Journal articles on the topic 'Plume dispersion model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Plume dispersion model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kylling, Arve, Hamidreza Ardeshiri, Massimo Cassiani, et al. "Can statistics of turbulent tracer dispersion be inferred from camera observations of SO<sub>2</sub> in the ultraviolet? A modelling study." Atmospheric Measurement Techniques 13, no. 6 (2020): 3303–18. http://dx.doi.org/10.5194/amt-13-3303-2020.
Full textMeir, Talmor, Julie Pullen, Alan F. Blumberg, Teddy R. Holt, Paul E. Bieringer, and George Bieberbach. "Simulation of Airborne Transport and Dispersion for Urban Waterside Releases." Journal of Applied Meteorology and Climatology 56, no. 1 (2017): 27–44. http://dx.doi.org/10.1175/jamc-d-16-0025.1.
Full textBisignano, Andrea, Luca Mortarini, Enrico Ferrero, and Stefano Alessandrini. "Model chain for buoyant plume dispersion." International Journal of Environment and Pollution 62, no. 2/3/4 (2017): 200. http://dx.doi.org/10.1504/ijep.2017.089406.
Full textFerrero, Enrico, Luca Mortarini, Andrea Bisignano, and Stefano Alessandrini. "Model chain for buoyant plume dispersion." International Journal of Environment and Pollution 62, no. 2/3/4 (2017): 200. http://dx.doi.org/10.1504/ijep.2017.10010374.
Full textChosson, F., R. Paoli, and B. Cuenot. "Ship plume dispersion rates in convective boundary layers for chemistry models." Atmospheric Chemistry and Physics 8, no. 16 (2008): 4841–53. http://dx.doi.org/10.5194/acp-8-4841-2008.
Full textChosson, F., R. Paoli, and B. Cuenot. "Ship plume dispersion rates in convective boundary layers for chemistry models." Atmospheric Chemistry and Physics Discussions 8, no. 2 (2008): 6793–824. http://dx.doi.org/10.5194/acpd-8-6793-2008.
Full textKukkonen, J., J. Nikmo, M. Sofiev, et al. "Applicability of an integrated plume rise model for the dispersion from wild-land fires." Geoscientific Model Development Discussions 7, no. 1 (2014): 483–527. http://dx.doi.org/10.5194/gmdd-7-483-2014.
Full textKukkonen, J., J. Nikmo, M. Sofiev, et al. "Applicability of an integrated plume rise model for the dispersion from wild-land fires." Geoscientific Model Development 7, no. 6 (2014): 2663–81. http://dx.doi.org/10.5194/gmd-7-2663-2014.
Full textFay, James A., and Stephen G. Zemba. "Integral model of dense gas plume dispersion." Atmospheric Environment (1967) 20, no. 7 (1986): 1347–54. http://dx.doi.org/10.1016/0004-6981(86)90005-3.
Full textLott, Robert A. "Model performance—Plume dispersion over elevated terrain." Atmospheric Environment (1967) 20, no. 8 (1986): 1547–54. http://dx.doi.org/10.1016/0004-6981(86)90243-x.
Full textSivanandan, Hrishikesh, V. Ratna Kishore, Mukesh Goel, and Abhishek Asthana. "A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions." Environmental Modeling & Assessment 26, no. 3 (2021): 405–22. http://dx.doi.org/10.1007/s10666-020-09747-1.
Full textLonsdale, Chantelle R., Matthew J. Alvarado, Anna L. Hodshire, Emily Ramnarine, and Jeffrey R. Pierce. "Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0." Geoscientific Model Development 13, no. 9 (2020): 4579–93. http://dx.doi.org/10.5194/gmd-13-4579-2020.
Full textKing, B. A., and F. A. McAllister. "MODELLING THE DISPERSION OF PRODUCED WATER DISCHARGES." APPEA Journal 38, no. 1 (1998): 681. http://dx.doi.org/10.1071/aj97044.
Full textDu Preez, David Jean, Hassan Bencherif, Nelson Bègue, Lieven Clarisse, Rebecca F. Hoffman, and Caradee Yael Wright. "Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site." Atmosphere 11, no. 5 (2020): 548. http://dx.doi.org/10.3390/atmos11050548.
Full textOnodera, Naoyuki, Yasuhiro Idomura, Yuta Hasegawa, Hiromasa Nakayama, Takashi Shimokawabe, and Takayuki Aoki. "Real-Time Tracer Dispersion Simulations in Oklahoma City Using the Locally Mesh-Refined Lattice Boltzmann Method." Boundary-Layer Meteorology 179, no. 2 (2021): 187–208. http://dx.doi.org/10.1007/s10546-020-00594-x.
Full textPeltier, Leonard J., Sue Ellen Haupt, John C. Wyngaard, et al. "Parameterizing Mesoscale Wind Uncertainty for Dispersion Modeling." Journal of Applied Meteorology and Climatology 49, no. 8 (2010): 1604–14. http://dx.doi.org/10.1175/2010jamc2396.1.
Full textCarlson, J. D., and Derek S. Arndt. "The Oklahoma Dispersion Model: Using the Gaussian Plume Model as an Operational Management Tool for Determining Near-Surface Dispersion Conditions across Oklahoma." Journal of Applied Meteorology and Climatology 47, no. 2 (2008): 462–74. http://dx.doi.org/10.1175/2007jamc1418.1.
Full textVernon, Charles J., Ryan Bolt, Timothy Canty, and Ralph A. Kahn. "The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model." Atmospheric Measurement Techniques 11, no. 11 (2018): 6289–307. http://dx.doi.org/10.5194/amt-11-6289-2018.
Full textLajeunesse, Eric, Olivier Devauchelle, and François James. "Advection and dispersion of bed load tracers." Earth Surface Dynamics 6, no. 2 (2018): 389–99. http://dx.doi.org/10.5194/esurf-6-389-2018.
Full textGuo, Rui Ping, Chun Lin Yang, and Chun Ming Zhang. "The Effect of Wind Speed on Cooling Tower Plume Dispersion." Advanced Materials Research 732-733 (August 2013): 144–47. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.144.
Full textLiu, Xiong, Ajit Godbole, Cheng Lu, Guillaume Michal, and Philip Venton. "Optimisation of dispersion parameters of Gaussian plume model for CO2 dispersion." Environmental Science and Pollution Research 22, no. 22 (2015): 18288–99. http://dx.doi.org/10.1007/s11356-015-5404-8.
Full textHanna, Steven R., and Robert J. Paine. "Hybrid Plume Dispersion Model (HPDM) Development and Evaluation." Journal of Applied Meteorology 28, no. 3 (1989): 206–24. http://dx.doi.org/10.1175/1520-0450(1989)028<0206:hpdmda>2.0.co;2.
Full textCarrascal, M. D., M. Puigcerver, and P. Puig. "Sensitivity of Gaussian plume model to dispersion specifications." Theoretical and Applied Climatology 48, no. 2-3 (1993): 147–57. http://dx.doi.org/10.1007/bf00864921.
Full textMarta-Almeida, Martinho, Anna Dalbosco, David Franco, and Manuel Ruiz-Villarreal. "Dynamics of river plumes in the South Brazilian Bight and South Brazil." Ocean Dynamics 71, no. 1 (2020): 59–80. http://dx.doi.org/10.1007/s10236-020-01397-x.
Full textMallia, Derek V., Adam K. Kochanski, Shawn P. Urbanski, Jan Mandel, Angel Farguell, and Steven K. Krueger. "Incorporating a Canopy Parameterization within a Coupled Fire-Atmosphere Model to Improve a Smoke Simulation for a Prescribed Burn." Atmosphere 11, no. 8 (2020): 832. http://dx.doi.org/10.3390/atmos11080832.
Full textGuo, Rui Ping, Chun Lin Yang, Chun Ming Zhang, and Bing Lan. "Impact of Relative Humidity on Cooling Tower Plume Dispersion." Advanced Materials Research 807-809 (September 2013): 168–71. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.168.
Full textAliabadi, Amir A., Jennie L. Thomas, Andreas B. Herber, et al. "Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker <i>Amundsen</i> from the <i>Polar 6</i> aircraft platform." Atmospheric Chemistry and Physics 16, no. 12 (2016): 7899–916. http://dx.doi.org/10.5194/acp-16-7899-2016.
Full textBurton, Ralph R., Mark J. Woodhouse, Alan M. Gadian, and Stephen D. Mobbs. "The Use of a Numerical Weather Prediction Model to Simulate Near-Field Volcanic Plumes." Atmosphere 11, no. 6 (2020): 594. http://dx.doi.org/10.3390/atmos11060594.
Full textGuo, Rui Ping, Chun Lin Yang, and Chun Ming Zhang. "Response Analysis of Cooling Tower Plume Dispersion to the Release Height." Applied Mechanics and Materials 316-317 (April 2013): 590–93. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.590.
Full textNikmo, Juha, Juha-Pekka Tuovinen, Jaakko Kukkonen, and Ilkka Valkama. "A hybrid plume model for local-scale atmospheric dispersion." Atmospheric Environment 33, no. 27 (1999): 4389–99. http://dx.doi.org/10.1016/s1352-2310(99)00223-x.
Full textAwasthi, Seema, Mukesh Khare, and Prashant Gargava. "General plume dispersion model (GPDM) for point source emission." Environmental Modeling & Assessment 11, no. 3 (2006): 267–76. http://dx.doi.org/10.1007/s10666-006-9041-y.
Full textLee, Jared A., L. Joel Peltier, Sue Ellen Haupt, John C. Wyngaard, David R. Stauffer, and Aijun Deng. "Improving SCIPUFF Dispersion Forecasts with NWP Ensembles." Journal of Applied Meteorology and Climatology 48, no. 11 (2009): 2305–19. http://dx.doi.org/10.1175/2009jamc2171.1.
Full textSofiev, M., T. Ermakova, and R. Vankevich. "Evaluation of the smoke-injection height from wild-land fires using remote-sensing data." Atmospheric Chemistry and Physics 12, no. 4 (2012): 1995–2006. http://dx.doi.org/10.5194/acp-12-1995-2012.
Full textWobus, F., G. I. Shapiro, J. M. Huthnance, M. A. M. Maqueda, and Y. Aksenov. "Tidally induced lateral dispersion of the Storfjorden overflow plume." Ocean Science 9, no. 5 (2013): 885–99. http://dx.doi.org/10.5194/os-9-885-2013.
Full textWobus, F., G. I. Shapiro, J. M. Huthnance, M. A. M. Maqueda, and Y. Aksenov. "Tidally-induced lateral dispersion of the Storfjorden overflow plume." Ocean Science Discussions 10, no. 2 (2013): 691–726. http://dx.doi.org/10.5194/osd-10-691-2013.
Full textDraxler, Roland R. "The Use of Global and Mesoscale Meteorological Model Data to Predict the Transport and Dispersion of Tracer Plumes over Washington, D.C." Weather and Forecasting 21, no. 3 (2006): 383–94. http://dx.doi.org/10.1175/waf926.1.
Full textHenderson-Sellers, B., and S. E. Allen. "Verification of the plume rise/dispersion model USPR: plume rise for single stack emissions." Ecological Modelling 30, no. 3-4 (1985): 209–27. http://dx.doi.org/10.1016/0304-3800(85)90068-7.
Full textMuller, J. P., V. Yershov, D. Fisher, et al. "New products for a better characterisation of smoke plume and gas/aerosol dispersion from boreal eurasian forest fires: the ALANIS Smoke Plume project." Biogeosciences Discussions 8, no. 5 (2011): 9747–61. http://dx.doi.org/10.5194/bgd-8-9747-2011.
Full textGuo, Rui Ping, Chun Lin Yang, Bing Lan, and Chun Ming Zhang. "Effect of Different Heat Rejection Scenarios on Cooling Tower Plume Dispersion." Applied Mechanics and Materials 448-453 (October 2013): 213–16. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.213.
Full textICHIKAWA, Yoichi, Yukio AKAI, and Koichi SADA. "Prediction of Atmospheric Dispersion Considering Plume Rise Using a Lagrangian Particle Dispersion Model." Doboku Gakkai Ronbunshu, no. 643 (2000): 61–70. http://dx.doi.org/10.2208/jscej.2000.643_61.
Full textMoisseeva, Nadya, and Roland Stull. "Capturing Plume Rise and Dispersion with a Coupled Large-Eddy Simulation: Case Study of a Prescribed Burn." Atmosphere 10, no. 10 (2019): 579. http://dx.doi.org/10.3390/atmos10100579.
Full textBelcher, S. E., O. Coceal, E. V. Goulart, A. C. Rudd, and A. G. Robins. "Processes controlling atmospheric dispersion through city centres." Journal of Fluid Mechanics 763 (December 10, 2014): 51–81. http://dx.doi.org/10.1017/jfm.2014.661.
Full textCao, Zhixuan, Abani Patra, Marcus Bursik, E. Bruce Pitman, and Matthew Jones. "Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics." Geoscientific Model Development 11, no. 7 (2018): 2691–715. http://dx.doi.org/10.5194/gmd-11-2691-2018.
Full textKorsakissok, Irène, and Vivien Mallet. "Comparative Study of Gaussian Dispersion Formulas within the Polyphemus Platform: Evaluation with Prairie Grass and Kincaid Experiments." Journal of Applied Meteorology and Climatology 48, no. 12 (2009): 2459–73. http://dx.doi.org/10.1175/2009jamc2160.1.
Full textLajeunesse, E., O. Devauchelle, M. Houssais, and G. Seizilles. "Tracer dispersion in bedload transport." Advances in Geosciences 37 (December 17, 2013): 1–6. http://dx.doi.org/10.5194/adgeo-37-1-2013.
Full textNakayama, Hiromasa, Tetsuya Takemi, and Toshiya Yoshida. "Large-Eddy Simulation of Plume Dispersion in the Central District of Oklahoma City by Coupling with a Mesoscale Meteorological Simulation Model and Observation." Atmosphere 12, no. 7 (2021): 889. http://dx.doi.org/10.3390/atmos12070889.
Full textDupont, R., B. Pierce, J. Worden, et al. "Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign." Atmospheric Chemistry and Physics 12, no. 1 (2012): 169–88. http://dx.doi.org/10.5194/acp-12-169-2012.
Full textWicks, P. J. "Interaction of buoyant plumes in open-channel flow." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 33, no. 4 (1992): 451–73. http://dx.doi.org/10.1017/s0334270000007165.
Full textKim, Hyun Soo, Mee Kyung Lee, Hyun Jung Cho, and Chul Han Song. "Development of a reactive puff model for simultaneous consideration of plume dispersion and plume chemistry." Korean Journal of Chemical Engineering 25, no. 6 (2008): 1362–71. http://dx.doi.org/10.1007/s11814-008-0224-x.
Full textLotrecchiano, Nicoletta, Daniele Sofia, Aristide Giuliano, Diego Barletta, and Massimo Poletto. "Pollution Dispersion from a Fire Using a Gaussian Plume Model." International Journal of Safety and Security Engineering 10, no. 4 (2020): 431–39. http://dx.doi.org/10.18280/ijsse.100401.
Full text