Journal articles on the topic 'Plates theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plates theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zheng, Yu Fang, Tao Chen, Feng Wang, and Chang Ping Chen. "Nonlinear Responses of Rectangular Magnetoelectroelastic Plates with Transverse Shear Deformation." Key Engineering Materials 689 (April 2016): 103–7. http://dx.doi.org/10.4028/www.scientific.net/kem.689.103.
Full textZheng-hua, Zhong, and Luo Jian-hui. "Theory and refined theory of elasticity for transversely isotropic plates and a new theory for tnick plates." Applied Mathematics and Mechanics 9, no. 4 (1988): 375–89. http://dx.doi.org/10.1007/bf02456118.
Full textUgrimov, S. V. "Generalized theory of multilayer plates." International Journal of Solids and Structures 39, no. 4 (2002): 819–39. http://dx.doi.org/10.1016/s0020-7683(01)00253-0.
Full textEringen, A. Cemal. "Theory of electromagnetic elastic plates." International Journal of Engineering Science 27, no. 4 (1989): 363–75. http://dx.doi.org/10.1016/0020-7225(89)90128-6.
Full textUgrimov, S. V., and A. N. Shupikov. "Layered orthotropic plates. Generalized theory." Composite Structures 129 (October 2015): 224–35. http://dx.doi.org/10.1016/j.compstruct.2015.04.004.
Full textLim, Teik Cheng. "Auxetic Plates on Auxetic Foundation." Advanced Materials Research 974 (June 2014): 398–401. http://dx.doi.org/10.4028/www.scientific.net/amr.974.398.
Full textTrien, Trang Tan, Le Thanh Phong, and Pham Tan Hung. "Isogeometric free vibration of the porous metal foam plates resting on an elastic foundation using a quasi-3D refined theory." Journal of Science and Technology in Civil Engineering (JSTCE) - HUCE 19, no. 1 (2025): 119–30. https://doi.org/10.31814/stce.huce2025-19(1)-10.
Full textKasimov, A. T. "INVESTIGATION OF LAYERED ORTHOTROPIC STRUCTURES BASED ON ONE MODIFIED REFINED BENDING THEORY." Eurasian Physical Technical Journal 18, no. 4 (38) (2021): 37–44. http://dx.doi.org/10.31489/2021no4/37-44.
Full textJaved, Saira. "A Numerical Solution of Symmetric Angle Ply Plates Using Higher-Order Shear Deformation Theory." Symmetry 15, no. 3 (2023): 767. http://dx.doi.org/10.3390/sym15030767.
Full textVoyiadjis, George Z., and Mohammed H. Baluch. "Refined Theory for Thick Composite Plates." Journal of Engineering Mechanics 114, no. 4 (1988): 671–87. http://dx.doi.org/10.1061/(asce)0733-9399(1988)114:4(671).
Full textDüring, Gustavo, Christophe Josserand, and Sergio Rica. "Wave turbulence theory of elastic plates." Physica D: Nonlinear Phenomena 347 (May 2017): 42–73. http://dx.doi.org/10.1016/j.physd.2017.01.002.
Full textVolokh, K. Yu. "On the classical theory of plates." Journal of Applied Mathematics and Mechanics 58, no. 6 (1994): 1101–10. http://dx.doi.org/10.1016/0021-8928(94)90129-5.
Full textBarrett, K. E., and S. Ellis. "An exact theory of elastic plates." International Journal of Solids and Structures 24, no. 9 (1988): 859–80. http://dx.doi.org/10.1016/0020-7683(88)90038-8.
Full textBerdichevsky, Victor L. "An asymptotic theory of sandwich plates." International Journal of Engineering Science 48, no. 3 (2010): 383–404. http://dx.doi.org/10.1016/j.ijengsci.2009.09.001.
Full textBusse, Anke, and Martin Schanz. "A consistent theory for poroelastic plates." PAMM 5, no. 1 (2005): 381–82. http://dx.doi.org/10.1002/pamm.200510167.
Full textErbay, H. A., and E. S. Şuhubi. "An asymptotic theory of thin hyperelastic plates—I. General theory." International Journal of Engineering Science 29, no. 4 (1991): 447–66. http://dx.doi.org/10.1016/0020-7225(91)90087-j.
Full textSoltani, HM, and M. Kharazi. "Investigation of the incremental and deformation theories of plasticity on the elastoplastic postbuckling of plates." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234, no. 7 (2020): 1017–31. http://dx.doi.org/10.1177/1464420720922866.
Full textÖzdemir, Y. I., and Y. Ayvaz. "Parametric Earthquake Analysis of Thick Plates Using Mindlin’s Theory." Shock and Vibration 17, no. 6 (2010): 771–85. http://dx.doi.org/10.1155/2010/687549.
Full textNguyen, Hoang Nam, Tran Thi Hong, Pham Van Vinh, Nguyen Dinh Quang, and Do Van Thom. "A Refined Simple First-Order Shear Deformation Theory for Static Bending and Free Vibration Analysis of Advanced Composite Plates." Materials 12, no. 15 (2019): 2385. http://dx.doi.org/10.3390/ma12152385.
Full textHayrapetyan, G. S., and S. H. Sargsyan. "Theory of micropolar orthotropic elastic thin plates." Mechanics - Proceedings of National Academy of Sciences of Armenia 65, no. 3 (2012): 22–33. http://dx.doi.org/10.33018/65.3.3.
Full textVijayakumar, K. "New Look at Kirchoff's Theory of Plates." AIAA Journal 47, no. 4 (2009): 1045–46. http://dx.doi.org/10.2514/1.38471.
Full textSpencer, A. J. M., P. Watson, and T. G. Rogers. "Exact Theory of Heterogeneous Anisotropic Elastic Plates." Materials Science Forum 123-125 (January 1993): 235–44. http://dx.doi.org/10.4028/www.scientific.net/msf.123-125.235.
Full textBîrsan, Mircea. "A BENDING THEORY OF POROUS THERMOELASTIC PLATES." Journal of Thermal Stresses 26, no. 1 (2003): 67–90. http://dx.doi.org/10.1080/713855760.
Full textDimitrienko, Yu I., and I. D. Dimitrienko. "Asymptotic theory for vibrations of composite plates." Applied Mathematical Sciences 10 (2016): 2993–3002. http://dx.doi.org/10.12988/ams.2016.68231.
Full textBogomolny, E., and E. Hugues. "Semiclassical theory of flexural vibrations of plates." Physical Review E 57, no. 5 (1998): 5404–24. http://dx.doi.org/10.1103/physreve.57.5404.
Full textShimpi, Rameshchandra P. "Zeroth-Order Shear Deformation Theory for Plates." AIAA Journal 37, no. 4 (1999): 524–26. http://dx.doi.org/10.2514/2.750.
Full textParoni, Roberto. "Theory of Linearly Elastic Residually Stressed Plates." Mathematics and Mechanics of Solids 11, no. 2 (2005): 137–59. http://dx.doi.org/10.1177/1081286504036221.
Full textCiarlet, Philippe G., and Cristinel Mardare. "The intrinsic theory of linearly elastic plates." Mathematics and Mechanics of Solids 24, no. 4 (2018): 1182–203. http://dx.doi.org/10.1177/1081286518776047.
Full textKarama, M., K. S. Afaq, and S. Mistou. "A new theory for laminated composite plates." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223, no. 2 (2009): 53–62. http://dx.doi.org/10.1243/14644207jmda189.
Full textHaddad, Madjid, Yves Gourinat, and Miguel Charlotte. "Equivalence Theory Applied to Anisotropic Thin Plates." Engineering 03, no. 07 (2011): 669–79. http://dx.doi.org/10.4236/eng.2011.37080.
Full textBaluch, M. H., and A. K. Muhammad. "GENERALIZED THEORY FOR BENDING OF THICK PLATES." Transactions of the Canadian Society for Mechanical Engineering 14, no. 4 (1990): 113–23. http://dx.doi.org/10.1139/tcsme-1990-0015.
Full textReissner, Eric. "Reflections on the Theory of Elastic Plates." Applied Mechanics Reviews 38, no. 11 (1985): 1453–64. http://dx.doi.org/10.1115/1.3143699.
Full textHodges, Dewey H., Ali R. Atilgan, and D. A. Danielson. "A Geometrically Nonlinear Theory of Elastic Plates." Journal of Applied Mechanics 60, no. 1 (1993): 109–16. http://dx.doi.org/10.1115/1.2900732.
Full textVoyiadjis, George Z., and Shahram Sarkani. "Engineering Large Deflection Theory for Thick Plates." Journal of Engineering Mechanics 115, no. 5 (1989): 935–51. http://dx.doi.org/10.1061/(asce)0733-9399(1989)115:5(935).
Full textMAUGIN, G. A., and D. ATTOU. "AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES." Quarterly Journal of Mechanics and Applied Mathematics 43, no. 3 (1990): 347–62. http://dx.doi.org/10.1093/qjmam/43.3.347.
Full textErbay, H. A. "An asymptotic theory of thin micropolar plates." International Journal of Engineering Science 38, no. 13 (2000): 1497–516. http://dx.doi.org/10.1016/s0020-7225(99)00118-4.
Full textEfrati, E., E. Sharon, and R. Kupferman. "Elastic theory of unconstrained non-Euclidean plates." Journal of the Mechanics and Physics of Solids 57, no. 4 (2009): 762–75. http://dx.doi.org/10.1016/j.jmps.2008.12.004.
Full textDe Cicco, S., and D. Ieşan. "A Theory of Chiral Cosserat Elastic Plates." Journal of Elasticity 111, no. 2 (2012): 245–63. http://dx.doi.org/10.1007/s10659-012-9400-7.
Full textAtoyan,, A. A., and S. H. Sargsyan,. "Dynamic Theory of Micropolar Elastic Thin Plates." Journal of the Mechanical Behavior of Materials 18, no. 2 (2007): 81–88. http://dx.doi.org/10.1515/jmbm.2007.18.2.81.
Full textBisegna, Paolo, and Franco Maceri. "A Consistent Theory of Thin Piezoelectric Plates." Journal of Intelligent Material Systems and Structures 7, no. 4 (1996): 372–89. http://dx.doi.org/10.1177/1045389x9600700402.
Full textShimpi, Rameshchandra P. "Zeroth-order shear deformation theory for plates." AIAA Journal 37 (January 1999): 524–26. http://dx.doi.org/10.2514/3.14205.
Full textGao, Yang, and Bao-sheng Zhao. "The Refined Theory of Thermoelastic Rectangular Plates." Journal of Thermal Stresses 30, no. 5 (2007): 505–20. http://dx.doi.org/10.1080/01495730701212773.
Full textAskes, Harm, and Alexandra R. Wallace. "Dynamic Bergan–Wang theory for thick plates." Mathematics and Mechanics of Complex Systems 10, no. 2 (2022): 191–204. http://dx.doi.org/10.2140/memocs.2022.10.191.
Full textTouratier, Maurice. "A refined theory for thick composite plates." Mechanics Research Communications 15, no. 4 (1988): 229–36. http://dx.doi.org/10.1016/0093-6413(88)90016-x.
Full textAltenbach, H., and V. A. Eremeyev. "On the linear theory of micropolar plates." ZAMM 89, no. 4 (2009): 242–56. http://dx.doi.org/10.1002/zamm.200800207.
Full textDeepak, S. A., Rajesh A. Shetty, K. Sudheer Kini, and G. L. Dushyanthkumar. "Buckling analysis of thick plates using a single variable simple plate theory." Journal of Mines, Metals and Fuels 69, no. 12A (2022): 67. http://dx.doi.org/10.18311/jmmf/2021/30097.
Full textDong, S. B., and C. K. Chun. "Shear Constitutive Relations for Laminated Anisotropic Shells and Plates: Part I—Methodology." Journal of Applied Mechanics 59, no. 2 (1992): 372–79. http://dx.doi.org/10.1115/1.2899530.
Full textRakočević, Marina, and Nikolay Vatin. "Bending of Laminated Composite Plates." Applied Mechanics and Materials 725-726 (January 2015): 667–73. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.667.
Full textKrysko, A. V., J. Awrejcewicz, K. S. Bodyagina, and V. A. Krysko. "Mathematical modeling of planar physically nonlinear inhomogeneous plates with rectangular cuts in the three-dimensional formulation." Acta Mechanica 232, no. 12 (2021): 4933–50. http://dx.doi.org/10.1007/s00707-021-03096-0.
Full textWankhade, Rajan L., and Kamal M. Bajoria. "Vibration Analysis of Piezolaminated Plates for Sensing and Actuating Applications Under Dynamic Excitation." International Journal of Structural Stability and Dynamics 19, no. 10 (2019): 1950121. http://dx.doi.org/10.1142/s0219455419501219.
Full text