Academic literature on the topic 'Platform stabilization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Platform stabilization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Platform stabilization"
Votrubec, Radek. "Stabilization of Platform Using Gyroscope." Procedia Engineering 69 (2014): 410–14. http://dx.doi.org/10.1016/j.proeng.2014.03.006.
Full textPotakhov, D. A. "Railway crane platform stabilization system." VNIIZHT Scientific Journal 80, no. 3 (June 30, 2021): 160–67. http://dx.doi.org/10.21780/2223-9731-2021-80-3-160-167.
Full textCameron, D. S., and N. A. Kheir. "Platform Stabilization with Novel Active Suspension." IFAC Proceedings Volumes 33, no. 26 (September 2000): 71–75. http://dx.doi.org/10.1016/s1474-6670(17)39123-1.
Full textLindsey, W. A., A. M. Spagnuolo, J. C. Chipman, and M. Shillor. "Numerical simulations of vehicle platform stabilization." Mathematical and Computer Modelling 41, no. 11-12 (May 2005): 1389–402. http://dx.doi.org/10.1016/j.mcm.2003.10.054.
Full textFenu, Beatrice, Valentino Attanasio, Pietro Casalone, Riccardo Novo, Giulia Cervelli, Mauro Bonfanti, Sergej Antonello Sirigu, Giovanni Bracco, and Giuliana Mattiazzo. "Analysis of a Gyroscopic-Stabilized Floating Offshore Hybrid Wind-Wave Platform." Journal of Marine Science and Engineering 8, no. 6 (June 15, 2020): 439. http://dx.doi.org/10.3390/jmse8060439.
Full textErmis, Kemal, Mehmet Caliskan, and Muammer Tanriverdi. "DESIGN OPTIMIZATION OF MOVEABLE MOMENT STABILIZATION SYSTEM FOR ACCESS CRANE PLATFORMS." Acta Polytechnica 61, no. 1 (March 1, 2021): 219–29. http://dx.doi.org/10.14311/ap.2021.61.0219.
Full textAlexandrov, V. V., B. Ya Lokshin, L. Gomez Esparza, and H. A. Salazar Ibargüen. "Stabilization of a platform under wind loads." Journal of Mathematical Sciences 146, no. 3 (October 2007): 5863–76. http://dx.doi.org/10.1007/s10958-007-0402-0.
Full textLindner, Tymoteusz, Dominik Rybarczyk, and Daniel Wyrwał. "Stabilisation problem in biaxial platform." Archives of Mechanical Technology and Materials 36, no. 1 (December 1, 2016): 65–69. http://dx.doi.org/10.1515/amtm-2016-0012.
Full textKönigseder, Franz, Wolfgang Kemmetmüller, and Andreas Kugi. "Attitude control strategy for a camera stabilization platform." Mechatronics 46 (October 2017): 60–69. http://dx.doi.org/10.1016/j.mechatronics.2017.06.012.
Full textPérez, C., and F. R. Rubio. "Inertial Stabilization Controller for a 2 DOF Platform." IFAC Proceedings Volumes 34, no. 29 (October 2001): 97–102. http://dx.doi.org/10.1016/s1474-6670(17)32800-8.
Full textDissertations / Theses on the topic "Platform stabilization"
Nilsson, Jonas. "Development software for stabilization platform." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97094.
Full textDickman, Jeff. "Single Platform Relative Positioning for Sensor Stabilization." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1210187565.
Full textAkgul, Emre. "Pid And Lqr Control Of A Planar Head Stabilization Platform." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613713/index.pdf.
Full textOzturk, Taha. "Angular Acceleration Assisted Stabilization Of A 2-dof Gimbal Platform." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612318/index.pdf.
Full textGratorp, Eric. "Evaluation of online hardware video stabilization on a moving platform." Thesis, Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98990.
Full textEn videosekvens som spelas in under rörelse blir suddig. Detta beror främst på rörelseoskärpa i bildrutorna orsakade av snabb rörelse av objekt i scenen eller av kameran själv. Genom att kompensera för ändringar i kamerans orientering, orsakade av t.ex. ojämn terräng, är det möjligt att minimera rörelseoskärpan och på så sätt stabilisera videon. För att åstadkomma detta används data från ett gyroskop och kameran i sig för att skatta kamerans orientering. Den insamlade datan behandlas, synkroniseras och filtreras för att få en robust skattning av orienteringen. Denna orientering kan sedan användas som insignal till ett reglersystem för att kompensera för ändringar i kamerans orientering. Denna avhandling undersöker möjligheten för en sådan stabilisering. Den faktiska stabiliseringen lämnas till framtida arbete. Hårdvaran och de implementerade metoderna utvärderas med fokus på beräkningshastighet, som är kritiskt inom realtidssystem.
Onochie, Cyprian Ogonna. "Development and stabilization of an unmanned vertical takeoff and landing technology demonstrator platform." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2529.
Full textSmall and micro unmanned aerial vehicles (UAV) are rapidly becoming viable platforms for surveillance, aerial photography, firefighting and even package delivery. While these UAVs that are of the rotorcraft type require little to no extra infrastructure for their deployment, they are typically saddled with short ranges and endurance, thus placing a restriction on their usage. On the other hand, UAVs that are of fixed wing type generally have longer range and endurance but often require a runway for take-off and landing which places a restriction on their usage. This project focuses on the development of a vertical take-off and landing (VTOL) UAV demonstrator suitable for integration on a small or mini flying wing UAV (a fixed wing UAV) to counteract the take-off and landing limitations of fixed wing type UAVs. This thesis first presents a propulsion characterisation experiment designed to determine the thrust and moment properties of a select set of propulsion system components. The results of the characterisation experiment identified that the propulsion set of a Turnigy C6374 – 200 brushless out runner electric motor driving a 22 x 10 inch three bladed propeller will provide approximately 79N (8kg) of thrust at 80% throttle (4250rpm). Therefore, two of these propulsion set would satisfy the platform requirement of 12kg maximum take-off mass (MTOM). The result of the abovementioned experiment, together with the VTOL platform requirements were then used as considerations for the selection of the suitable VTOL method and consequently the design of the propulsion configuration. Following a comparison of VTOL methods, the tilt-rotor is identified as the most suitable VTOL method and a variable speed twin prop concept as the optimal propulsion configuration.
Redwood, Benjamin Philip. "Analysis, design, optimisation and testing of a gyroscopically stabilized platform." Thesis, University of Canterbury. Mechanical Engineering, 2014. http://hdl.handle.net/10092/9565.
Full textLandgren, Axel. "A robotic camera platform for evaluation of biomimetic gaze stabilization using adaptive cerebellar feedback." Thesis, Linköpings universitet, Bildbehandling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60841.
Full textAKKILA, MARCUS, and BIX ERIKSSON. "Self-Stabilizing Platform." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279840.
Full textDetta projekt utforskar möjligheten att stabilisera en handhållen serveringsbricka med hjälp av en mikrokontroller, två servomotorer och en tröghetssensor (IMU). Projektet lägger mycket fokus på reglerteknik, specifikt att använda en PID-regulator. Stabilisering genom PID-reglering är användbart i många olika produkter, exempelvis drönare, kamerastabiliserare och flygsimulatorer. Rapporten täcker relevant teori för att konstruera en självstabiliserande plattform och beskriver ingående komponenter i prototypen samt hur de samverkar. Med gyroskopen och accelerometrarna som finns i IMU:n är det möjligt att uppskatta position och rotation för ett objekt. Konstruktionen tillåter rotation kring x-axeln (roll) och y-axeln (pitch) men inte zaxeln (yaw). Mätningarna från gyroskopen och accelerometrarna kombineras och filtreras med hjälp av ett s.k. complementary filter för att uppskatta rotationen av objektet. Servomotorerna används i sin tur till att hålla plattan horisontell genom att kompensera störningar från omgivningen. Detta görs genom PID-reglering. Konstanterna i PID-regulatorn är framtagna genom tester där plattformen lutas ett bestämt antal grader och stegsvaret plottas i MATLAB.
Abrahamsson, Per. "Combined Platform for Boost Guidance and Attitude Control for Sounding Rockets." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2203.
Full textThis report handles the preliminary design of a control system that includes both attitude control and boost control functionality for sounding rockets. This is done to reduce the weight and volume for the control system.
A sounding rocket is a small rocket compared to a satellite launcher. It is used to launch payloads into suborbital trajectories. The payload consists of scientific experiments, for example micro-gravity experiments and astronomic observations. The boost guidance system controls the sounding rocket during the launch phase. This is done to minimize the impact dispersion. The attitude control system controls the payload during the experiment phase.
The system that is developed in this report is based on the DS19 boost guidance system from Saab Ericsson Space AB. The new system is designed by extending DS19 with software and hardware. The new system is therefore named DS19+. Hardware wise a study of the mechanical and electrical interfaces and also of the system budgets for gas, mass and power for the system are done to determine the feasibility for the combined system.
Further a preliminary design of the control software is done. The design has been implemented as pseudo code in MATLAB for testing and simulations. A simulation model for the sounding rocket andits surroundings during the experiment phase has also been designed and implemented in MATLAB. The tests and simulations that have been performed show that the code is suitable for implementation in the real system.
Books on the topic "Platform stabilization"
Schaefer, Vernon, and Ryan Berg. Geotechnical Solutions for Soil Improvement, Rapid Embankment Construction, and Stabilization of the Pavement Working Platform. Washington, D.C.: Transportation Research Board, 2012. http://dx.doi.org/10.17226/22683.
Full textBurdick, David J. Roll stabilization for T-AGOS class ships. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textLeonard, Suzanne, and Diane Negra. After Ever After. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252039577.003.0011.
Full textBook chapters on the topic "Platform stabilization"
Aprosin, Konstantin, Aleksander Tavlintcev, Sergey Semenenko, and Maria Shorikova. "Kite Sailing Platform Mathematical Model and Stabilization." In Robotic Sailing 2015, 59–73. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23335-2_5.
Full textLei, Ka-Meng, Pui-In Mak, Man-Kay Law, and Rui Paulo Martins. "One-Chip Micro-NMR Platform with B0-Field Stabilization." In Handheld Total Chemical and Biological Analysis Systems, 73–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67825-2_4.
Full textGou, Nengliang, and Xuexiao Zheng. "A Design Method of Sector Gear Stabilization Platform for Seeker." In Lecture Notes in Electrical Engineering, 1020–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9437-0_105.
Full textTwombly, Xander, Richard Boyle, and Silvano Colombano. "Active Stabilization of Images Acquired on a Walking Robotic Platform." In Advances in Visual Computing, 851–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11919629_85.
Full textMiller, Brian R., Scott M. Glaser, and Stephen J. Demarest. "Rapid Screening Platform for Stabilization of scFvs in Escherichia coli." In Therapeutic Antibodies, 279–89. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-554-1_14.
Full textShukla, Deepika, and Rajib Kumar Jha. "A Robust On-road Moving Platform Video Stabilization Using Derivative Curve Warping." In Lecture Notes in Computer Science, 343–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45062-4_46.
Full textZhu, Xueping, Zhengchun Liu, and Jun Yang. "Research on Co-simulation Method in ADAMS and MATLAB for Missile Seeker’s Stabilization Platform Design." In Communications in Computer and Information Science, 105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45037-2_10.
Full textBi, Yongli, and Shigang Wang. "Study of Speed Stabilization Loop for Airborne Photoelectric Platform Based on Active Disturbance Rejection Control." In Lecture Notes in Electrical Engineering, 182–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9050-1_21.
Full textDérutin, Jean Pierre, Lionel Damez, and Alexis Landrault. "Embedding of a Real Time Image Stabilization Algorithm on SoPC Platform, a Chip Multi-processor Approach." In Advanced Concepts for Intelligent Vision Systems, 157–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88458-3_15.
Full textLangmann, Benjamin, Klaus Hartmann, and Otmar Loffeld. "Real-Time Image Stabilization for ToF Cameras on Mobile Platforms." In Lecture Notes in Computer Science, 289–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-44964-2_14.
Full textConference papers on the topic "Platform stabilization"
Algrain, Marcelo C. "Accelerometer-based platform stabilization." In Orlando '91, Orlando, FL, edited by Michael K. Masten and Larry A. Stockum. SPIE, 1991. http://dx.doi.org/10.1117/12.45711.
Full textAnsari, Zahir Ahmed, Somnath Sengupta, Arun Kumar Singh, and Avnish Kumar. "Image stabilization for moving platform surveillance." In SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.919151.
Full textXiao, Wang, Li Weijia, and Zhou Kai. "A 3-DOF Ship-Borne Stabilization Platform." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41504.
Full textMichele, Mangiameli, and Mussumeci Giuseppe. "A gimbal platform stabilization for topographic applications." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912991.
Full textDickson, William C., Ting K. Yee, James F. Coward, Andrew McClaren, and David A. Pechner. "Compact fiber optic gyroscopes for platform stabilization." In SPIE Optical Engineering + Applications, edited by Edward W. Taylor and David A. Cardimona. SPIE, 2013. http://dx.doi.org/10.1117/12.2026852.
Full textKim, Mingeuk, Dongil Choi, and Jun-Ho Oh. "Stabilization of a rapid four-wheeled mobile platform using the ZMP stabilization method." In 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2010. http://dx.doi.org/10.1109/aim.2010.5695847.
Full textMeng, Hao, Lina Cao, Yong Zhang, and Jason Gu. "Posture Stabilization of Manipulator Based on Rotation Platform." In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303521.
Full textMao, Xia, and Yan Liu. "Optical Axis Stabilization of a Two-axis Platform." In 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.52.
Full textHuang, Xiangdong, Zhanpo Lang, Xiaobo Zhang, and Hao Zheng. "Electronic image stabilization based on the DaVinci platform." In 2015 International Conference on Automation, Mechanical Control and Computational Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/amcce-15.2015.417.
Full textZhu, Juanjuan, Cheng Li, and Jinli Xu. "Digital Image Stabilization for Cameras on Moving Platform." In 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE, 2015. http://dx.doi.org/10.1109/iih-msp.2015.23.
Full textReports on the topic "Platform stabilization"
Lizcano, Waldo. A Study on the Stabilization of a Floating Platform. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2438.
Full textCoulter, R. L., and T. J. Martin. Report on the AMF2 RPH Stabilization Platform: Design and Evaluation. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1093524.
Full textCoulter, R. L., T. J. Martin, and B. W. Orr. Report on the AMF2 RPY stabilization platform: design and evaluation. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1055418.
Full textCoulter, Richard J., and Timothy J. Martin. Report on the Second ARM Mobile Facility (AMF2) Stabilization Platform: Control Strategy and Implementation. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1253917.
Full textCoulter, Richard L., and Timothy J. Martin. Report on the Second ARM Mobile Facility (AMF2) Roll, Pitch, and Heave (RPH) Stabilization Platform: Design and Evaluation. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1253916.
Full text