Journal articles on the topic 'Pluripotent Stem Cells (PSCs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Pluripotent Stem Cells (PSCs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Samruan, Worawalan, Nathalie Beaujean, and Marielle Afanassieff. "Pluripotent Stem Cells for Transgenesis in the Rabbit: A Utopia?" Applied Sciences 10, no. 24 (2020): 8861. http://dx.doi.org/10.3390/app10248861.
Full textLeyendecker Junior, Alessander. "TGF-β Inhibitor SB431542 Promotes the Differentiation of Induced Pluripotent Stem Cells and Embryonic Stem Cells into Mesenchymal-Like Cells". Stem Cells International 2018 (2 липня 2018): 1–13. http://dx.doi.org/10.1155/2018/7878201.
Full textFu, Xuemei, Shouhai Wu, Bo Li, Yang Xu, and Jingfeng Liu. "Functions of p53 in pluripotent stem cells." Protein & Cell 11, no. 1 (2019): 71–78. http://dx.doi.org/10.1007/s13238-019-00665-x.
Full textAbu-Dawud, R., N. Graffmann, S. Ferber, W. Wruck, and J. Adjaye. "Pluripotent stem cells: induction and self-renewal." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1750 (2018): 20170213. http://dx.doi.org/10.1098/rstb.2017.0213.
Full textWang, Xuepeng, and Qiang Wu. "The Divergent Pluripotent States in Mouse and Human Cells." Genes 13, no. 8 (2022): 1459. http://dx.doi.org/10.3390/genes13081459.
Full textPei, Yangli, Liang Yue, Wei Zhang, Jinzhu Xiang, Zhu Ma, and Jianyong Han. "Murine pluripotent stem cells that escape differentiation inside teratomas maintain pluripotency." PeerJ 6 (January 4, 2018): e4177. http://dx.doi.org/10.7717/peerj.4177.
Full textNishimura, Ken, Aya Fukuda, and Koji Hisatake. "Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming." International Journal of Molecular Sciences 20, no. 9 (2019): 2254. http://dx.doi.org/10.3390/ijms20092254.
Full textÁvila-González, Daniela, Mikel Ángel Gidi-Grenat, Guadalupe García-López, et al. "Pluripotent Stem Cells as a Model for Human Embryogenesis." Cells 12, no. 8 (2023): 1192. http://dx.doi.org/10.3390/cells12081192.
Full textIvanova, Julia S., and Olga G. Lyublinskaya. "Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility?" International Journal of Molecular Sciences 22, no. 20 (2021): 10946. http://dx.doi.org/10.3390/ijms222010946.
Full textRosa, Alessandro, and Monica Ballarino. "Long Noncoding RNA Regulation of Pluripotency." Stem Cells International 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1797692.
Full textWeissbein, Uri, Nissim Benvenisty, and Uri Ben-David. "Genome maintenance in pluripotent stem cells." Journal of Cell Biology 204, no. 2 (2014): 153–63. http://dx.doi.org/10.1083/jcb.201310135.
Full textMenzorov, Aleksei G. "Pluripotent Stem Cells of Order Carnivora: Technical Perspective." International Journal of Molecular Sciences 24, no. 4 (2023): 3905. http://dx.doi.org/10.3390/ijms24043905.
Full textCrombie, Duncan E., Maciej Daniszewski, Helena H. Liang, et al. "Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells." SLAS DISCOVERY: Advancing the Science of Drug Discovery 22, no. 8 (2017): 1016–25. http://dx.doi.org/10.1177/2472555217696797.
Full textWang, Xiaoxiao, Yunlong Xiang, Yang Yu, et al. "Formative pluripotent stem cells show features of epiblast cells poised for gastrulation." Cell Research 31, no. 5 (2021): 526–41. http://dx.doi.org/10.1038/s41422-021-00477-x.
Full textChen, Andy Chun Hang, Qian Peng, Sze Wan Fong, Kai Chuen Lee, William Shu Biu Yeung, and Yin Lau Lee. "DNA Damage Response and Cell Cycle Regulation in Pluripotent Stem Cells." Genes 12, no. 10 (2021): 1548. http://dx.doi.org/10.3390/genes12101548.
Full textLee, Jungwoon, Young-Jun Park, and Haiyoung Jung. "Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation." Stem Cells International 2019 (July 24, 2019): 1–10. http://dx.doi.org/10.1155/2019/1569740.
Full textMilagre, Inês, Carolina Pereira, and Raquel A. Oliveira. "Compromised Mitotic Fidelity in Human Pluripotent Stem Cells." International Journal of Molecular Sciences 24, no. 15 (2023): 11933. http://dx.doi.org/10.3390/ijms241511933.
Full textTan, Heng Liang, and Andre Choo. "Opportunities for Antibody Discovery Using Human Pluripotent Stem Cells: Conservation of Oncofetal Targets." International Journal of Molecular Sciences 20, no. 22 (2019): 5752. http://dx.doi.org/10.3390/ijms20225752.
Full textLiu, Gele, Brian T. David, Matthew Trawczynski, and Richard G. Fessler. "Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications." Stem Cell Reviews and Reports 16, no. 1 (2019): 3–32. http://dx.doi.org/10.1007/s12015-019-09935-x.
Full textHindley, Christopher, and Anna Philpott. "The cell cycle and pluripotency." Biochemical Journal 451, no. 2 (2013): 135–43. http://dx.doi.org/10.1042/bj20121627.
Full textSu, Yue, Ling Wang, Zhiqiang Fan, et al. "Establishment of Bovine-Induced Pluripotent Stem Cells." International Journal of Molecular Sciences 22, no. 19 (2021): 10489. http://dx.doi.org/10.3390/ijms221910489.
Full textTakahashi, Kazutoshi, Michiko Nakamura, Chikako Okubo, et al. "The pluripotent stem cell-specific transcript ESRG is dispensable for human pluripotency." PLOS Genetics 17, no. 5 (2021): e1009587. http://dx.doi.org/10.1371/journal.pgen.1009587.
Full textMorizane, Ryuji, and Albert Q. Lam. "Directed Differentiation of Pluripotent Stem Cells into Kidney." Biomarker Insights 10s1 (January 2015): BMI.S20055. http://dx.doi.org/10.4137/bmi.s20055.
Full textBernad, Raquel, Cian J. Lynch, Rocio G. Urdinguio, Camille Stephan-Otto Attolini, Mario F. Fraga, and Manuel Serrano. "Stability of Imprinting and Differentiation Capacity in Naïve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19." Cells 10, no. 4 (2021): 876. http://dx.doi.org/10.3390/cells10040876.
Full textNavarro, Micaela, Delia A. Soto, Carlos A. Pinzon, Jun Wu, and Pablo J. Ross. "Livestock pluripotency is finally captured in vitro." Reproduction, Fertility and Development 32, no. 2 (2020): 11. http://dx.doi.org/10.1071/rd19272.
Full textBothun, Alisha, and Dori Woods. "Steps toward the generation of ovarian somatic cells from pluripotent stem cells." Clinical Theriogenology 12, no. 4 (2020): 529–35. http://dx.doi.org/10.58292/ct.v12.9454.
Full textXiao, Jifang, Daniel H. Mai, and Liangqi Xie. "Resetting Human Naïve Pluripotency." Genetics & Epigenetics 8 (January 2016): GEG.S38093. http://dx.doi.org/10.4137/geg.s38093.
Full textYang, Ying, Katsuyuki Adachi, Megan A. Sheridan, et al. "Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure." Proceedings of the National Academy of Sciences 112, no. 18 (2015): E2337—E2346. http://dx.doi.org/10.1073/pnas.1504778112.
Full textShimada, Mikio, Kaima Tsukada, Nozomi Kagawa, and Yoshihisa Matsumoto. "Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells." Journal of Radiation Research 60, no. 6 (2019): 719–28. http://dx.doi.org/10.1093/jrr/rrz057.
Full textHay, David C., and Cliona O'Farrelly. "Designer human tissue: coming to a lab near you." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1750 (2018): 20170212. http://dx.doi.org/10.1098/rstb.2017.0212.
Full textZhang, Zhenwu, Xinyu Bao, and Chao-Po Lin. "Progress and Prospects of Gene Editing in Pluripotent Stem Cells." Biomedicines 11, no. 8 (2023): 2168. http://dx.doi.org/10.3390/biomedicines11082168.
Full textTorizal, Fuad G., Ikki Horiguchi, and Yasuyuki Sakai. "Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation." Open Biomedical Engineering Journal 13, no. 1 (2019): 41–54. http://dx.doi.org/10.2174/1874120701913010041.
Full textWang, Shao-Hua, Chao Zhang, and Yangming Wang. "microRNA regulation of pluripotent state transition." Essays in Biochemistry 64, no. 6 (2020): 947–54. http://dx.doi.org/10.1042/ebc20200028.
Full textMohtaram, Nima Khadem, Vahid Karamzadeh, Yousef Shafieyan, and Stephanie M. Willerth. "Commercializing Electrospun Scaffolds For Pluripotent Stem Cell-Based Tissue Engineering Applications." Electrospinning 2, no. 1 (2017): 62–72. http://dx.doi.org/10.1515/esp-2017-0003.
Full textPappas, Matthew P., Ning Xie, Jacqueline S. Penaloza, and Sunny S. K. Chan. "Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas." Cells 11, no. 9 (2022): 1589. http://dx.doi.org/10.3390/cells11091589.
Full textBatalov, Ivan, and Adam W. Feinberg. "Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture." Biomarker Insights 10s1 (January 2015): BMI.S20050. http://dx.doi.org/10.4137/bmi.s20050.
Full textZhou, Hang, Yun Wang, Li-Ping Liu, Yu-Mei Li, and Yun-Wen Zheng. "Gene Editing in Pluripotent Stem Cells and Their Derived Organoids." Stem Cells International 2021 (November 30, 2021): 1–14. http://dx.doi.org/10.1155/2021/8130828.
Full textGrigor’eva, E. V., A. I. Shevchenko, S. P. Medvedev, N. A. Mazurok, A. И. Zhelezova, and S. M. Zakian. "Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal." Acta Naturae 7, no. 4 (2015): 56–69. http://dx.doi.org/10.32607/20758251-2015-7-4-56-69.
Full textAbdal Dayem, Ahmed, Soo Bin Lee, Kyeongseok Kim, et al. "Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming." International Journal of Molecular Sciences 20, no. 8 (2019): 1922. http://dx.doi.org/10.3390/ijms20081922.
Full textKim, Sejong, Geun-Ho Kang, Kyung Min Lim, et al. "Thermostable Human Basic Fibroblast Growth Factor (TS-bFGF) Engineered with a Disulfide Bond Demonstrates Superior Culture Outcomes in Human Pluripotent Stem Cell." Biology 12, no. 6 (2023): 888. http://dx.doi.org/10.3390/biology12060888.
Full textLuo, Qian, Honghu Li, Wei Shan, et al. "Specific Blood Cells Derived from Pluripotent Stem Cells: An Emerging Field with Great Potential in Clinical Cell Therapy." Stem Cells International 2021 (August 11, 2021): 1–16. http://dx.doi.org/10.1155/2021/9919422.
Full textSalerno, Debora, and Alessandro Rosa. "Identification of Molecular Signatures in Neural Differentiation and Neurological Diseases Using Digital Color-Coded Molecular Barcoding." Stem Cells International 2020 (September 12, 2020): 1–9. http://dx.doi.org/10.1155/2020/8852313.
Full textDing, Jianyi, Yongqin Li, and Andre Larochelle. "De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy." Cells 12, no. 2 (2023): 321. http://dx.doi.org/10.3390/cells12020321.
Full textGuo, Rongqun, Fangxiao Hu, Qitong Weng, et al. "Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors." Cell Research 30, no. 1 (2019): 21–33. http://dx.doi.org/10.1038/s41422-019-0251-7.
Full textDogan, Fatma, Rakad M. Kh Aljumaily, Mark Kitchen, and Nicholas R. Forsyth. "Physoxia Influences Global and Gene-Specific Methylation in Pluripotent Stem Cells." International Journal of Molecular Sciences 23, no. 10 (2022): 5854. http://dx.doi.org/10.3390/ijms23105854.
Full textXia, Kaishun, Zhe Gong, Jian Zhu, et al. "Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration." Current Stem Cell Research & Therapy 14, no. 1 (2019): 57–64. http://dx.doi.org/10.2174/1574888x13666180918095121.
Full textLee, Brian, Breanna S. Borys, Michael S. Kallos, Carlos A. V. Rodrigues, Teresa P. Silva, and Joaquim M. S. Cabral. "Challenges and Solutions for Commercial Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products." Bioengineering 7, no. 2 (2020): 31. http://dx.doi.org/10.3390/bioengineering7020031.
Full textChen, Fuquan, Jiaojiao Ji, Jian Shen, and Xinyi Lu. "When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells." Stem Cells International 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/3250624.
Full textBourhill, Tarryn, Leili Rohani, Mehul Kumar, Pinaki Bose, Derrick Rancourt, and Randal N. Johnston. "Modulation of Reoviral Cytolysis (II): Cellular Stemness." Viruses 15, no. 7 (2023): 1473. http://dx.doi.org/10.3390/v15071473.
Full textEasley, Charles A., Calvin R. Simerly, and Gerald Schatten. "Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art." Reproduction, Fertility and Development 27, no. 1 (2015): 89. http://dx.doi.org/10.1071/rd14317.
Full text