synaptic nanocolumns at basal state. Thus, the nanoscale organization of AMPARs regarding release sites seems to be a key parameter for the efficiency of synaptic transmission. Another breakthrough in the field was the observation that AMPARs diffuse at the cell surface and are immobilized at synapses to participate to synaptic transmission. The dynamic exchange between AMPAR diffusive pool and the receptors immobilized into the nanodomains participates to maintain the efficiency of synaptic response upon high-frequency stimulation.The overall aim of my PhD has been to determine the role of each above listed parameters on the intimate properties of synaptic transmission both at basal state and during synaptic plasticity. First, we identified the crucial role of Neuroligin in the alignment of AMPAR nanodomains with glutamate release sites. In addition, we managed to break this alignment to understand its impact on synaptic transmission properties. In parallel, we demonstrated that, due to a decrease in their affinity for synaptic traps, desensitized AMPARs diffuse more at the plasma membrane than opened or closed receptors. This mechanism allows synapses to recover faster from desensitization and ensure the fidelity of synaptic transmission upon high-frequency release of glutamate. Finally, synapses can modulate their strength through long-term synaptic plasticity, in particular, Long-Term Depression (LTD) corresponds to a long-lasting weakening of synaptic strength and is thought to be important in some cognitive processes and behavioral flexibility through synapse selective elimination. Following the previous discoveries about the impact of AMPAR dynamic nano-organization at synapses on the regulation of the synaptic transmission strength and reliability, I decided to investigate their role in the weakening of synapses. I found that AMPAR nanodomain content drops down rapidly and this depletion last several minutes to hours. The initial phase seems due to an increase of endocytosis events, but in a second phase, AMPAR mobility is increased following a reorganization of the post-synaptic density. This change in mobility allows depressed synapses to maintain their capacity to answer to high-frequency inputs. Thus, we propose that LTD-induced increase in AMPAR mobility allows to conduct a reliable response in synapses under high-frequency stimulation and thus to selectively maintain them while eliminating the inactive ones
Pickard, Lisa Andrea. "Changes in the cell surface-distribution of ionotrophic glutamate receptors during development, receptor trafficking and synaptic plasticity in cultured hippocampal neurons." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364872.
Full textSoyez, Thomas. "Étude du glissement des dislocations dans le zirconium." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP053.
Full textZirconium alloys are used in the nuclear industry as fuel cladding tubes and structural components of the fuel assemblies. In order to properly predict the mechanical behavior of those alloys throughout their usage time, it is necessary to understand the physical mechanisms controlling plasticity. Deformation in metals is usually accommodated by dislocation glide and twinning. Zirconium has a hexagonal close packed structure and its plastic deformation is anisotropic. For a mechanical loading along the axis of the crystal, the principal deformation mode corresponding to dislocation glide cannot accommodate the deformation and dislocation glide and twinning have to be activated. This thesis aims to study properties of dislocations based on two complementary approaches, Transmission Electron Microscopy (TEM) observations and atomic simulations.TEM observations underlined the glide system of the dislocations, which exclusively glide in first order pyramidal planes even, with cross slip between different first order pyramidal planes being activated at room temperature. dislocations appear rectilinear, with a preferential orientation along the direction which is the intersection between the glide plane and the basal plane. TEM in situ tensile test experiments show that this orientation glide with difficulty. Two types of glide mechanism were observed: a rigid motion where the dislocation keeps its shape while gliding and a viscous motion of these segments leading to the creation of macro-kinks.Atomic simulations rationalize the glide of dislocations in first order pyramidal plane with the existence of stacking faults in the possible glide planes and with a ground state structure of the screw dislocation which dissociates in two non-equivalent partial dislocations in a first order pyramidal plane. The evolution of this structure under an applied stress allowed to obtain the Peierls stress which depends on the direction of the applied stress and underlined a difficult glide: the Peierls stress of this screw dislocation is thirty times greater than the one of the dislocation. Thermal activation appears therefore necessary for dislocation glide. Molecular dynamics simulations evidence a glide of the screw dislocation operating by double kinks nucleation. The structure of the dislocation oriented in its direction is dissociated in its glide plane, i.e. a first order pyramidal plane, and also a secondary plane whose nature varies with the energetic model. This secondary dissociation is expected to explain the difficult glide of this orientation
Lester, R. A. J. "The involvement of excitory amino acid receptors in synaptic transmission and plasticity in area CA1 of the rat hippocampal slice." Thesis, University of Bristol, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379658.
Full textKhlghatyan, Jivan, and Jivan Khlghatyan. "Regulation of glutamatergic neurotransmission, synaptic plasticity, sleep and behavior by D2-GSK3B-FXR1." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/38090.
Full textLes études GWAS associent les variantes du gène Fxr1 à la schizophrénie, les maladies bipolaires, l’insomnie et la durée du sommeil. Gsk3β peut directement phosphoryler et ainsi réguler négativement Fxr1. De plus, les interactions fonctionnelles entre Gsk3β et Fxr1 sont associées avec la stabilité émotionnelle chez les humains. Comment Gsk3β-Fxr1 régule l’activité neuronale, la plasticité et le comportement reste inconnu. Gsk3β peut être activé en aval des récepteurs D2 de dopamine. L’activité de Gsk3β peut être modulée par les stabilisateurs d’humeur, les antipsychotiques et les antidépresseurs en régulant des comportements. Néanmoins, les corrélations neuroanatomiques de Gsk3β en aval des récepteurs D2 restent inexplorées. Nous avons étudié, en premier lieu, les relations de Gsk3β-Fxr1 avec l’activité neuronale et les comportements. Nous avons découvert que Fxr1 et son régulateur négatif Gsk3β affectent les comportements liés à l’anxiété ainsi que la neurotransmission glutamatergique via la régulation des récepteurs AMPA synaptiques. Deuxièmement, nous avons exploré l’Implication de Gsk3β-Fxr1 dans la plasticité synaptique et le sommeil. Nous avons constaté que Fxr1 est le régulateur central («maître») de la mise à l’échelle synaptique homéostatique. D’ailleurs, il est aussi engage dans l’homéostasie du sommeil et module la force synaptique en régulant les transcripts impliqués dans la synthèse locale des protéines et la structure synaptique. Troisièmement, dans le but de comprendre les corrélations neuroanatomiques nous avons généré une carte des neurones exprimant des récepteurs D2 de tout le cortex et leurs projections. En quatrième lieu, nous avons visé d’investiguer les fonctions de Gsk3β en aval des récepteurs D2 dépendamment de leur emplacement anatomique. L’invalidation (knockout) intersectoriel de Gsk3β dans les neurones D2 du cortex préfrontal murin par CRISPR/Cas9 nous a permis de révéler sa contribution dans la régulation des comportements cognitifs, sociaux et de ceux associés à l’humeur. En résumé, cette thèse de doctorat élucide les fonctions de Fxr1 dans le cerveau tout en démontrant l’utilité du CRISPR/Cas9 dans le ciblage génétique ayant pour but d’explorer les fonctions des gènes spécifiquement dans un circuit donné.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Variants in Fxr1 gene are GWAS-associated to schizophrenia, bipolar disorders, insomnia, and sleep duration. Gsk3β can directly phosphorylate and negatively regulate Fxr1. Moreover, functional interaction between Gsk3β and Fxr1 is associated with emotional stability in humans. How Gsk3β-Fxr1 regulates neuronal activity, plasticity and behaviors remains unclear. Gsk3β can be activated downstream of dopamine D2 receptors. Gsk3β activity can be modulated by mood stabilizers, antipsychotics and antidepressants to regulate behaviors. Nevertheless, neuroanatomical correlates of Gsk3β functions downstream of D2 receptors remain elusive. First, we investigated the relationship of Gsk3β-Fxr1 to neuronal activity and behaviors. We discovered that Fxr1 and its negative regulator Gsk3β affect anxiety-related behaviors and glutamatergic neurotransmission via regulation of synaptic AMPA receptors. Second, we addressed the involvement of Gsk3β-Fxr1 in synaptic plasticity and sleep. We discovered that Fxr1 is a master regulator of homeostatic synaptic scaling. Moreover, it is engaged during sleep homeostasis to modulate synaptic strength via regulation of transcripts involved in local protein synthesis and synaptic structure. Third, to understand neuroanatomical correlates of D2 receptor signaling we generated a cortex-wide map of D2 expressing neurons and their projection targets. Fourth, we aimed to understand anatomically defined functions of Gsk3β downstream of D2 receptors. CRISPR/Cas9 mediated intersectional knockout of Gsk3β in D2 neurons of mPFC elucidated its contribution to the regulation of cognitive, social and mood-related behaviors. Overall, this thesis sheds light on brain functions of a GWAS-identified risk gene Fxr1 and shows the utility of intersectional CRISPR/Cas9 mediated genetic targeting for the interrogation of circuitspecific functions of genes.
Kourdougli, Nazim. "Hippocampal structural reactive plasticity in a rat model of temporal lobe epilepsy : chloride homeostasis as a keystone." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4091.
Full textThe present dissertation undertakes to investigate the early triggering events of the mossy fiber sprouting (MFS) in the dentate gyrus, a hallmark of hippocampal reactive plasticity in Temporal Lobe Epilepsy (TLE). We used the rat pilocarpine model of TLE to show that altered GABAA receptor-mediated transmission play a key role in the formation of early ectopic MFS during epileptogenesis. This is likely due to a compromised chloride homeostasis, as a result of increased expression of chloride loader NKCC1 and downregulation of the neuronal chloride extruder KCC2. We next addressed the mechanistic action of depolarizing GABAAR responses with regard to neurotrophin signaling. Our findings uncovered that the pan neurotrophin receptor p75 (p75NTR) mediated the sculpting action of depolarizing GABAAR responses on the ectopic MFS. Blockade of depolarizing GABAAR responses using the loop diuretic bumetanide reduced abnormal p75NTR subsequently decreased the ectopic MFS. Finally, transitory application of bumetanide during epileptogenesis resulted in reduction of spontaneous and recurrent seizures during the chronic phase of TLE. The rationale of this work is that unveiling the molecular mechanisms underlying the hippocampal post-seizure glutamatergic network rewiring will help to drive future novel therapeutic avenues involving chloride homeostasis and neurotrophin interplay. Overall, this dissertation shed a new light on how GABAergic transmission and neurotrophin signaling crosstalk can orchestrate reactive hippocampal plasticity in TLE
Coumis, Urania. "The role of galanin in synaptic transmission and plasticity in the CA1 area of the rodent hippocampus." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/29073.
Full textSzulc, B. R. "Synthesis and discovery of the putative cognitive enhancer BRS-015 : effect on glutamatergic transmission and synaptic plasticity." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1462589/.
Full textJiang, Nan. "Plasticité de la transmission synaptique dans l’hippocampe et excitabilité intrinsèque dans un modèle murin de la maladie d’Alzheimer." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0137/document.
Full textAzheimer's disease (AD) is a neurodegenerative disease that is linked in its early stage to synaptic dysfunction and loss of synapses. Numerous clinical data obtained from patients but also experimental data obtained on mouse models of AD show that there is a sexual dimorphism evidenced by a higher amyloid plaque deposition and an early onset of memory disorders in female mice compared to male mice.In this work, we investigated the molecular and cellular alterations of AD as well as the associated cognitive deficits in female APP/PS1 mice, a double transgenic murine model of AD. In parallel we studied the alterations of hippocampal synaptic transmission and plasticity in the stratum moleculare, a layer in the vicinity of the dentate gyrus (DG) which specifically displayed a high density of amyloid plaques. We showed the presence of numerous amyloid plaques in the DG in a larger amount in 6 month old females compared to age-matched males as well as a strong activation of astrocyte and microglia glial cells. These molecular and cellular alterations are accompanied by hippocampo-dependent memory deficits (contextual fear conditioning and novel object place recognition task) from the age of 4 months in females whereas males have no deficit until the age of 12 months. We then studied the electrical properties of DG neurons, the transmission and the plasticity of the perforant pathway - DG neurons (PP-DG synapse) in the 6-month old female mouse by comparing the two genotypes APP/PS1 vs wild type (WT).In both genotypes, DG neurons displayed two distinct populations in terms of input resistance and action potential discharge pattern (APs). In contrast, the resting membrane potential, the input resistance, the activation threshold and the amplitude PAs were not modified in APP/PS1 vs WT. The frequency of discharge of APs was increased in APP/PS1 without shift of E-S curve which relates EPSP-slopes to the associated AP firing probability.Basal transmission at the PP-DG synapse was altered in the APP/PS1 mouse vs WT without alterations in the AMPA/NMDA ratio or the AMPA rectification index. The frequency of the NMDA miniature currents was increased in APP/PS1 DG neurons vs WT which suggests the unmasking of silent synapses that express almost no AMPA receptors. The long term potentiation (LTP) of population spike amplitude was decreased by approximately 50% in APP/PS1 mice. The decrease in LTP observed in APP/PS1 was partly related to alterations in the intrinsic properties of DG neurons as evidenced by LTP-induced shifts of E-S curves, which reflects an increased excitability for APP/PS1 mice.In conclusion our results show a prominent sexual dimorphism with much earlier amyloid plaque deposition, neuroinflammatory glial activation in female vs male APP/PS1. In parallel, significant deficits in hippocampal-dependent memory are observed as well as alterations of synaptic transmission and plasticity at the PP-DG synapse, a key synapse of the integration of mnesic informations originated from the entorhinal cortex
Sibille, Jérémie. "Activity-dependent astroglial potassium and calcium signals contribute to hippocampal short-term plasticity." Paris 7, 2013. http://www.theses.fr/2013PA077284.
Full textWood, Catherine Louise. "The role of PICK1-Actin cytoskeleton interactions in synaptic transmission and plasticity at the hippocampal schaffer collateral synapse." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500399.
Full textLucas, Sarah Jane. "The role of group II metabotropic glutamate receptors in synaptic transmission and synaptic plasticity in the lateral amygdala." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544343.
Full textCheng, Wenwen. "Amyloid-β oligomers reduces glutamatergic transmission and inhibits synaptic plasticity with underlying mechanisms suggestting akap150 modulates diverse synaptic functions." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283407.
Full textBeta amyloid (Aß) is a peptide generated from the amyloid precursor protein (APP) by the neurons, which is believed to be involved in the basis of the pathophysiology of Alzheimer's disease (AD). Aß is directly involved in modulating synaptic function and pathological Aß levels inhibit synaptic plasticity. Soluble forms of A adversely affect the process of synaptic transmission, involving the loss of synaptic receptors by yet unknown mechanisms. Major ionotropic glutamate receptors implicated in excitatory synaptic transmission are the receptors for the alpha 4,5-amino-3-hydroxy-methyl-isoxazolepropionic (AMPARs) receptors and N-methyl D-aspartate receptor (NMDAR). The movement of AMPARs into and out of the synapse between intracellular stores and the cell surface plays an important role in synaptic plasticity phenomena as long-term potentiation (LTP) or long-term depression (LTD). The A-kinase anchoring protein (AKAPs), plays a critical role in synaptic plasticity and in stabilizing NMDAR and AMPARs. In our study, exposure of cultured cortical neurons to Aβo or NMDA (cLTD) reduced the levels of protein AKAP150. By using different pharmacological agents and molecular tools, we studied the changes in the levels of AKAP induced Aβo and NMDA. Our results indicate that this effect is dependent on proteasome and calcineurin activities. Moreover, the reducing effect of NMDA on Aβo and AMPAR levels was mimicked by silencing expression AKAP150 and blocked by overexpression of AKAP150. Aβo could be involved in the deficit of dendritic mRNA transport and translation. miRNAs are small non-coding RNAs that act as post-transcriptional regulators of gene expression. In early AD, and dystrophic neurites having the synaptic failure, there is an alteration in the levels of certain miRNAs. Exposure to long-term showed Ao miR125a and miR132 were reduced as much exposure to NMDA induces long-term decline of miR181a. Inhibitor experiments indicated that Ca2 + can and may be involved in modulating mir181a by long term exposure to NMDA.
Klook, Kerstin Carina [Verfasser]. "Structural and functional determinants of synaptic transmission and plasticity at layer 4 synapses in the neocortex / Kerstin Carina Klook." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1023969718/34.
Full textWillmes, Claudia Gisela [Verfasser]. "Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin / Claudia Gisela Willmes." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2017. http://d-nb.info/1140487078/34.
Full textBeauchemin-Turcotte, Marie-Eve. "Modulation of glutamatergic synaptic transmission and plasticity by sigma receptor type 1 in the CA1 region of the hippocampus." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27224.
Full text真子, 北川, and Mako Kitagawa. "Developmental fine-tuning of excitatory synaptic transmission at input synapses in the rat inferior colliculus." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127446/?lang=0, 2020. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13127446/?lang=0.
Full textThe inferior colliculus (IC) is the primal center of convergence and integration in the auditory pathway. I have measured excitatory synaptic currents (EPSCs) of the neurons in the central nucleus of the IC in response to stimulation of the lateral lemniscus and the commissure of the IC. Before hearing onset, the lemniscus inputs exhibited short-term depression, whereas commissural inputs showed facilitation. After hearing onset, the NMDA-EPSCs exhibited faster decay for both pathways. Furthermore, the EPSCs showed less short-term plasticity in both pathways. These developmental changes may ensure faster and more reliable signal transmission to the IC after onset of hearing.
博士(理学)
Doctor of Philosophy in Science
同志社大学
Doshisha University
Toland, Andrew Hamilton. "Short-Term Plasticity at the Schaffer Collateral: A New Model with Implications for Hippocampal Processing." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/756.
Full textLepsveridze, Eka. "Synaptic transmission and plasticity in major excitatory hippocampal synapses of L1 conditional and CHL1 constitutive knockout mice (Mus musculus L., 1758)." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980970547.
Full textKieselmann, Olga [Verfasser]. "Einfluss von Lysophosphatidsäure auf synaptische Transmission und Expressionsanalysen von Plasticity related gene 1 und LPA-Rezeptoren während der Gehirnentwicklung / Olga Kieselmann." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/1025353811/34.
Full textXing, Xiaomin. "Genetic and functional analysis of synaptic CA²⁺ dynamics in Drosophila." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/2168.
Full textMalinina, Evgenya. "Neurotransmission and functional synaptic plasticity in the rat medial preoptic nucleus." Doctoral thesis, Umeå : Umeå university, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-25874.
Full textWarren-Paquin, Maude. "Regulation of synaptic plasticity at the Drosophila larval NMJ : the role of the small GTPase Rac." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112319.
Full textBushell, Trevor John. "The role of group II and group III metabotropic glutamate receptors in synaptic transmission and plasticity in the mouse and rat hippocampus." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337226.
Full textGanguly, Archan. "The Role of Serotonin-cAMP Mediated Signaling in Drosophila Central Synaptic Transmission and its Implications in Larval Olfactory Associative Learning." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1331263683.
Full textDiana, Marco Alberto. "Charakterisierung von einer retrograden Modulation inhibitorischer synaptischer Transmission im Kleinhirn der Ratte." Doctoral thesis, [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971021988.
Full textMcCaffery, Brian. "Studies of the roles of metabotropic glutamate receptors in synaptic transmission and plasticity in the perirhinal and hippocampal cortices of mice and rats." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300562.
Full textBerthoux, Coralie. "Rôle des récepteurs 5-HT2A et 5-HT6 du cortex préfrontal dans la modulation de la transmission synaptique, la plasticité et la cognition." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT166.
Full textSerotonin is involved in many physiological functions, such as the control of appetite, sleep, pain, mood and cognition. This major neuromodulator acts via different receptors, which are, for the most part, coupled to G-proteins. Among these, 5-HT2A and 5-HT6 receptors are of particular interest since they are the target of many therapeutic drugs, such as antidepressants and last-generation antipsychotics. These are administered to treat schizophrenia and have beneficial effects on positive (hallucinations, delusions) and negative (lack of motivation) symptoms. Nevertheless, they poorly control cognitive deficits (impaired working memory, decreased attention, alteration in social cognition) which severely compromise the social integration of patients and their quality of life. These deficits are also found in chronic cannabis users during adolescence, suggesting common pathological mechanisms. Therefore, the discovery of new therapeutic strategies to treat these cognitive deficits is a major public health issue.During my thesis work, I studied the role of serotonin receptors, focusing on 5-HT2A and 5-HT6 receptors, in the modulation of synaptic transmission and plasticity in the prefrontal cortex. By combining biochemical approaches with electrophysiological and behavioral analyses, I initially demonstrated that 5-HT2A receptors expressed at thalamocortical synapses play a crucial role in the induction of synaptic plasticity and in associative memory. Secondly, I demonstrated the benefits of early blockade of 5-HT6 receptors for preventing cognitive deficits induced in a neurodevelopmental model of schizophrenia and a model of chronic cannabis abuse during adolescence. These studies offer new therapeutic strategies to prevent the emergence of cognitive deficits and conversion to schizophrenia in at-risk subjects
Carter, Lucy Mary. "Evolutionary ecology of reproductive strategies in malaria parasites." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9910.
Full textHara, Yuko. "Dopamine-dependent plasticity and subcellular locations of dopamine D1 receptors : in relation to glutamate NMDA receptors and endogenous opioids in the nucleus accumbens, implications for schizophrenia /." Access full-text from WCMC, 2008. http://proquest.umi.com/pqdweb?did=1528441261&sid=22&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Full textKoon, Alex C. "Autoregulatory and Paracrine Control of Synaptic and Behavioral Plasticity by Dual Modes of Octopaminergic Signaling: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/572.
Full textSpeed, Haley E. "Changes in short-term facilitation are opposite at Schaffer collateral and Temporoammonic CA1 synapses in the developing rat hippocampus." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008p/speed.pdf.
Full textHolohean, Alice Marie. "A Quantitative Description of the Interaction of Enhancement and Depression of Transmitter Release at the Neuromuscular Junction." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/19.
Full textTakeda, Michiko [Verfasser], Hiroshi [Akademischer Betreuer] Kawabe, Nils [Akademischer Betreuer] Brose, and Andreas [Akademischer Betreuer] Stumpner. "The Role of the E3 Ubiquitin Ligases Nedd4-1 and Nedd4-2 in Synaptic Transmission and Plasticity / Michiko Takeda. Gutachter: Nils Brose ; Andreas Stumpner. Betreuer: Hiroshi Kawabe." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://d-nb.info/104430779X/34.
Full textLeonardon, Benjamin. "Modulation de la transmission synaptique inhibitrice par les récepteurs NMDA dans la corne dorsale de la moelle épinière de souris." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAJ006.
Full textIn the dorsal horn (DH) of the spinal cord, inhibitory synaptic transmission plays a key role in the processing of nociceptive information. This inhibition can display plastic changes linked with hyperalgesia and allodynia associated with neuropathic pain. In the DH, NMDA receptors are recruited following a nerve injury. Although their role in plastic phenomenon is well established, little is known about their involvement in spinal inhibition plasticity. My research project aims at studying the effect of NMDA receptor activation on spinal synaptic inhibition in a normal state and during neuropathic pain. To do so we used an electrophysiological approach on acute spinal cord slices of adult mice. Results obtained allow a better understanding of the mechanism underlying the modulation and plasticity of inhibitory transmission within the spinal nociceptive network