Academic literature on the topic 'Plastid transcription'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plastid transcription.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plastid transcription"

1

Deng, X. W., D. B. Stern, J. C. Tonkyn, and W. Gruissem. "Plastid run-on transcription. Application to determine the transcriptional regulation of spinach plastid genes." Journal of Biological Chemistry 262, no. 20 (July 1987): 9641–48. http://dx.doi.org/10.1016/s0021-9258(18)47982-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toyoshima, Yoshinori, Yayoi Onda, Takashi Shiina, and Yoichi Nakahira. "Plastid Transcription in Higher Plants." Critical Reviews in Plant Sciences 24, no. 1 (February 23, 2005): 59–81. http://dx.doi.org/10.1080/07352680590910438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bruce Cahoon, A., and David B. Stern. "Plastid transcription: a menage à trois?" Trends in Plant Science 6, no. 2 (February 2001): 45–46. http://dx.doi.org/10.1016/s1360-1385(00)01858-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andreeva, A. A., I. A. Bychkov, M. N. Danilova, N. V. Kudryakova, and V. V. Kusnetsov. "Cytokinins and Abscisic Acid Regulate the Expression of the Genes for Plastid Transcription Apparatus during Heat Shock." Доклады Академии наук 486, no. 1 (May 10, 2019): 108–13. http://dx.doi.org/10.31857/s0869-56524861108-113.

Full text
Abstract:
The treatment of Arabidopsis thaliana plants with exogenous cytokinin (CK) followed by heat shock (HS) activated the expression of the genes for the plastid transcription machinery but adversely affected the plant viability. Abscisic acid (ABA), conversely, promoted maintaining the resistance to HS and had differentially affected different components of the plastid transcriptional complex. This hormone suppressed the accumulation of transcripts of PEP genes and the genes encoding PAP proteins, which are involved in DNA-RNA metabolism. However, it had no effect or activated the expression of NEP genes and PAP genes, which are involved in the redox regulation, as well as the genes encoding the stress-inducible trans-factor (SIG5) and the plastid transcription Ser/Thr protein kinase (spCK2). Thus, for the adaptation of plants to elevated temperatures, both increase and decrease in the expression of the genes for the plastid transcriptional machinery with the involvement of various regulatory systems, including phytohormones, are equally significant.
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmad, Niaz, and Brent L. Nielsen. "Plastid Transcriptomics: An Important Tool For Plastid Functional Genomics." Protein & Peptide Letters 28, no. 8 (September 10, 2021): 855–60. http://dx.doi.org/10.2174/0929866528999210128210555.

Full text
Abstract:
Plastids in higher plants carry out specialized roles such as photosynthesis, nitrogen assimilation, biosynthesis of amino acids, fatty acids, isoprenoids, and various metabolites. Plastids arise from undifferentiated precursors known as proplastids, which are found in the root and shoot meristems. They are highly dynamic as they change their number, morphology, and physiology according to the tissue they are present. In addition to housing various metabolic activities, plastids also serve as a global sensor for both internal and external environmental cues including different stresses, and help plants to respond/adjust accordingly. They relay information to the nucleus, which then responds by changing the expression levels of specific genes. It has been shown that plants with impaired plastid functions exhibit abnormalities. One of the sources emanating these signals to the nucleus is plastid transcription. Normal plastid functioning is therefore critical for plant survival. Despite immense significance for plant acclimation, the plastid transcriptome is largely an unstudied research area. In this review, we discuss the importance of plastid transcriptomics for the acclimation of plants under changing environmental conditions and summarize the key literature published in this field.
APA, Harvard, Vancouver, ISO, and other styles
6

Gray, John C., James A. Sullivan, Jun-Hui Wang, Cheryl A. Jerome, and Daniel MacLean. "Coordination of plastid and nuclear gene expression." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, no. 1429 (January 29, 2003): 135–45. http://dx.doi.org/10.1098/rstb.2002.1180.

Full text
Abstract:
The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre–eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis–related proteins is regulated by signals from plastids. Perturbation of several plastid–located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis–related genes. Characterization of arabidopsis gun ( genomes uncoupled ) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis–related proteins.
APA, Harvard, Vancouver, ISO, and other styles
7

Tadini, Luca, Nicolaj Jeran, Carlotta Peracchio, Simona Masiero, Monica Colombo, and Paolo Pesaresi. "The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1801 (May 4, 2020): 20190399. http://dx.doi.org/10.1098/rstb.2019.0399.

Full text
Abstract:
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes ( rpoA , rpoB , rpoC1 and rpoC2 ), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes ( PhANGs ) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1 , in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, E., B. W. Wu, and K. K. Tewari. "In vitro analysis of the pea chloroplast 16S rRNA gene promoter." Molecular and Cellular Biology 9, no. 12 (December 1989): 5650–59. http://dx.doi.org/10.1128/mcb.9.12.5650.

Full text
Abstract:
A cloned pea chloroplast 16S rRNA gene promoter has been characterized in detail by use of a homologous in vitro transcription system that contains a highly purified chloroplast RNA polymerase. The in vivo and in vitro 16S rRNA transcriptional start site has been identified to be a T on the plus strand, 158 bases upstream of the mature 5' end of the gene. BAL 31 deletions of the 16S rRNA leader region demonstrated that the bases between -66 to +30 relative to the transcriptional start site (+1) are necessary for specific 16S transcription. Disruption of canonical TTGACA or TATAAT elements within this region caused complete transcriptional inactivation and prevented protein binding. The topological requirement for 16S transcription was examined by using a construct that synthesized a transcript from the 16S promoter and released it from a pea plastid putative terminator sequence. This minigene was relaxed in vitro with a topoisomerase I from pea chloroplast. It was shown that the 16S promoter was most active when the minigene plasmid was supercoiled.
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, E., B. W. Wu, and K. K. Tewari. "In vitro analysis of the pea chloroplast 16S rRNA gene promoter." Molecular and Cellular Biology 9, no. 12 (December 1989): 5650–59. http://dx.doi.org/10.1128/mcb.9.12.5650-5659.1989.

Full text
Abstract:
A cloned pea chloroplast 16S rRNA gene promoter has been characterized in detail by use of a homologous in vitro transcription system that contains a highly purified chloroplast RNA polymerase. The in vivo and in vitro 16S rRNA transcriptional start site has been identified to be a T on the plus strand, 158 bases upstream of the mature 5' end of the gene. BAL 31 deletions of the 16S rRNA leader region demonstrated that the bases between -66 to +30 relative to the transcriptional start site (+1) are necessary for specific 16S transcription. Disruption of canonical TTGACA or TATAAT elements within this region caused complete transcriptional inactivation and prevented protein binding. The topological requirement for 16S transcription was examined by using a construct that synthesized a transcript from the 16S promoter and released it from a pea plastid putative terminator sequence. This minigene was relaxed in vitro with a topoisomerase I from pea chloroplast. It was shown that the 16S promoter was most active when the minigene plasmid was supercoiled.
APA, Harvard, Vancouver, ISO, and other styles
10

Sanitá Lima, Matheus, and David Roy Smith. "Pervasive Transcription of Mitochondrial, Plastid, and Nucleomorph Genomes across Diverse Plastid-Bearing Species." Genome Biology and Evolution 9, no. 10 (September 27, 2017): 2650–57. http://dx.doi.org/10.1093/gbe/evx207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Plastid transcription"

1

MacLean, Daniel. "Plastid transcriptomics and transcription of nuclear genes for the plastid genetic system." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morikawa, Kazuya. "Regulation of Plastid Gene Transcription by Sigma Factors and Sigma Factor Binding Proteins." Kyoto University, 2001. http://hdl.handle.net/2433/150743.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(人間・環境学)
甲第9028号
人博第121号
12||123(吉田南総合図書館)
新制||人||30(附属図書館)
UT51-2001-F358
京都大学大学院人間・環境学研究科文化・地域環境学専攻
(主査)教授 豊島 喜則, 教授 藤堂 剛, 助教授 瀬戸口 浩彰
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
3

Bligny, Muriel. "Caractérisation d'une ARN polymérase d'origine nuléaire (NEP) dans les plastes d'épinard." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10055.

Full text
Abstract:
Nous avons aborde la caracterisation du systeme transcriptionnel plastidial nep grace a une approche in vitro utilisant le promoteur de l'operon plastidial rrn, pc, et des extraits plastidiaux contenant la nep. Dans un premier temps, nous avons verifie que le promoteur pc, utilise dans les chloroplastes d'epinard, est un promoteur nep. Nous avons ensuite separe et caracterise trois activites transcriptionnelles a partir d'extraits chloroplastiques d'epinard partiellement purifies, et en grande partie grace a la mise au point d'un systeme de transcription in vitro. La premiere correspond a la pep. La seconde, appelee nep-2, reconnait le promoteur pc in vitro et la troisieme, ou nep-1, pourrait etre une arnp de 110 kda de type phagique codee par un gene rpot. En ce qui concerne la nep-2, nous avons observe qu'elle n'est pas inhibee par la tagetitoxine tandis qu'elle l'est partiellement par la rifampicine a une concentration elevee d'une part, et d'autre part, qu'elle semble reconnaitre le promoteur t7. Nous en avons deduit que la nep-2 est probablement une arnp de type phagique. Le fait que la nep-1 pourrait elle aussi etre une arnp de type phagique resulte des observations suivantes : elle est reconnue par un anticorps dirige contre une proteine deduite d'un gene rpot, son poids moleculaire apparent est de 110-120 kda et le test alpa montre qu'elle a les proprietes d'une arnp. Ainsi, non pas une, mais deux arnps de type phagique pourraient partager la transcription du genome plastidial avec la pep ! enfin, nous avons demontre que cdf2 est un facteur d'initiation de la transcription conferant a la nep-2 la capacite de reconnaitre specifiquement le promoteur pc.
APA, Harvard, Vancouver, ISO, and other styles
4

Campos, Maria Doroteia Murteira Rico da Costa. "Transcription of alternative oxidase (AOX) and plastid terminal oxidase (PTOX) during stress-regulated root tissue growth in Daucus carota L. - An approach to identify functional marker candidates for breeding on carrot yield stability." Doctoral thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/18730.

Full text
Abstract:
A presente tese explora a hipótese de utilização dos genes da oxidase alternativa (AOX) e da oxidase terminal da plastoquinona (PTOX) como genes-alvo para o desenvolvimento de marcadores funcionais (MF) para avaliar a performance do crescimento em cenoura, fator determinante da produtividade. Para avaliar se os referidos genes estão associados com o crescimento da cenoura procedeu—se ao seu isolamento e posterior análise dos seus perfis de transcrição em diversos sistemas biológicos. O sistema in vitro selecionado, denominado sistema de culturas primárias, permitiu avaliar alterações na quantidade de transcritos desses genes durante os processos de reprogramação celular e crescimento. Ao nível da planta foi também estudado o efeito do frio na expressão precoce dos genes AOX. Ambos os genes DcAOX1 e DcAOX2a revelaram uma resposta rápida e um padrão semelhante apos stresse (inoculação in vitro e resposta ao frio). Foi igualmente verificado um incremento na expressão do gene DcPTOX durante a fase inicial do processo de reprogramação celular. Estudos de expressão dos genes AOX durante o desenvolvimento da raiz da cenoura revelaram que o gene DcAOX2a será potencialmente o gene mais envolvido neste processo. De modo a avaliar a hipótese de envolvimento do gene DcPTOX no crescimento da raíz procederam—se a estudos de expressão ao nível do tecido meristemático. Todavia, para um mais completo entendimento da ligação entre DcPTOX e o crescimento secundário e/ou acumulação de carotenos, a expressão do gene DcPTOX foi também avaliada em raízes de cenoura durante o desenvolvimento, utilizando cultivares caracterizadas por distintos conteúdos de carotenos. Os resultados obtidos demonstraram a associação do gene DcPTOX a ambos os processos. O envolvimento da PTOX no crescimento adaptativo da raiz foi analisado com um ensaio que permitiu identificar, no tecido meristemático, uma resposta precoce do gene DcPTOX face a uma diminuição da temperatura. Adicionalmente, foi efetuada a seleção de genes de referência para uma analise precisa da expressão génica por RT-qPCR em diversos sistemas biológicos de cenoura, e a importância do seu estudo ao nível do sistema biológico foi realçada. Os resultados desta tese são encorajadores para prosseguir os estudos de utilização dos genes AOX e PTOX como MF no melhoramento da performance do crescimento adaptativo em cenoura, fator determinante para a produtividade; ABSTRACT: This thesis explores the hypothesis of using the alternative oxidase (AOX) and theplastid terminal oxidase (PTOX) as target genes for functional marker (FM) development for yield-determining growth performance in carrot. To understand if these genes are associated to growth, different AOX gene family members and the single PTOX gene were isolated, and their expression patterns evaluated in diverse carrot plant systems. An in-vitro primary culture system was selected to study AOX and PTOX transcript changes during cell reprogramming and growth performance. At plant level, a putative early response of AOX to chilling was also evaluated. In fact, both DcAOXl and DcAOXZa were early responsive and showed similar patterns under stress conditions (in vitro inoculation and chilling). A role for DcPTOX during earliest events of cell reprogramming was also suggested. Next, the expression profiles of AOX gene family members during carrot tap root development were investigated. DcAOXZa was identified as the most responsive gene to root development. In order to evaluate if DcPTOX is associated with carrot tap root growth performance, DcPTOX transcript levels were measured in the central root meristem. To further understand whether DcPTOX is associated with secondary growth and/or carotenoids accumulation, DcPTOX expression was also studied in deveIOping carrot tap roots in cultivars with different carotenoids contents. The results indicated that DcPTOX associates to both carotenoid biosynthesis and secondary growth during storage root development. To obtain further insights into the involvement of PTOX on adaptive growth, the early effects of temperature decrease were explored in the root meristem, where a short—term early response in DcPTOX was found, probably associated with adaptive growth. Furthermore, a selection of the most suitable reference genes for accurate RT—qPCR analysis in several carrot experimental systems was performed and discussed. The present research provides the necessary toolbox for continuing studies in carrot AOX and PTOX genes as promising resources for FM candidates in order to assist breeding on yield—determining adaptive growth performance.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhelyazkova, Petya. "The transcriptome of barley chloroplasts revealed by deep sequencing." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16649.

Full text
Abstract:
Die gegenwärtige Vorstellung von Genexpression in Plastiden leitet sich von der Analyse weniger, individueller Gene ab und ist deshalb noch relativ lückenhaft. In dieser Arbeit sollte daher differenzierende RNA Sequenzierung- eine neue Methode, die zwischen prozessierten und Primärtranskripten unterscheiden kann, verwendet werden, um ein vollständigeres Bild des Transkriptionsprozesses und der RNA Prozessierung von Hordeum vulgare L. (Gerste) Chloroplasten zu erhalten. Plastidengene in höheren Pflanzen können sowohl von einer plastidenkodierten, bakterienähnlichen RNA-Polymerase (PEP), als auch von einer kernkodierten, phagenähnlichen RNA-Polymerase (NEP), die beide unterschiedliche Promotoren erkennen, abgelesen werden. In dieser Arbeit wurde die Verteilung von Transkriptionsstartstellen innerhalb des Plastidengenoms von grünen (reife Chloroplasten; Transkriptionsaktivität von PEP und NEP) und weißen Plastiden (Transkriptionsaktivität von NEP) der Gerstenmutantenlinie albostrians analysiert. Dies führte zu neuen Erkenntnissen bezüglich polymerasenspezifischer Genexpression in Plastiden. Auf Grundlage neuerer Arbeiten wird angenommen, daß nicht kodierende RNAs (ncRNAs) in Chloroplasten vorkommen. Die bisher verwendeten Methoden waren jedoch nicht geeignet, ncRNAs als Primärtranskripte zu identifizieren, die zumindest in Prokaryoten die häufigste Klasse von ncRNAs darstellen. In dieser Arbeit konnte durch dRNA-seq gezeigt werden, daß auch in Plastiden zahlreiche ncRNAs als Primärtranskripte generiert werden. Die wichtigsten Schritte im Prozess der mRNA Reifung in Plastiden sind 5´und 3´ Endformation und intercistronische Prozessierung. Vor Kurzem wurde gezeigt, daß ein PPR (Pentatricopeptide repeat) Protein zur Bildung der Ende von einigen prozessierten Plastiden mRNAs beiträgt, indem es als Hindernis für Exonukleasen wirkt. Mit dieser Arbeit konnte gezeigt werden, daß dies ein genereller Mechanismus zur Bildung prozessierter mRNA-Enden in Chloroplasten ist.
The current view on plastid gene expression is mainly based on the analysis of a few individual genes, and thus it is lacking in comprehensiveness. Here, a novel differential RNA-seq approach, designed to discriminate between primary and processed transcripts, was used to obtain a deeper insight into the plastid transcription and RNA maturation of mature barley (Hordeum vulgare L.) chloroplasts. Transcription in plastids of higher plants is dependent on two different transcription machineries, a plastid-encoded bacterial-type RNA polymerase (PEP) and a nuclear-encoded phage-type RNA polymerase (NEP), which recognize distinct types of promoters. This study provided a thorough investigation into the distribution of transcription start sites within the plastid genome of green (mature chloroplasts; transcription by both PEP and NEP) and white (PEP-deficient plastids; transcription by NEP) plastids of the barley line albostrians. This analysis led to new insights on polymerase specific gene expression in plastids. Recent studies have suggested that non-coding RNAs (ncRNAs) are common in chloroplasts. However, they did not directly detect ncRNAs generated via transcription, the so far most abundant class of known regulatory ncRNAs in bacteria. Here, dRNA-seq analysis of the transcriptome of barley chloroplasts demonstrated the existence of numerous ncRNA generated via transcription of free-standing genes. Major events in plastid mRNA maturation include 5’ and 3’ processed end formation and intercistronic processing. Recently, a PPR (pentatricopeptide repeat) protein was shown to participate in the generation of several plastid mRNA processed ends by serving as a barrier to exonucleases. This study provided evidence for the global impact of this mechanism on processed termini formation in chloroplasts.
APA, Harvard, Vancouver, ISO, and other styles
6

Hertel, Stefanie. "Aspekte der plastidären Transkription." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/15961.

Full text
Abstract:
In dieser Arbeit wurde die plastidäre Genexpression hinsichtlich zweier Aspekte untersucht: der Cytokinineinfluss auf die plastidäre Transkription und ihrer Komponenten sowie eine in vivo-Charakterisierung von PrpoB-345, des Promotors des rpoB-Operons im Tabak. Cytokinine beeinflussen die Chloroplastenbiogenese und –funktion. Um den Einfluss von Cytokinin auf die plastidäre Genexpression zu untersuchen, wurden run-on-Transkriptionsassays und quantitative real-time RT-PCR von BA-behandelten seneszenten Tabakblättern und sieben-Tage-alten Arabidopsis- und Tabakpflanzen durchgeführt. Zeitreihenanalysen zeigten eine Aktivierung der plastidären Transkription in jungen Pflanzen und im seneszenten Tabak 2 h bzw. 3 h nach BA-Applikation. Abgeschnittene Blätter von Tabakmutanten mit konstitutiv reduziertem Cytokiningehalt antworteten bereits nach 30 min der Hormonbehandlung. Es gibt jedoch keinen eindeutigen Hinweis für eine direkte Korrelation zwischen der Expression der nukleär kodierten Phagentyp-RNA-Polymerasen und der BA-induzierten transkriptionellen Aktivierung der Plastidengene. Zusammengefasst, scheint die Antwort auf exogenes Cytokinin vom physiologischen Status der Chloroplasten, die von der Pflanzenart sowie vom endogenen Cytokiningehalt beeinflusst werden, abzuhängen. Plastidäre Gene höherer Pflanzen werden von mindestens zwei RNA-Polymerasen transkribiert: die plastidär kodierte RNA-Polymerase vom Bakterientyp (PEP) und die kernkodierte Phagentyp-RNA-Polymerase (NEP). NEP transkribiert das rpoB-Operon, das drei von vier Untereinheiten der PEP kodiert. Transkriptions- und Transkriptanalysen von rpoB-Promotor-Deletionsmutanten ergaben Hinweise auf mögliche Regulationsstellen der Kontrolle der rpoB-Transkription. Neben PrpoB-345 konnten zwei weitere Promotoren kartiert werden. Einer von ihnen ist ein putativer PEP-Promotor, der auf autoregulatorische Rückkopplungsmechanismen bei der PEP-Expression hindeutet.
In this study, plastid gene expression was analyzed focusing on two aspects: the effect of cytokinin on plastid gene transcription and its components, and the in vivo characterization of PrpoB-345, the promoter of the rpoB operon in tobacco. Cytokinins are involved in the control of chloroplast biogenesis and function. To study cytokinin effects on plastid gene expression, chloroplast run-on transcription and quantitative real-time RT-PCR from senescent tobacco leaves as well as Arabidopsis and tobacco seedlings after BA treatment were performed. Analyses of time series revealed that BA-induced changes in plastid gene expression are seemingly under circadian and homeostatic control. After 2 h and 3 h of incubation with cytokinin, a stimulation of chloroplast transcription could be observed in seedlings and senescent leaves, respectively. Detached leaves of tobacco mutants with reduced endogenous cytokinin content responded even faster to BA (30 min). There is no indication of direct correlation of the expression of nuclear-encoded plastid phage-type RNA-polymerases and the BA-induced transcriptional activation of plastid genes. In summary, the responsiveness to exogenous cytokinin depends on the physiological status of chloroplasts influenced by plant species and endogenous cytokinin pool. Plastid genes of higher plants are transcribed by at least two RNA polymerases: the plastid-encoded eubacterial-type RNA polymerase (PEP) and the nucleus-encoded phage-type RNA polymerase (NEP). NEP transcribes the rpoB operon encoding three of four subunits of PEP. Transcription and transcript analyses from rpoB promoter deletion mutants indicated putative regulatory sites of control of rpoB transcription which may also interact with (cytokinin-regulated) specificity factors. Beside PrpoB-345, two additional rpoB promoters could be mapped. One of them is a putative PEP promoter which may imply autoregulatory loops of PEP expression.
APA, Harvard, Vancouver, ISO, and other styles
7

Villain, Patricia. "Fonction transcriptionnelle du site 1 : élément cis du gène nucléaire d'épinard RPS1 codant pour la protéine ribosomique plastidiale CS1." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10187.

Full text
Abstract:
La boite site 1, element de liaison du facteur nucleaire de feuilles d'epinard s1f, a ete identifiee, dans notre laboratoire, au niveau du promoteur du gene d'epinard rps1. Ce gene nucleaire code pour une proteine ribosomique plastidiale, cs1. L'etude des elements cis et de leurs facteurs trans, identifies au niveau des promoteurs de ce type de gene, constitue un bon modele pour la comprehension des mecanismes d'action, au niveau genetique, des facteurs internes (lies au type cellulaire) de la differenciation plastidiale. L'expression des genes nucleaires codant pour les proteines ribosomiques plastidiales est, en effet, regulee au niveau transcriptionnel, selon le type d'organe et de maniere independante de la lumiere. Nous avons etudie le site 1 in vivo, par la realisation de tabacs transgeniques, et in vitro par des experiences d'interactions proteines/adn (gels retards). Nos resultats in vivo montrent que l'element site 1 a une fonction specifique au sein des organes contenant des amyloplastes, comme les racines, et differente de celle observee dans les feuilles: dans les premiers, il fonctionne apparemment comme un element negatif de transcription, mais d'apres les experiences d'interactions in vitro, ce serait plutot un element positif faible de transcription. Cette fonction differente de l'element site 1 est correlee a une activite de liaison a cette boite, in vitro, qui est differente selon l'organe etudie. Les experiences de gel retard montrent, en effet, qu'il existe dans les racines, un facteur de liaison a l'element site 1, qui possede une specificite et une affinite de liaison relativement plus faibles que celles du facteur de feuille: nous l'avons appele s1r. Nous avons etudie l'homologie, pour la liaison, in vitro, de facteurs proteiques, de la boite site 1 avec d'autres elements cis: elle est homologue a la boite site 3 (element cis du promoteur du gene rps1), et elle est apparentee, mais non identique, a l'element box ii (element cis du promoteur du gene rbcs-3a de pois). Comme pour l'element site 1, ce travail a permis de mettre en evidence, dans les racines, une activite de liaison a l'element box ii differente de celle caracterisee dans les feuilles: ce facteur, gt-1r, a une specificite de liaison relativement plus faible que celle du facteur de feuille. Nos resultats montrent qu'il pourrait exister, dans les racines, une activite inhibitrice i qui permettrait a gt-1r de se fixer a l'element box ii dans cet organe. D'apres ces resultats, nous proposons deux modeles, qui decrivent in vivo et selon l'organe, la nature des activites de liaison aux boites site 1 et box ii, et les fonctions de ces boites et de leurs facteurs pour l'expression des genes rps1 et rbcs-3a
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, He. "Reverse transcription of the Mauriceville mitochondrial plasmid of Neurospora /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487849696965601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mudd, E. A. "Transcription and translation from a symbiotic plasmid of Rhizobium leguminosarum." Thesis, University of East Anglia, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jeong, Sun Yong. "Functional investigation of arabidopsis long coiled-coil proteins and subcellular localization of plant rangap1." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1086119855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Plastid transcription"

1

Mudd, E. A. Transcription and translation from a symbiotic plasmid of Rhizobium leguminosarum. Norwich: University of East Anglia, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alagna, Fiammetta, Michele Bellucci, Dario Leister, and Andrea Pompa, eds. Plastid Proteostasis: Relevance of Transcription, Translation and Post-Translational Modifications. Frontiers Media SA, 2017. http://dx.doi.org/10.3389/978-2-88945-343-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dorland and Sharon Rhodes. Dorland's Plastic Surgery Word Book for Medical Transcriptionists. Saunders, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plastid transcription"

1

Link, Gerhard. "Plastid Differentiation: Organelle Promoters and Transcription Factors." In Results and Problems in Cell Differentiation, 65–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-540-48037-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ortelt, Jennifer, and Gerhard Link. "Plastid Gene Transcription: Promoters and RNA Polymerases." In Methods in Molecular Biology, 47–72. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-995-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cahoon, A. Bruce, Yutaka Komine, and David B. Stern. "Plastid Transcription: Competition, Regulation and Promotion by Plastid- and Nuclear-Encoded Polymerases." In Advances in Photosynthesis and Respiration, 167–81. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-4061-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ortelt, Jennifer, and Gerhard Link. "Plastid Gene Transcription: An Update on Promoters and RNA Polymerases." In Methods in Molecular Biology, 49–76. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1472-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mullet, John E., Jeff C. Rapp, Brian J. Baumgartner, Tineke B. Sexton, and Patricia E. Gamble. "Regulation of Plastid Transcription and RNA Accumulation During Barley Leaf Development." In Current Research in Photosynthesis, 2329–33. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hess, W. R., B. Linke, and T. Börner. "Impact of Plastid Differentiation on Transcription of Nuclear and Mitochondrial Genes." In Eukaryotism and Symbiosis, 233–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60885-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Courtois, Florence, and Livia Merendino. "Mapping Plastid Transcript Population by Circular Reverse Transcription Polymerase Chain Reaction." In Methods in Molecular Biology, 273–78. New York, NY: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-8654-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marano, María Rosa, and Néstor Carrillo. "Regulation of Plastid Gene Expression during Fruit Ripening in Tomato. Gene and Transcription Map of the Plastid Chromosome." In Current Research in Photosynthesis, 2771–74. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maliga, P., K. Liere, P. Sriraman, and Z. Svab. "A Transgenic Approach to Characterize the Plastid Transcription Machinery in Higher Plants." In The Chloroplast: From Molecular Biology to Biotechnology, 317–23. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4788-0_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liere, Karsten, and Thomas Börner. "Transcription and transcriptional regulation in plastids." In Cell and Molecular Biology of Plastids, 121–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/4735_2007_0232.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Plastid transcription"

1

Voiciekhovskaja, O. V. "Plastid signals can change the "behavior" of plants through the regulation of transcription of photoreceptor genes." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Involvement of the red light receptors phytochrome A and phytochrome B in the regulation of gene expression of the plastid transcription apparatus by cytokinin during de-etiolation of A. thaliana." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schleuning, W. D. "THE BIOCHEMISTRY AND CELL BIOLOGY OF SINGLE CHAIN UROKINASE TYPE PLASMINOGEN ACTIVATOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642956.

Full text
Abstract:
Urokinase was discovered in the late nineteenth century, as an enzymatic principle in urine, that initiates the dissolution of blood clots. The basis of this phenomenon was recognized more than fifty years ago as the activation of plasminogen, the precursor of a tryptic protease, then known as profibrinolysin. Despite this long history, detailed data on the biochemistry of plasminogen activation have only become available recently. Urokinase (now designated urokinase-type plasminogen activator : u-PA) is synthesized and secreted as a single chain polypeptide (Mr-: 53,000) by many cell types. Single chain u-PA (scu-PA) is with equal justification called prourokinase (pro-u-PA), notwithstanding its low catalytic activity for synthetic peptide substrates and plasminogen, as most proenzymes of proteases display a certain degree of activity. The structure of pro-u-PA has been elucidated by protein and cDNA sequencing. It consists of three domains, exhibiting characteristic homology to other proteins: a serine protease domain, homologous to trypsin, chymotrypsin and elastase; a kringle domain, likewise found in prothrombin, plasminogen, tissue-type plasminogen activator (t-PA) and Factor XII; and an epidermal growth factor (EGF)-like domain, found in many other proteins, including certain clotting factors. Pro-u-PA is activated by the cleavage of its LYS158-Ile159 h1 bY either plasmin or kallikrein. This cleavage leads to a high increase of Kcat values with respect to both plasminogen and synthetic peptide substrates, but apparently to a reduction of its affinity to plasminogen. Thrartoin inactivates pro-u-PA irreversibly by the cleavage of the Arg156-Phe157 bond. U-PA but not pro-u-PA rapidly forms ccnplexes with plasminogen activator inhibitors (PAI)-l and PAI-2: second order rate constants Kass are respectively > 107 and 0.9xl06 (M-11sec-1). Unknown enzymes process pro-u-PA and u-PA to low molecular weight (LMW) pro-u-PA and LMW u-PA (Mr: 33,000) by cutting off a fragment consisting of the kr ingle and the EGF—like region. Pro—u—PA mediated plasminogen activation is fibrin dependent in vivo, and to a certain degree in vitro. Hie biochemical basis of this fibrin specificity is at present uncertain, although there are reports indicating that it may require polyvalent cations. Through its EGF-like region HMW pro-u-PA and HMW u-PA are capable of binding to specific membrane protein receptors which are found on many cells. Thus, u-PA activity may be restricted to the cell surface. According to a recent report, binding of u—PA to the receptor may also mediate signal transduction in auto- or paracrine growth control. In cells permissive for the respective pathways, pro-u-PA gene transcription is stimulated by mechanisms of signal transduction, that include the cAMP, the tyrosine specific kinase and the protein kinase C dependent pathways. Glucocorticoid hormones downregulate pro-u-PA gene transcription in cells where the gene is canstitutively expressed. Although different cells vary greatly in their response to agents that stimulate urokinase biosynthesis, growth factors and other mitogens are in many cases effective inducers. Significantly elevated levels of u-PA are also found in many malignant tissues. These findings and many others suggest that plasminogen activation by u-PA provides localized extracellular matrix degradation which is required for invasive growth, cell migration and other forms of tissue remodelling. Fibrin represents in this view only a variant of an extracellular matrix, which is provided through the clotting system in the case of an emergency.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography