To see the other types of publications on this topic, follow the link: Platinum-tin.

Journal articles on the topic 'Platinum-tin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Platinum-tin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Okamoto, H. "Pt-Sn (Platinum-Tin)." Journal of Phase Equilibria 24, no. 2 (2003): 198. http://dx.doi.org/10.1361/105497103770330938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okamoto, H. "Pt-Sn (platinum-tin)." Journal of Phase Equilibria 17, no. 5 (1996): 463. http://dx.doi.org/10.1007/bf02667646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lamy-Pitara, E., L. El Ouazzani-Benhima, J. Barbier, M. Cahoreau, and J. Caisso. "Platinum catalysts modified by tin." Applied Catalysis A: General 81, no. 1 (1992): 47–65. http://dx.doi.org/10.1016/0926-860x(92)80260-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beltramini, J., and D. L. Trimm. "Catalytic reforming of n-heptane on platinum, tin and platinum-tin supported on alumina." Applied Catalysis 31, no. 1 (1987): 113–18. http://dx.doi.org/10.1016/s0166-9834(00)80670-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anjaneyulu, Oruganti, Satoshi Ishii, Tsubasa Imai, et al. "Plasmon-mediated photothermal conversion by TiN nanocubes toward CO oxidation under solar light illumination." RSC Advances 6, no. 112 (2016): 110566–70. http://dx.doi.org/10.1039/c6ra22989a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Audo, C., J. F. Lambert, M. Che, and B. Didillon. "Synthesis of platinum–tin/alumina reforming catalysts from a well-defined platinum–tin precursor complex." Catalysis Today 65, no. 2-4 (2001): 157–62. http://dx.doi.org/10.1016/s0920-5861(00)00589-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erdt, Alexandra J., Christian Gutsche, Ursula E. A. Fittschen, Holger Borchert, Jürgen Parisi, and Joanna Kolny-Olesiak. "Control of crystallographic phases and surface characterization of intermetallic platinum tin nanoparticles." CrystEngComm 21, no. 21 (2019): 3363–73. http://dx.doi.org/10.1039/c9ce00356h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oleksenko, L. P. "Platinum containing sensor nanomaterials based on tin dioxide to detect methane in air." Functional materials 25, no. 4 (2018): 741–47. http://dx.doi.org/10.15407/fm25.04.741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lintz, Hans Guenther. "Spectrophotometric determination of platinum in cordierite-supported platinum-tin dioxide catalysts." Industrial & Engineering Chemistry Research 30, no. 8 (1991): 2012–13. http://dx.doi.org/10.1021/ie00056a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cortright, R. D., and J. A. Dumesic. "L-zeolite-supported platinum and platinum/tin catalysts for isobutane dehydrogenation." Applied Catalysis A: General 129, no. 1 (1995): 101–15. http://dx.doi.org/10.1016/0926-860x(95)00085-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dietrich, Stefan, Mihails Kusnezoff, and Alexander Michaelis. "Studies of Indium Tin Oxide-Based Sensing Electrodes in Potentiometric Zirconia Solid Electrolyte Gas Sensors." Sensors 21, no. 7 (2021): 2345. http://dx.doi.org/10.3390/s21072345.

Full text
Abstract:
A zirconia-based potentiometric solid electrolyte gas sensor with internal solid state reference was used to study the response behavior of platinum cermet and indium tin oxide sensing electrodes. Target gases included both oxygen and carbon monoxide in nitrogen-based sample gas mixtures. It was found that with the indium tin oxide sensing electrode, the low-temperature behavior is mainly a result of incomplete equilibration due to contaminations of the electrode surface. On the other hand, some of these contaminant species have been identified as being pivotal for the higher carbon monoxide s
APA, Harvard, Vancouver, ISO, and other styles
12

Cox, David F., Gar B. Hoflund, and Herbert A. Laitinen. "XPS investigation of tin oxide supported platinum." Langmuir 1, no. 3 (1985): 269–73. http://dx.doi.org/10.1021/la00063a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Suzuki, Takeyuki, Tsutomu Yamazaki, and Tadashi Yokoi. "Interdiffusion in platinum—tin oxide multilayered films." Journal of Materials Science Letters 7, no. 6 (1988): 669–70. http://dx.doi.org/10.1007/bf01730330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Galvagno, S., Z. Poltarzewski, A. Donato, G. Neri, and R. Pietropaolo. "Liquid phase hydrogenations over platinum-tin catalysts." Journal of Molecular Catalysis 35, no. 3 (1986): 365–75. http://dx.doi.org/10.1016/0304-5102(86)87084-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chauhan, Rohit Singh, Saurabh Kumar Singh, Adish Tyagi, James A. Golen, and Arnold L. Rheingold. "A serendipitous isolation of cocrystallized platinum–tin complexes: synthesis, structure and theoretical exploration." New Journal of Chemistry 44, no. 48 (2020): 20945–55. http://dx.doi.org/10.1039/d0nj04639f.

Full text
Abstract:
An adduct of co-crystallized platinum–tin fragments has been synthesized and characterized. NBO and EDA analysis have been performed to explore the nature of bonding in fragments, especially the extent of oxophilic character present in tin atoms.
APA, Harvard, Vancouver, ISO, and other styles
16

Kabachkov, Evgeny N., Evgeny N. Kurkin, Nikolay N. Vershinin, et al. "Synthesis and properties of Pt/TiN catalyst for low-temperature air purification from carbon monoxide." Image Journal of Advanced Materials and Technologies 6, no. 2 (2021): 131–43. http://dx.doi.org/10.17277/jamt.2021.02.pp.131-143.

Full text
Abstract:
Catalysts of carbon monoxide oxidation were synthesized by deposition of platinum on titanium nitride (TiN). Two substrates with an average particle size of 18 and 36 nm were obtained by hydrogen reduction of titanium tetrachloride in a stream of microwave plasma of nitrogen. The surface of the catalysts was studied by X-ray photoelectron spectroscopy (XPS). The data obtained by us in the present work indicate the presence of oxynitride as a transition layer between nitride and oxide. It was found that the CO oxidation rate on the 9–15 wt. % Pt loaded TiN catalysts is 120 times higher than tha
APA, Harvard, Vancouver, ISO, and other styles
17

Baker, Wendy S. "Platinum and Non-Platinum-Metal Tin Oxide Supported Catalysts for PEMFC Cathodes." ECS Proceedings Volumes 2004-21, no. 1 (2004): 199–205. http://dx.doi.org/10.1149/200421.0199pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Motagamwala, Ali Hussain, Rawan Almallahi, James Wortman, Valentina Omoze Igenegbai, and Suljo Linic. "Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit." Science 373, no. 6551 (2021): 217–22. http://dx.doi.org/10.1126/science.abg7894.

Full text
Abstract:
Intentional (“on-purpose”) propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles (<2 nanometers in diameter) can operate as a PDH catalyst at thermodynamically limited conversion levels, with excellent stability a
APA, Harvard, Vancouver, ISO, and other styles
19

Mikhailova, A. A., A. A. Pasynskii, V. A. Grinberg, Yu A. Velikodnyi, and O. A. Khazova. "CO and methanol oxidation at platinum-tin electrodes." Russian Journal of Electrochemistry 46, no. 1 (2010): 26–33. http://dx.doi.org/10.1134/s1023193510010039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Holody, P. R. J., R. E. Soltis, and J. Hangas. "Limiting particle growth in platinum/tin oxide nanocomposites." Scripta Materialia 44, no. 8-9 (2001): 1821–24. http://dx.doi.org/10.1016/s1359-6462(01)00800-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Margitfalvi, J. L., and I. Borbáth. "Time dependence of tin anchoring to supported platinum." Journal of Molecular Catalysis A: Chemical 202, no. 1-2 (2003): 313–26. http://dx.doi.org/10.1016/s1381-1169(03)00253-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gusevskaya, Elena V., Eduardo N. dos Santos, Rodinei Augusti, Adelson de O. Dias, and Claudia M. Foca. "Platinum/tin catalyzed hydroformylation of naturally occurring monoterpenes." Journal of Molecular Catalysis A: Chemical 152, no. 1-2 (2000): 15–24. http://dx.doi.org/10.1016/s1381-1169(99)00264-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Riad, M. "Platinum-tin/Alumino-silicate Catalyst Preparation and Characterization." Petroleum Science and Technology 26, no. 6 (2008): 742–57. http://dx.doi.org/10.1080/10916460701208629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Evans, Stuart A. G., Jonathan G. Terry, Natalie O. V. Plank, et al. "Electrodeposition of platinum metal on TiN thin films." Electrochemistry Communications 7, no. 2 (2005): 125–29. http://dx.doi.org/10.1016/j.elecom.2004.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schroeder, S. "Polyurethane foam extraction of platinum—tin halide complexes." Talanta 39, no. 7 (1992): 837–47. http://dx.doi.org/10.1016/0039-9140(92)80104-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jin, Lei Yuan. "Platinum—tin completing and its application to catalysis." Applied Catalysis 72, no. 1 (1991): 33–38. http://dx.doi.org/10.1016/0166-9834(91)85025-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nava, N., P. Del Angel, J. Salmones, E. Baggio-Saitovitch, and P. Santiago. "Tin-Platinum catalysts interactions on titania and silica." Applied Surface Science 253, no. 23 (2007): 9215–20. http://dx.doi.org/10.1016/j.apsusc.2007.05.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hook, Alec, Jacob D. Massa, and Fuat E. Celik. "Effect of Tin Coverage on Selectivity for Ethane Dehydrogenation over Platinum–Tin Alloys." Journal of Physical Chemistry C 120, no. 48 (2016): 27307–18. http://dx.doi.org/10.1021/acs.jpcc.6b08407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nam, Jinwoong, and Fuat E. Celik. "Effect of Tin in the Bulk of Platinum–Tin Alloys for Ethane Dehydrogenation." Topics in Catalysis 63, no. 7-8 (2020): 700–713. http://dx.doi.org/10.1007/s11244-020-01297-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Braunschweig, Holger, Mehmet Ali Celik, Rian D. Dewhurst, Magdalena Heid, Florian Hupp, and Sakya S. Sen. "Stepwise isolation of low-valent, low-coordinate Sn and Pb mono- and dications in the coordination sphere of platinum." Chemical Science 6, no. 1 (2015): 425–35. http://dx.doi.org/10.1039/c4sc02948h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Yiwei, Mengwei Xue, Yuming Zhou, et al. "Propane dehydrogenation over Ce-containing ZSM-5 supported platinum–tin catalysts: Ce concentration effect and reaction performance analysis." RSC Advances 6, no. 35 (2016): 29410–22. http://dx.doi.org/10.1039/c6ra04173f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dhanasekaran, P., S. Vinod Selvaganesh, and Santoshkumar D. Bhat. "Preparation of TiO2:TiN composite nanowires as a support with improved long-term durability in acidic medium for polymer electrolyte fuel cells." New Journal of Chemistry 41, no. 8 (2017): 2987–96. http://dx.doi.org/10.1039/c7nj00374a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Hong Jie, Li Guo Jin, Shuo Wang, Chao Wang, and Tai Yang Liu. "Study on Dye-Sensitized Solar Cells Based on Graphene / Pt Counter Electrode." Advanced Materials Research 1056 (October 2014): 25–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1056.25.

Full text
Abstract:
Graphene/platinum composite gel was prepared with chloroplatinic acid and graphene oxide (GO) as precursors by in-situ reduction method. Grapheme/platinum composite film as counter electrode was prepared on fluorine-doped tin oxide (FTO) glass by electro-hydrodynamic (EHD) method. Battery was assembled with nanoTiO2film as anode, N3 dye, and ionic liquid electrolyte. It was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). Graphene/platinum composite film include very thin graphene layers, with platinum particles of an aver
APA, Harvard, Vancouver, ISO, and other styles
34

Kalnaowakun, Phuri, Sutham Niyomwas, and Suchart Chantaramanee. "Comparative Study of Platinum/Single Wall Carbon Nanotube versus Platinum/Carbon Black Coating." Advanced Materials Research 488-489 (March 2012): 928–33. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.928.

Full text
Abstract:
The study of platinum/carbon black (Pt/CB) versus platinum/single wall carbon nanotubes (Pt/SWCNT) and drying temperature on the result products were investigated. The synthesized of Pt/CB versus Pt/SWCNT were used for coating on fluorine-doped tin oxide (FTO) conductive glasses and tested for electrical conductivity properties used for counter electrode in a dye-sensitized solar cell (DSSC).The result products were characterized in term of chemical composition and microstructure by scanning electron microscope technique (SEM), EDX (JEOL,JSM 5800 LV) and TEM analyses.
APA, Harvard, Vancouver, ISO, and other styles
35

Deng, Lidan, Hiroki Miura, Tetsuya Shishido, Saburo Hosokawa, Kentaro Teramura, and Tsunehiro Tanaka. "Dehydrogenation of Propane over Silica-Supported Platinum-Tin Catalysts Prepared by Direct Reduction: Effects of Tin/Platinum Ratio and Reduction Temperature." ChemCatChem 6, no. 9 (2014): 2680–91. http://dx.doi.org/10.1002/cctc.201402306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kong, Chao, Shixiong Min, and Gongxuan Lu. "Robust Pt–Sn alloy decorated graphene nanohybrid cocatalyst for photocatalytic hydrogen evolution." Chem. Commun. 50, no. 66 (2014): 9281–83. http://dx.doi.org/10.1039/c4cc03711a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wei, Zidong, Hetong Guo, and Zhiyuan Tang. "Methanol electro-oxidation on platinum and platinum-tin alloy catalysts dispersed on active carbon." Journal of Power Sources 58, no. 2 (1996): 239–42. http://dx.doi.org/10.1016/s0378-7753(96)02389-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yokoyama, C., S. S. Bharadwaj, and L. D. Schmidt. "Platinum-tin and platinum-copper catalysts for autothermal oxidative dehydrogenation of ethane to ethylene." Catalysis Letters 38, no. 3-4 (1996): 181–88. http://dx.doi.org/10.1007/bf00806566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Foca, Claudia M., Eduardo N. dos Santos, and Elena V. Gusevskaya. "Diastereoselective hydroformylation of camphene catalyzed by platinum/tin complexes." Journal of Molecular Catalysis A: Chemical 185, no. 1-2 (2002): 17–23. http://dx.doi.org/10.1016/s1381-1169(02)00056-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Simões, F. C., D. M. dos Anjos, F. Vigier, et al. "Electroactivity of tin modified platinum electrodes for ethanol electrooxidation." Journal of Power Sources 167, no. 1 (2007): 1–10. http://dx.doi.org/10.1016/j.jpowsour.2006.12.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Arsatov, Andrei V., Lyudmila S. Leonova, Aleksandr E. Ukshe, Yuri A. Dobrovolsky, and Evgenii A. Astaf’ev. "Hydrogen spillover in the platinum–hydrous tin dioxide system." Mendeleev Communications 19, no. 5 (2009): 292–93. http://dx.doi.org/10.1016/j.mencom.2009.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hobson, M. C., S. L. Goresh, and G. P. Khare. "A Mössbauer Spectroscopy Study of Platinum-Tin Reforming Catalysts." Journal of Catalysis 142, no. 2 (1993): 641–54. http://dx.doi.org/10.1006/jcat.1993.1237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tsceng, Kun-I., and Ming-Chang Yang. "Platinum Electrodes Modified by Tin for Electrochemical CO Sensors." Journal of The Electrochemical Society 150, no. 7 (2003): H156. http://dx.doi.org/10.1149/1.1576774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bittins-Cattaneo, B., and T. Iwasita. "Electrocatalysis of methanol oxidation by adsorbed tin on platinum." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 238, no. 1-2 (1987): 151–61. http://dx.doi.org/10.1016/0022-0728(87)85171-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Schneider, T., M. Sommer, and J. Goschnick. "SNMS investigations of platinum-doped nanogranular tin dioxide layers." Applied Surface Science 252, no. 1 (2005): 257–60. http://dx.doi.org/10.1016/j.apsusc.2005.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Amos, S., J. L. Gross, and M. Thoennessen. "Discovery of the calcium, indium, tin, and platinum isotopes." Atomic Data and Nuclear Data Tables 97, no. 4 (2011): 383–402. http://dx.doi.org/10.1016/j.adt.2011.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meagher, B., D. Schwarcz, and M. Ohring. "Compound growth in platinum/tin-lead solder diffusion couples." Journal of Materials Science 31, no. 20 (1996): 5479–86. http://dx.doi.org/10.1007/bf01159320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lamy-Pitara, E., L. El Ouazzani-Benhima, J. Barbier, M. Cahoreau, and J. Caisso. "Adsorption of tin on platinum: an uncommon underpotential deposition." Journal of Electroanalytical Chemistry 372, no. 1-2 (1994): 233–42. http://dx.doi.org/10.1016/0022-0728(93)03256-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hossain, Md Motahar, Toshikazu Kawaguchi, Katsuaki Shimazu, and Kou Nakata. "Reduction of nitrate on tin-modified palladium-platinum electrodes." Journal of Electroanalytical Chemistry 864 (May 2020): 114041. http://dx.doi.org/10.1016/j.jelechem.2020.114041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Ti Wei, Xiao Na Yu, Zhen Hui Wang, and Jian Li Zhang. "Electrocatalytic Oxidation of Methanol on Platinum-Tin Bimetallic Microparticles Electrodeposited at Nichrome Substrate Electrode." Advanced Materials Research 830 (October 2013): 426–30. http://dx.doi.org/10.4028/www.scientific.net/amr.830.426.

Full text
Abstract:
A novel Pt-Sn bimetallic spherical microparticles electrode for methanol electooxidation was prepared by electrodeposition technique on nichrome substrate. The electrocatalytic performance of Pt-Sn electrode for methanol oxidation was investigated by cyclic voltammetry and chronoamperometry. The experimental results showed that deposited platinum-tin bimetallic microparticles enhanced the catalytic activity for methanol electrooxidation. Above all, anti-poisoning capability against CO of Pt-Sn bimetallic microparticles electrode was increased in comparision to pure platinum microparticles elec
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!