Academic literature on the topic 'Player modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Player modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Player modeling"
Konert, Johannes, Michael Gutjahr, Stefan Göbel, and Ralf Steinmetz. "Modeling the Player." International Journal of Game-Based Learning 4, no. 2 (April 2014): 36–50. http://dx.doi.org/10.4018/ijgbl.2014040103.
Full textSpronck, Pieter, and Freek Den Teuling. "Player Modeling in Civilization IV." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 6, no. 1 (October 10, 2010): 180–85. http://dx.doi.org/10.1609/aiide.v6i1.12409.
Full textWeber, Ben, Michael John, Michael Mateas, and Arnav Jhala. "Modeling Player Retention in Madden NFL 11." Proceedings of the AAAI Conference on Artificial Intelligence 25, no. 2 (August 11, 2011): 1701–6. http://dx.doi.org/10.1609/aaai.v25i2.18864.
Full textAvontuur, Tetske, Pieter Spronck, and Menno Van Zaanen. "Player Skill Modeling in Starcraft II." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 9, no. 1 (June 30, 2021): 2–8. http://dx.doi.org/10.1609/aiide.v9i1.12682.
Full textSawyer, Robert, Jonathan Rowe, Roger Azevedo, and James Lester. "Modeling Player Engagement with Bayesian Hierarchical Models." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 14, no. 1 (September 25, 2018): 257–63. http://dx.doi.org/10.1609/aiide.v14i1.13048.
Full textPoo Hernandez, Sergio, and Vadim Bulitko. "A Call for Emotion Modeling in Interactive Storytelling." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 9, no. 4 (June 30, 2021): 89–92. http://dx.doi.org/10.1609/aiide.v9i4.12633.
Full textGoslen, Alex, Dan Carpenter, Jonathan Rowe, Roger Azevedo, and James Lester. "Robust Player Plan Recognition in Digital Games with Multi-Task Multi-Label Learning." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 18, no. 1 (October 11, 2022): 105–12. http://dx.doi.org/10.1609/aiide.v18i1.21953.
Full textFloyd, Calvin Michael, Matthew Hoffman, and Ernest Fokoue. "Shot-by-shot stochastic modeling of individual tennis points." Journal of Quantitative Analysis in Sports 16, no. 1 (March 26, 2020): 57–71. http://dx.doi.org/10.1515/jqas-2018-0036.
Full textMin, Wookhee, Bradford Mott, Jonathan Rowe, Robert Taylor, Eric Wiebe, Kristy Boyer, and James Lester. "Multimodal Goal Recognition in Open-World Digital Games." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 13, no. 1 (June 25, 2021): 80–86. http://dx.doi.org/10.1609/aiide.v13i1.12939.
Full textYu, Hong, and Tyler Trawick. "Personalized Procedural Content Generation to Minimize Frustration and Boredom Based on Ranking Algorithm." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 7, no. 1 (October 9, 2011): 208–13. http://dx.doi.org/10.1609/aiide.v7i1.12442.
Full textDissertations / Theses on the topic "Player modeling"
Anghileri, Davide. "Using Player Modeling to Improve Automatic Playtesting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232059.
Full textI denna uppsats presenterar vi två tillvägagångssätt för att förbättra automatisk speltestning genom modellering av spelare. Genom att modellera olika grupper av spelare kunde vi träna Convolutional Neural Network-baserade agenter för att simulera mänskligt spelande med hjälp av olika strategier som är lärda direkt från mänsklig spelardata. Målet är att använda de utvecklade agenterna för att förutsäga användbar metrik av nyskapat spelinnehåll. Vi validerade vårt tillvägagångssätt genom Candy Crush Saga, ett icke-deterministiskt 3-matchnings pusselspel med mer än tre tusen nivåer. Detta är första gången som spelarmodellering appliceras på ett 3-matchnings pusselspel. De presenterade tillvägagångssätten är mer generella och kan utökas till andra spel. De föreslagna tillvägagångssätten är jämförda med ett tillvägagångssätt som simulerar spelande genom en strategi som är lärd direkt från slumpmässig mänsklig spelardata. Resultatet visar att vårt tillvägagångssätt, genom simulering av olika strategier är, mer exakt för att förutsäga spelarens svårighet, mätt genom spelarens framgång, på nya nivåer. Båda tillvägagångssätten förbättrade mean absolute error med 13% och mean squared error med ungefär 23%. Dessutom kan de föreslagna tillvägagångssätten ge en användbar insikt för att bättre förstå spelarna och spelet.
Malkan, Nelson Anna. "Messages in games and player backgroundA player study about modeling and conveying emotional states through game rules and mechanics : A player study about modeling and conveying emotional states through game rules and mechanics." Thesis, Uppsala universitet, Institutionen för speldesign, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414365.
Full textSpel kan användas för att förmedla både budskap och mening. Trots att det finns omfattande forskning på hur man kan uttrycka sig med spel, så är forskning kring hur spelares bakgrund påverkar deras tolkning bristfällig. Den här studien utforskar detta genom att testa ett “expressivt spel” och urskilja om det finns någon koppling mellan hur människor upplever ett spel och deras personliga bakgrund och sinnesstämning. Vi utförde en spelarstudie för att undersöka den här frågan. För detta ändamål utvecklade vi det abstrakta, metaforiska spelet “Lorn”. Tillsammans med en online enkät, som ämnade att ta reda på spelarnas bakgrund och sinnesstämning, distribuerade vi spelet till potentiella deltagare. Efter att ha spelat spelet delgav deltagarna sina tolkningar av betydelsen, sina upplevelser av Lorn, och vilka känslor de kände när de spelade spelet. 15 personer deltog i studien. Våra resultat indikerar att det finns skillnader i hur människor tolkar budskap beroende på deras personliga bakgrund och sinnesstämning.
Lim, Chong-U. "Modeling player self-representation in multiplayer online games using social network data." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82409.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-105).
Game players express values related to self-expression through various means such as avatar customization, gameplay style, and interactions with other players. Multiplayer online games are now often integrated with social networks that provide social contexts in which player-to-player interactions take place, such as conversation and trading of virtual items. Building upon a theoretical framework based in machine learning and cognitive science, I present results from a novel approach to modeling and analyzing player values in terms of both preferences in avatar customization and patterns in social network use. To facilitate this work, I developed the Steam-Player- Preference Analyzer (Steam-PPA) system, which performs advanced data collection on publicly available social networking profile information. The primary contribution of this thesis is the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses machine learning techniques including k-means clustering, natural language processing (NLP), and support vector machines (SVM) to perform inference on the data. As an initial case study, I use Steam-PPA to collect gameplay and avatar customization information from players in the popular, and commercially successful, multi-player first-person-shooter game Team Fortress 2 (TF2). Next, I use AIR-SPC to analyze the information from profiles on the social network Steam. The upshot is that I use social networking information to predict the likelihood of players customizing their profile in several ways associated with the monetary values of their avatars. In this manner I have developed a computational model of aspects of players' digital social identity capable of predicting specific values in terms of preferences exhibited within a virtual game-world.
by Chong-U Lim.
S.M.
Loria, Enrica. "Alone with Company: Studying Individual and Social Players' In-game Behaviors in Adaptive Gamification." Doctoral thesis, Università degli studi di Trento, 2004. http://hdl.handle.net/11572/299790.
Full textLoria, Enrica. "Alone with Company: Studying Individual and Social Players' In-game Behaviors in Adaptive Gamification." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/299790.
Full textLoria, Enrica. "Alone with Company: Studying Individual and Social Players' In-game Behaviors in Adaptive Gamification." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/299790.
Full textMathema, Najma. "Predicting Plans and Actions in Two-Player Repeated Games." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8683.
Full textYu, Hong. "A data-driven approach for personalized drama management." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53851.
Full textCorreia, J. Steve. "Agent-based target detection in 3-dimensional environments." Thesis, Monterey, California. Naval Postgraduate School, 2005. http://hdl.handle.net/10945/2300.
Full textVisual perception modeling is generally weak for game AI and computer generated forces (CGF), or agents, in computer games and military simulations. Several tricks and shortcuts are used in perceptual modeling. The results are, under certain conditions, unrealistic behaviors that negatively effect user immersion in games and call into question the validity of calculations in fine resolution military simulations. By determining what the computer-generated agent sees using methods similar to that used to generate the human players' screen view in 3- D virtual environments, we hope to present a method that can more accurately model human visual perception, specifically the major problem of a entity "hiding in plain sight"
Lieutenant, United States Navy
Vallim, Rosane Maria Maffei. "Mineração de fluxos contínuos de dados para jogos de computador." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30082013-101303/.
Full textOne of the challenges of Artificial Intelligence applied to games is behavior learning, where the objective is to use statistics derived from the interaction between the player and the game environment in order to recognize particular player characteristics or to monitor the evolution of a players behavior along time. The majority of work developed in this area applies models that were previously learned through the use of Machine Learning techniques. However, only a few pieces of work consider that the players behavior can evolve over time and, therefore, recognizing when behavior changes happen is the first step towards the production of games that adapt to the players needs. In order to detect changes in the behavior of a player, incremental algorithms are necessary, what motivates the study of change detection algorithms from the area of Data Stream Mining. However, some of the characteristics of the algorithms available in the literature make their application to the task of change detection in games unfeasible. To overcome these difficulties, this work proposes two new approaches for change detection. The first approach is based on an incremental clustering and novelty detection algorithm which is independent of the number and format of clusters and uses a mechanism for change detection based on sliding windows. The second approach, on the other hand, is based on the comparison of consecutive time windows using spectrograms created from the data inside each window. Experimental results using simulations and data from commercial games indicate the applicability of the proposed algorithms in the task of detecting a players changing behavior, as well as present their advantage when compared to other change detection algorithms available in the literature
Books on the topic "Player modeling"
Miller, Richard McDermott. Figure Sculpture in Wax and Plaster. Edited by Gloria Bley Miller. New York, USA: Dover Publications, 1987.
Find full textSubduction: Insights from physical modeling. Dordrecht: Kluwer Academic Publishers, 1994.
Find full textClayton, Peirce. The clay lover's guide to making molds: Designing, making, using. Asheville, N.C: Lark Books, 1998.
Find full textGovers, Rob. Dynamics of lithospheric extension: A modeling study. [Utrecht: Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, 1993.
Find full textLouis, Lions Jacques, ed. Modelling analysis and control of thin plates. Paris: Masson, 1988.
Find full textBabeshko, Lyudmila, Mihail Bich, and Irina Orlova. Econometrics and econometric modeling. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1141216.
Full textHodges, Dewey H. Modeling of composite beams and plates for static and dynamic analysis. Atlanta, Ga: School of Aerospace Engineering, Georgia Institute of Technology, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Modeling of composite beams and plates for static and dynamic analysis. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Player modeling"
Farooq, Sehar Shahzad, and Kyung-Joong Kim. "Game Player Modeling." In Encyclopedia of Computer Graphics and Games, 1–5. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08234-9_14-1.
Full textBindewald, Jason M., Gilbert L. Peterson, and Michael E. Miller. "Clustering-Based Online Player Modeling." In Communications in Computer and Information Science, 86–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57969-6_7.
Full textBindewald, Jason M., Gilbert L. Peterson, and Michael E. Miller. "Trajectory Generation with Player Modeling." In Advances in Artificial Intelligence, 42–49. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18356-5_4.
Full textLankoski, Petri. "Modeling Player-Character Engagement in Single-Player Character-Driven Games." In Lecture Notes in Computer Science, 572–75. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03161-3_56.
Full textLorenz, Ulf, and Tobias Tscheuschner. "Player Modeling, Search Algorithms and Strategies in Multi-player Games." In Lecture Notes in Computer Science, 210–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11922155_16.
Full textYoon, Tae Bok, Dong Moon Kim, Kyo Hyeon Park, Jee Hyong Lee, and Kwan-Ho You. "Game Player Modeling Using D-FSMs." In Lecture Notes in Computer Science, 490–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73354-6_54.
Full textMissura, Olana, and Thomas Gärtner. "Player Modeling for Intelligent Difficulty Adjustment." In Discovery Science, 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04747-3_17.
Full textHsieh, Yung-Huan, Shintami C. Hidayati, Wen-Huang Cheng, Min-Chun Hu, and Kai-Lung Hua. "Who’s the Best Charades Player? Mining Iconic Movement of Semantic Concepts." In MultiMedia Modeling, 231–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04114-8_20.
Full textYannakakis, Georgios N., and Manolis Maragoudakis. "Player Modeling Impact on Player’s Entertainment in Computer Games." In User Modeling 2005, 74–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527886_11.
Full textBuede, Dennis M., Paul J. Sticha, and Elise T. Axelrad. "Conversational Non-Player Characters for Virtual Training." In Social, Cultural, and Behavioral Modeling, 389–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39931-7_37.
Full textConference papers on the topic "Player modeling"
Machado, Marlos C., Eduardo P. C. Fantini, and Luiz Chaimowicz. "Player modeling: Towards a common taxonomy." In Serious Games (CGAMES). IEEE, 2011. http://dx.doi.org/10.1109/cgames.2011.6000359.
Full textYang, Lingfeng. "Modeling player performance in rhythm games." In ACM SIGGRAPH ASIA 2010 Sketches. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1899950.1899951.
Full textSmith, Adam M., Chris Lewis, Kenneth Hullet, and Anne Sullivan. "An inclusive view of player modeling." In the 6th International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2159365.2159419.
Full textGray, Robert C., Jichen Zhu, Danielle Arigo, Evan Forman, and Santiago Ontañón. "Player Modeling via Multi-Armed Bandits." In FDG '20: International Conference on the Foundations of Digital Games. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3402942.3402952.
Full textHolmgard, Christoffer, Antonios Liapis, Julian Togelius, and Georgios N. Yannakakis. "Evolving personas for player decision modeling." In 2014 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 2014. http://dx.doi.org/10.1109/cig.2014.6932911.
Full textRomanoff, Chris, and Chris Romanoff. "Comanche Player Station - Comanche simulation in the Aviation Warfighting Cell." In Modeling and Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3509.
Full textCarneiro, Emanuel Mineda, Adilson Marques da Cunha, and Luiz Alberto Vieira Dias. "Adaptive Game AI Architecture with Player Modeling." In 2014 Eleventh International Conference on Information Technology: New Generations (ITNG). IEEE, 2014. http://dx.doi.org/10.1109/itng.2014.40.
Full textAnagnostou, Kostas, and Manolis Maragoudakis. "Data Mining for Player Modeling in Videogames." In 2009 13th Panhellenic Conference on Informatics. IEEE, 2009. http://dx.doi.org/10.1109/pci.2009.28.
Full textSynnaeve, Gabriel, Pierre Bessière, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Bayesian Modeling of a Human MMORPG Player." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573658.
Full textPedersen, Chris, Julian Togelius, and Georgios N. Yannakakis. "Modeling player experience in Super Mario Bros." In 2009 IEEE Symposium on Computational Intelligence and Games (CIG). IEEE, 2009. http://dx.doi.org/10.1109/cig.2009.5286482.
Full textReports on the topic "Player modeling"
Trinh, K. V. Modeling the in-plane tension failure of composite plates. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/563207.
Full textBabuska, I., and L. Li. Hierarchic Modeling of Plates. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada232754.
Full textAndrews, Sydney. Chemical Condensation During Planet Formation: Modeling Parameters. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1148970.
Full textRensink, M. E., and T. D. Rognlien. Modeling impurities and tilted plates in the ITER divertor. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/371415.
Full textCelmins, Aivars K. Fuzzy Modeling of Armor Plate Bending by Blast. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada226388.
Full textTatlicioglu, E., Ian D. Walker, and Darren M. Dawson. Dynamic Modelling for Planar Extensible Continuum Robot Manipulators. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada462495.
Full textBattaile, Corbett Chandler, Harry K. Moffat, Amy Cha-Tien Sun, David George Enos, Lysle M. Serna, and Neil Robert Sorensen. Modeling pore corrosion in normally open gold- plated copper connectors. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/942183.
Full textPetravic, M. Modeling of ultra-high recycling divertors with the PLANET code. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10176221.
Full textAbboud, Alexander. Modeling of Radiolytic Hydrogen Generation of Irradiated Surrogate Aluminum Plates. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1924440.
Full textFreeman, Janine, Jonathan Whitmore, Leah Kaffine, Nate Blair, and Aron P. Dobos. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1115788.
Full text