Academic literature on the topic 'PMSM motor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PMSM motor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "PMSM motor"

1

Dambrauskas, Karolis, Jonas Vanagas, Tomas Zimnickas, Artūras Kalvaitis, and Mindaugas Ažubalis. "A Method for Efficiency Determination of Permanent Magnet Synchronous Motor." Energies 13, no. 4 (February 24, 2020): 1004. http://dx.doi.org/10.3390/en13041004.

Full text
Abstract:
The utilization rate of permanent magnet synchronous motors (PMSM) is increasing in the industry today. Due to this fact, the high efficiency ratio of PMSMs has reached IE5 premium class efficiency. Therefore, the efficiency coefficient of the PMSM varies from 92% to 97%. As a result, this type of motor is replacing traditional asynchronous motor by falling into efficiency classes of IE1, IE2, IE3, and IE4, which range from 75% to 92% in the industry. Thus, the object of the research was to develop a method to determine the efficiency of permanent magnet synchronous motor applications in order to identify and verify the variating parameters. In this study, an innovative and safe method of PMSM testing when the nominal parameters of the motor are unknown was presented through research. Also, the comparison of PMSM oscillograms with different types of load types and phase shift oscillograms, generated using operation amplifier, were analyzed and is scrutinized. During the design process, the PMSM was projected for the IE5 premium efficiency class. However, after production, the PMSM sometimes does not match the nameplate parameters, which are declared by the factory. As a result, during the testing procedures, the PMSM nameplate parameters did not match the projected parameters. Facing the problem of the projected and tested efficiency mismatch, the PMSM highest efficiency determination experiments were performed in a laboratory in order to prove the highest efficiency of the PMSM. The results showed different PMSM input parameters. Furthermore, the experimental results of the PMSM testing were confirmed with electrical machines theory, and simulation results were performed with electrical circuits. The theory of PMSM operating in different values of input voltage is represented in graphical abstract.
APA, Harvard, Vancouver, ISO, and other styles
2

Raj, S., R. Aziz, and M. Z. Ahmad. "Influence of pole number on the characteristics of permanent magnet synchronous motor (PMSM)." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 3 (March 1, 2019): 1318. http://dx.doi.org/10.11591/ijeecs.v13.i3.pp1318-1323.

Full text
Abstract:
<span>This paper present the influence of pole number on the characteristics of permanent magnet synchronous motor (PMSM). This study is devoted to construct three different motors with varying pole numbers and investigating its effect on the characteristics of permanent magnet synchronous motor (PMSM). It is a study on an influence of pole numbers on electromagnetic and thermal characteristics of the PMSMs all while maintaining the same motor dimensions, parameters and slot number. The study is conducted to analyse the best slot-pole combination for a given dimension to determine if pole numbers have a role in the motor performance. The analysis for these permanent magnet motors is done via finite element analysis (FEA) in which JMAG Designer software is used. The software is used to analyse the motor performance in terms of cogging torque, speed, power, iron loss, copper loss as well as the efficiency of the motor itself. All three motors were simulated in no load and load condition.</span>
APA, Harvard, Vancouver, ISO, and other styles
3

He, Ren, and Qingzhen Han. "Dynamics and Stability of Permanent-Magnet Synchronous Motor." Mathematical Problems in Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/4923987.

Full text
Abstract:
The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM). PMSM equilibrium local stability condition and Hopf bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent parameters should be designed in the region which has only one stable equilibrium.
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Jian-wei, Man-feng Dou, and Zhi-yong Dai. "Modeling and Fault Diagnosis of Interturn Short Circuit for Five-Phase Permanent Magnet Synchronous Motor." Journal of Electrical and Computer Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/168786.

Full text
Abstract:
Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC) fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1) Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2) Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, Lien-Kai, Shun-Hong Wang, and Mi-Ching Tsai. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering." Energies 13, no. 17 (August 30, 2020): 4467. http://dx.doi.org/10.3390/en13174467.

Full text
Abstract:
In recent years, many motor fault diagnosis methods have been proposed by analyzing vibration, sound, electrical signals, etc. To detect motor fault without additional sensors, in this study, we developed a fault diagnosis methodology using the signals from a motor servo driver. Based on the servo driver signals, the demagnetization fault diagnosis of permanent magnet synchronous motors (PMSMs) was implemented using an autoencoder and K-means algorithm. In this study, the PMSM demagnetization fault diagnosis was performed in three states: normal, mild demagnetization fault, and severe demagnetization fault. The experimental results indicate that the proposed method can achieve 96% accuracy to reveal the demagnetization of PMSMs.
APA, Harvard, Vancouver, ISO, and other styles
6

Knypiñski, Łukasz, Lech Nowak, and Andrzej Demenko. "Optimization of the synchronous motor with hybrid permanent magnet excitation system." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 34, no. 2 (March 2, 2015): 448–55. http://dx.doi.org/10.1108/compel-08-2014-0216.

Full text
Abstract:
Purpose – The purpose of this paper is to elaborate an algorithm and the software for the rotor structure optimization of the permanent magnet synchronous motor (PMSM) with a magnet composed of two materials made with the use of different technologies: sintered Neodymium magnets and powder dielectromagnets. To execute of optimization of selected motor structure using the non-deterministic procedure. Design/methodology/approach – The mathematical model of the devices includes: the equation of the electromagnetic field, the electric circuit equations and equation of mechanical motion. The numerical implementation is based on finite element method and step-by-step algorithm. The genetic algorithm has been applied in the optimization procedures. The computer code has been developed. Findings – The elaborated computer software has been applied for the optimization and design of PMSMs. The elaborated algorithm has been tested and a good convergence has been attained. The parameters of two optimal structures of PMSM motors have been compared. Originality/value – The presented approach and computer software can be successfully applied to the design and optimization of different structure of PMSM with different type of rotors.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Qi, Haitao Yu, Min Wang, and Xinbo Qi. "A Novel Adaptive Neuro-Control Approach for Permanent Magnet Synchronous Motor Speed Control." Energies 11, no. 9 (September 6, 2018): 2355. http://dx.doi.org/10.3390/en11092355.

Full text
Abstract:
A speed controller for permanent magnet synchronous motors (PMSMs) under the field oriented control (FOC) method is discussed in this paper. First, a novel adaptive neuro-control approach, single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) for speed regulation of PMSMs, is presented. For both current loops, PI controllers are adopted, respectively. Compared with the conventional single artificial neuron (SAN) control strategy, the proposed approach assumes an unknown mathematic model of the PMSM and guides the selection value of parameter K online. Besides, the proposed design can develop an internal reinforcement learning signal to guide the dynamic optimal control of the PMSM in the process. Finally, nonlinear optimal control simulations and experiments on the speed regulation of a PMSM are implemented in Matlab2016a and TMS320F28335, a 32-bit floating-point digital signal processor (DSP), respectively. To achieve a comparative study, the conventional SAN and SAN-GrHDP approaches are set up under identical conditions and parameters. Simulation and experiment results verify that the proposed controller can improve the speed control performance of PMSMs.
APA, Harvard, Vancouver, ISO, and other styles
8

Jun, Bum-Su, Joon Park, Jun-Hyuk Choi, Ki-Doek Lee, and Chung-Yuen Won. "Temperature Estimation of Stator Winding in Permanent Magnet Synchronous Motors Using d-Axis Current Injection." Energies 11, no. 8 (August 6, 2018): 2033. http://dx.doi.org/10.3390/en11082033.

Full text
Abstract:
This paper presents a stator winding temperature detection method for permanent magnet synchronous motors (PMSMs) using a motor parameter estimation method. PMSM performance is highly dependent on the motor parameters. However, the motor parameters vary with temperature. It is difficult to measure motor parameters using a voltage equation without additional sensors. Herein, a stator winding temperature estimation method based on a d-axis current injection method is proposed. The proposed estimation method can be used to obtain stator temperatures and to achieve reliable operation. The validity of the proposed method is verified through simulations and experimental results.
APA, Harvard, Vancouver, ISO, and other styles
9

H. Al-Tameemi, Zaid, Hayder H. Enawi, Karrar M. Al-Anbary, Dalya H. Al-Mamoori, and Hussam M. Almukhtar. "An objective study of behavior of permanent magnet synchronous motor under abnormal conditions." International Journal of Engineering & Technology 7, no. 4 (September 5, 2018): 1977. http://dx.doi.org/10.14419/ijet.v7i4.15550.

Full text
Abstract:
Permanent magnet synchronous motors (PMSM) can be used directly in place of the induction motors (I.M) for several industrial applications since it is characterized by high efficiency, high power factor, and high power compared to I.M. However, this type of motor suffers from some abnormal conditions that result in minimizing power quality such as voltage sags, temporary disturbances, and faults within the network. In this paper, the behavior of PMSM has been studied under the above conditions in a Matlab/Simulink environment. It was noticed that such problems caused an increase in the amount of torque and current in this motor which impacted negatively on the motor speed and influenced the behavior of PMSM.
APA, Harvard, Vancouver, ISO, and other styles
10

Taha, Harwan Mohammed, and Ismaeil Alnaab. "Designs of PMSMs with Inner and Outer Rotors for Electric Bicycle Applications." Kurdistan Journal of Applied Research 4, no. 1 (June 20, 2019): 20–25. http://dx.doi.org/10.24017/science.2019.1.4.

Full text
Abstract:
In this paper, designs of two rotor structures of permanent magnet synchronous motor (PMSM) are proposed in order to find the suitable one to drive an electric bicycle, namely, inner rotor and outer rotor. Both motors are designed to run at a rated speed of 20 Km/h and rated power of 250 W. This paper compares the performance of both proposed motors and the comparison between them is in terms of motor size, weight, cost and efficiency. In addition, this work uses the second design, which is the PMSM with outer rotor to investigate the effects of some motor parameters on motor performance; the parameters are current, advanced angle, stack length and external diameter. In this work, Motor Solve software is used to design and analyze the performance of both motors. According to the simulation and calculation results, both motors achieved the required rated speed and torque at high efficiency and reasonable cost. Nevertheless, the PMSM with inner rotor obtained the required specifications with lighter weight and smaller size than the PMSM with outer rotor. Therefore, it is a proper choice for driving an electric bicycle that has a limitation regarding the motor space. Regarding parameters’ effect, the simulation figures and data show that the motor torque will increase if we increase supply current, stack length and external diameter, while speed decreases as it inversely changes with torque. Except for advance angle which helps motor to produce maximum possible torque at a higher speed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "PMSM motor"

1

Awawda, Lama. "Design of an Electric Motor (PMSM) and Manufacturing Lab." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20118.

Full text
Abstract:
The thesis presents deals with the design, analysis, test and control of permanent magnetsynchronous motor(PMSM).An analytical model was carried out based on the d-q frame and the equivalent circuit of PMSM, theanalytical model gives an approximation value of the machine parameters and is carried out byequations from the listed references. this phase includes many iteration steps, once the results wereobtained they were compared with the motor specifications and if they don’t match the requiredspecifications the process must be done again until the desired design is obtained.Once the analytical model is obtained a Finite Element Simulation was carried out using FEMMsoftware to validate the design, in the FEM analysis in this phase the machine designed in theanalytical model is analyzed, once the simulation is done the results from both models are comparedand discussed in the results chapter.It’s important to mark that during the design phase some design parameters were affected andlimited by some factor, for example, the air gap length has been magnified due to manufacturinglimits.
APA, Harvard, Vancouver, ISO, and other styles
2

Awawda, Lama. "Design of an electric motor (PMSM) & manufacturing lab." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20118.

Full text
Abstract:
The thesis presents deals with the design, analysis, test and control of permanent magnetsynchronous motor(PMSM). An analytical model was carried out based on the d-q frame and the equivalent circuit of PMSM, theanalytical model gives an approximation value of the machine parameters and is carried out byequations from the listed references. this phase includes many iteration steps, once the results wereobtained they were compared with the motor specifications and if they don’t match the requiredspecifications the process must be done again until the desired design is obtained. Once the analytical model is obtained a Finite Element Simulation was carried out using FEMMsoftware to validate the design, in this phase the designed machine in the analytical model isanalyzed and validated, once the simulation is done the results from both models are compared anddiscussed in the results chapter. It’s important to mark that during the design phase some design parameters were affected andlimited by some factors, for example, the air gap length has been magnified due to manufacturinglimits. The manufacturing process and the prototype building have been started once the optimal designwas selected, the manufacturing process was explained and a comparison study was made to selectthe best manufacturing process suitable and available for this thesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jing. "Fault Detection for PMSM Motor Drives using Input Current Monitoring." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elhangari, Abdelbaset K. Tahir. "Sliding-Mode Control of the Permanent Magnet Synchronous Motor (PMSM)." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386173503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moravec, Vojtěch. "Odhad polohy rotoru PMSM pomocí VF signálu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-240847.

Full text
Abstract:
This thesis is focused on the design of vector control of interior permanent magnet synchronous motors. The first part of this work deals with vector control transformations and mathematical modelling of synchronous motors. Furthermore, algorithms of sensorless control are discussed, especially HF injection sensorless methods. One of these methods was used for torque and speed control. Problem of phase delay caused by filters and it’s compensation is also discused. One of the HF injection sensorless method was implemented on both motors. The results of simulations in MATLAB/Simulink and tests of real motors on dSpace are included.
APA, Harvard, Vancouver, ISO, and other styles
6

Finnman, Jonas, and Erik Eketorp. "Design and Manufacturing of IPM Synchronous Motor for Field Weakening Operation." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128511.

Full text
Abstract:
Rotor designs for permanent magnet synchronous machines suitable for field weakening operation have been evaluated for use with an existing drive system. The designs have been simulated with the FEM-based software Finite Element Method Magnetics (FEMM). Based on the results two different internal magnet rotors have been constructed and tested. Both designs significantly improved the speed range while maintaining or improving magnet utilisation. The implementation of field weakening algorithms in drive electronics is complex and need thorough optimisation for stable operation. Internal permanent magnet rotors are a good alternative to surface mounted designs and enables a wider speed range through improved field weakening capabilities.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Tianyi. "Control strategy for a mono-inverter multi-PMSM system - Stability and efficiency." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19624/7/tianyi_liu.pdf.

Full text
Abstract:
During these decades, Permanent Magnet Synchronous Motor (PMSM) has become a vital part of military, industry and civil applications due to the advantages of high power density, high efficiency, high reliability and simple structure, small volume and light weight. Sometimes, multiple PMSMs are used to carry out cooperative functions. For example, the bogie of a locomotive, the flight control surface of an airplane. These PMSMs usually operates at the same speed. To reduce the volume and weight, an idea of sharing the static power conversion devices, which is called Mono-Inverter Multi-PMSM system (MIMPMSM), is raised. Although many researchers have given different controller solutions for the MIMPMSM system, most of them are not clear in the aspects of system stability and efficiency issues. This has become the biggest obstacle to the practical use of MIMPMSM. Oriented with these problems, starting with a MIMPMSM system with 2 motors, in the first step, we have tested some control strategies by an experiment to verify the feasibility and performance of them. In final, based on the experiment data, we have figured that the overconstraint problem exists in some control strategies. Then, an analysis and controller design based on steady-state model of a Mono-Inverter Dual-PMSM (MIDPMSM) system is carried out.By studying the solution existence problem of the steady-state model, we give out the design guideline to the controller structure. Combining the open-loop stability and steady-state solution, the region of controllability and stability is obtained. Lagrange Multiplier is used develop theexpression of efficiency-optimal steady-staterelated to torque and speed. The experiment has shown that the efficiency of the new controller has improved significantly. Meanwhile, we have explored the influence of parameter variation in system stability and efficiency-optimization. The variation will influence the stability region. But its influence can be eliminated by using Master- Slave strategy. On the other hand, in the aspect of efficiency optimization, the simulation results have shown that parameter mismatch, especially the permeant flux, can cause high efficiency loss. In the last step, this controller is also adapted to a MIMPMSM system with more than two motors. The simulation results demonstrate the effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
8

Macek, Daniel. "CompactRIO modul pro řízení servomotoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400633.

Full text
Abstract:
The thesis deals with the description of PMSM and BLDC motors as well as the way of their control. In addition, the thesis deals with the description of the instruments of National Instruments, DAQ, CompactRIO and PXI. The details of the user module's production in the CompactRIO device, both hardware and software, are specified in the paper. The following is a description of the proposed CompactRIO module.
APA, Harvard, Vancouver, ISO, and other styles
9

Forsberg, Oscar. "Evaluation of Hall-sensors for motor control in high precision applications for aircraft." Thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296966.

Full text
Abstract:
A functioning prototype test motor with Hall-sensor feedback has been built, and the test results show that the motor performance in terms of speed ripple is well within the specified demands. The temperature demands however, have not been fully met. The minimum operating temperature of the sensor was specified to -55◦C by Saab, and the sensors found on the market has a minimum operating temperature of -40◦C. There was also an operation error, the reason of which could either be failure of the drive unit to deliver enough current, or the stator magnetic field strength being too strong for the sensors to reliably detect the rotor magnets when a sufficiently strong current is run through the stator windings. For the purpose of investigating this error it is proposed to conduct tests with a drive unit that can deliver currents over 5 A.
SWE Demo
APA, Harvard, Vancouver, ISO, and other styles
10

Abou, Qamar Nezar Yehya. "SUPPRESSION OF HARMONIC TORQUE AND HARMONIC CURRENT IN PERMANENT MAGNET SYNCHRONOUS MOTOR." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1522.

Full text
Abstract:
In this dissertation harmonic current, harmonic torque originated at the load and harmonic torque originated at the motor, where modeled and treated via closed loop control. The dissertation propose a remedy for cancelling harmonic current by placing the proposed adaptive feedforward controller (AFC) in parallel with the FOC current control. Similarly, harmonic torque load was cancelled by proposing an AFC in parallel with the speed control loop. Harmonic torque originated in the motor mainly due to harmonic flux where cancelled through the estimation of harmonic flux, which was achieved by a novel Minimal Parameter Harmonic Flux Estimator (MPHFE). The latter is formulated such that the inductance, resistance, and stator current and its derivative are not necessary for the estimation of the harmonic eflux. This was achieved by forcing the harmonic current induced by the harmonic flux component to zero through the combined action of a Field-Oriented Controller (FOC) and a feed-forward controller. Subsequently, the harmonic flux can be obtained directly from the estimated harmonic back-EMF without the involvement of other motor parameters. Finally, the estimated flux is used in conjunction with a comprehensive analysis of the motor harmonic torque to determine the stator current compensation to eliminate the torque harmonic. A systematic approach to assign the parameter of the AFC controller were developed in this dissertation. Furthermore, multiple experiments were conducted to demonstrate the efficacy of the proposed control schemes harmonics.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "PMSM motor"

1

Vaez-Zadeh, Sadegh. Vector Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0003.

Full text
Abstract:
The chapter begins with a description of the scalar control of PMS motors. The fundamentals of PMS motor vector control (VC) are then presented with an eye on the analogy with DC motor operating principles. The VC of surface-mounted permanent magnet pole motors and interior permanent magnet (IPM) motors are presented in various reference frames. Current and voltage operating limits are incorporated into the control systems. Flux control modes of operation of PMS motors together with the corresponding control means in different reference frames are also presented in detail, as a particular feature of this book. These include maximum torque per ampere (MTPA) control, maximum torque per voltage control, and unity power factor control. Finally, loss minimization control by offline and online strategies is elaborated after presenting the method of motors loss reduction and the PMS motor loss modeling.
APA, Harvard, Vancouver, ISO, and other styles
2

Vaez-Zadeh, Sadegh. Control of Permanent Magnet Synchronous Motors. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.001.0001.

Full text
Abstract:
This is the first comprehensive, coherent, and up-to-date book devoted solely to the control of permanent magnet synchronous (PMS) motors, as the fastest growing AC motor. It covers a deep and detailed presentation of major PMS motor modeling and control methods. The readers can find rich materials on the fundamentals of PMS motor control in addition to new motor control methods, which have mainly been developed in the last two decades, including recent advancements in the field in a systematic manner. These include extensive modeling of PMS motors and a full range of vector control and direct torque control schemes, in addition to predictive control, deadbeat control, and combined control methods. All major sensorless control and parameter estimation methods are also studied. The book covers about 10 machine models in various reference frames and 70 control and estimation schemes with sufficient analytical and implementation details including about 200 original figures. A great emphasis is placed on energy-saving control schemes. PMS motor performances under different control systems are presented by providing simulation and experimental results. The past, present, and future of the PMS motor market are also discussed. Each chapter concludes with end-chapter problems and focussed bibliographies. It is an essential source for anyone working on PMS motors in academic and industry sectors. The book can be used as a textbook with the first four chapters for a primary graduate course and the final three chapters for an advanced course. It is also a crucial reading for researchers, design engineers, and experts in the field.
APA, Harvard, Vancouver, ISO, and other styles
3

Vaez-Zadeh, Sadegh. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0001.

Full text
Abstract:
An overview of permanent magnet synchronous (PMS) motors and the related control system are presented in this chapter as introductory materials for the rest of the book. The interconnections of the control system to the power electronic inverter and the motor are emphasized. In addition, the major parts of the system are overviewed. Pulse width-modulated voltage source inverter, as the most commonly used power converter in PMS motor drives, is briefly discussed. PMS motors configurations and operating principles are also presented after considering characteristics of permanent magnet materials. Major PMS motor control methods including vector control, direct torque control, predictive control, deadbeat control, and combined vector and direct torque control are briefly reviewed. Finally, several rotor position and speed estimation schemes, and offline and online parameter estimation methods are overviewed.
APA, Harvard, Vancouver, ISO, and other styles
4

Vaez-Zadeh, Sadegh. Predictive, Deadbeat, and Combined Controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0005.

Full text
Abstract:
In this chapter, three control methods recently developed for or applied to electric motors in general and to permanent magnet synchronous (PMS) motors, in particular, are presented. The methods include model predictive control (MPC), deadbeat control (DBC), and combined vector and direct torque control (CC). The fundamental principles of the methods are explained, the machine models appropriate to the methods are derived, and the control systems are explained. The PMS motor performances under the control systems are also investigated. It is elaborated that MPC is capable of controlling the motor under an optimal performance according to a defined objective function. DBC, on the other hand, provides a very fast response in a single operating cycle. Finally, combined control produces motor dynamics faster than one under VC, with a smoother performance than the one under DTC.
APA, Harvard, Vancouver, ISO, and other styles
5

Vaez-Zadeh, Sadegh. Parameter Estimation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0007.

Full text
Abstract:
In this chapter, the estimation of permanent magnetic synchronous (PMS) motor parameters, including stator winding resistance, motor inductances, and magnitude of permanent magnet flux linage, is presented in two main categories, i.e., offline and online. Several offline schemes, including DC and AC standstill tests, no-load test, load test, and vector control schemes, are presented for estimation of all the motor parameters. Major online schemes used in the estimation of PMS motor parameters are also presented in this chapter. They include closed-loop observer-based estimation, model reference adaptive system (MRAS)-based estimation, recursive least-squares (RLS) estimation, and extended Kalman filter scheme. The online schemes take into account the motor parameter variations during motor operation. The motor model, estimation procedure, and the connection of estimation systems to the motor control system are discussed for each parameter estimation scheme.
APA, Harvard, Vancouver, ISO, and other styles
6

Vaez-Zadeh, Sadegh. Machine Modeling. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0002.

Full text
Abstract:
This chapter presents dynamic and steady-state modeling of permanent magnet synchronous (PMS) machines with the help of reference frames. The modeling starts with a machine model in terms of phase variables. An equivalent two-axis model in a stationary reference is then obtained by a reference frame transformation. A further transformation to a two-axis rotor reference frame, with its direct axis aligned with the axis of a permanent magnet rotor pole, is derived. Another transformation to a two-axis stator flux linkage reference frame is also presented. Finally, a motor model in polar coordinates, based on space vector theory, is developed. In this chapter, PMS motor equivalent circuits are drawn, based on the mathematical models where appropriate. Iron losses and iron saturation are also taken into the models. The chapter ends with a brief presentation of the dynamic equation of PMS machines mechanical parts.
APA, Harvard, Vancouver, ISO, and other styles
7

Vaez-Zadeh, Sadegh. Rotor Position and Speed Estimation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0006.

Full text
Abstract:
The ultimate importance of rotor position and speed information in permanent magnet synchronous (PMS) machines control, and the industry interest to the rotor and speed sensorless systems as a cost-saving and practical alternative to the motor control with mechanical sensors are emphasized. Major position and speed estimation schemes are then presented in detail. These are the: back electromotive force (EMF)-based method; flux linkage method; hypothesis rotor position method; saliency-based method, including high frequency signal injection and inverter switching harmonics schemes; and finally, the observer-based method, including state observer and extended Kalman filter-based schemes. Each scheme was discussed by presenting the corresponding fundamental principles, followed by the appropriate motor model, estimation procedure, and the implementation. Demanding criteria such as accuracy, robustness, swiftness, and capability of working over the entire range of motor operation are discussed with each method.
APA, Harvard, Vancouver, ISO, and other styles
8

Vaez-Zadeh, Sadegh. Direct Torque Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0004.

Full text
Abstract:
The fundamental principles of direct torque control (DTC) of permanent magnet synchronous (PMS) motors are presented in this chapter. The basic DTC system is then described. The operating limits of PMS machines under DTC are presented in terms of current limit, voltage limit, and flux linkage limit. Also, flux linkage control, including maximum torque per ampere (MTPA), unity power factor, and flux weakening at high speed, is derived. Then, alternative DTC schemes, including different SVM-DTC schemes, are presented. In line with the increasing energy-saving tendency in industrial applications, major emphasis is placed on the loss minimization of DTC. Finally, a comprehensive comparison was made between the basic DTC and vector control, emphasizing the pros and cons of DTC with respect to vector control.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "PMSM motor"

1

Glumineau, Alain, and Jesús de León Morales. "Robust Synchronous Motor Controls Designs (PMSM and IPMSM)." In Advances in Industrial Control, 121–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14586-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Madan, Nitish, and Sandeep Kakran. "Parameter Computation and Current Control Loop Tuning of Non-salient PMSM Motor." In Lecture Notes in Electrical Engineering, 11–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1186-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rybarczyk, Dominik, Piotr Owczarek, and Arkadiusz Kubacki. "Design of Control System for an Electrohydraulic Drive Based on the Valve with PMSM Motor." In Challenges in Automation, Robotics and Measurement Techniques, 63–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29357-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shah, Dhruv, Gerardo Espinosa-Pérez, Romeo Ortega, and Michaël Hilairet. "Sensorless Speed Control of PMSM." In AC Electric Motors Control, 311–40. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118574263.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bai, Kun, and Kok-Meng Lee. "A Two-Mode PMSM for Haptic Applications." In Permanent Magnet Spherical Motors, 151–64. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7962-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Broel-Plater, Bogdan, Krzysztof Jaroszewski, and Daniel Figurowski. "The Use of a Torque Meter to Improve the Motion Quality at Very Slow Velocity of a Servo Drive with a PMSM Motor." In Advances in Intelligent Systems and Computing, 137–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50936-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bai, Kun, and Kok-Meng Lee. "PMSM Force/Torque Model for Real-Time Control." In Permanent Magnet Spherical Motors, 81–95. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7962-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bai, Kun, and Kok-Meng Lee. "General Formulation of PMSMs." In Permanent Magnet Spherical Motors, 21–30. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7962-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Neapolitan, Richard E., and Kwang Hee Nam. "PMSM Control Methods." In AC Motor Control and Electrical Vehicle Applications, 243–80. CRC Press, 2018. http://dx.doi.org/10.1201/9781315200149-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Neapolitan, Richard E., and Kwang Hee Nam. "PMSM Sensorless Control." In AC Motor Control and Electrical Vehicle Applications, 309–46. CRC Press, 2018. http://dx.doi.org/10.1201/9781315200149-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "PMSM motor"

1

Li, Tianpei, Qadeer Ahmed, Giorgio Rizzoni, Jason Meyer, Mathew Boesch, and Bader Badreddine. "Motor Resolver Fault Propagation Analysis for Electrified Powertrain." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5408.

Full text
Abstract:
As an integral part of electrified powertrain, resolver is broadly used to do position and speed sensing for electric motors, subject to different types of resolver faults. This paper investigates the resolver fault propagation in electrified powertrain, with focus on the amplitude imbalance, quadrature imperfection and reference phase shift in the resolver position sensing system. The resolver fault effects in the Permanent Magnet Synchronous Machine (PMSM) drive system are first analyzed based on the mathematical model of a surface mounted PMSM with direct Field-oriented Control (FOC). Then the resolver fault propagation in the powertrain is studied in terms of two different motor operating conditions, motor torque control and motor speed control. Simulation is done in Matlab/Simulink based on the PMSM drive model and the powertrain-level simulator to verify the fault propagation analyses. The results can be used to help design the resolver fault diagnostic strategy and determine speed matching condition between engine and electric motor for mode transition control in hybrid electric vehicles.
APA, Harvard, Vancouver, ISO, and other styles
2

Tong, Xiaomeng, and C. Steve Suh. "Wavelet-Based Filtered-X LMS Algorithm for the Control of Permanent Magnet Synchronous Motors." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37363.

Full text
Abstract:
Permanent Magnet Synchronous Motor (PMSM) can behave chaotically for a certain range of its parameters. To improve its dynamical behavior and enable a robust control of the rotor angular speed, a novel method combining the wavelet transform with the filtered-x LMS algorithm is presented in this paper. Without linearizing the model so as to not advertently misinterpret the underlying dynamics, the method can identify the nonlinear PMSM model with adaptive filters in real-time and guarantee a comprehensive control in both the time and frequency domains. Firstly, the physical PMSM model is analyzed and its chaotic behavior without control is investigated. The wavelet-based filtered-x LMS is then applied to the nonlinear PMSM system subject to desired angular speeds that are constant and varying harmonically in time. Numerical studies show that chaotic behaviors are effectively mitigated and the system output matches the desired angular speed after the initial transient period, thus demonstrating the feasibility of the method for the control of PMSMs.
APA, Harvard, Vancouver, ISO, and other styles
3

Zholbaryssov, Madi, and Azeem Sarwar. "Stator Diagnosis in Permanent Magnet Synchronous Motor (PMSM)." In ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ipack2019-6423.

Full text
Abstract:
Abstract GM has a vision of future with zero crashes, zero emissions, and zero congestion. Permanent Magnet Synchronous Motors will be integral part of an all-electric future, due to their excellent power to mass ratio and smaller size, which promises to deliver the zero emission world. Making sure that these motors do not fail abruptly without warning, will also reduce congestion caused on the roads by such incidents. Stator winding health monitoring presented in this article allows to detect a fault at its early stage, which greatly increases the chances of the customer being able to repair electric drive system before it completely fails. We present approach for detecting shorted turn faults in stator winding of permanent magnet synchronous motor. The approach is based on monitoring negative sequence admittance for certain operating conditions. Timely fault detection also allows to take preventive action to limit damage propagation across the electric drive, thus, reducing repair and warranty costs. The research presented in this article also furthers GM’s strategic initiative to develop Vehicle Health Management (VHM) technologies that positively impact customer ownership experiences and drive their long-term loyalty to GM brands.
APA, Harvard, Vancouver, ISO, and other styles
4

Chia-Wei Su, In Wha Jeong, Jun Wen, and Keyue Smedley. "Drive the PMSM motor using Hexagram Converter." In 2008 IEEE Applied Power Electronics Conference and Exposition - APEC 2008. IEEE, 2008. http://dx.doi.org/10.1109/apec.2008.4522971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Changhong, Dangwei Bian, Chaobo Chen, and Song Gao. "Research of Permanent Magnet Synchronous Motor Sensorless Control Based on Fractional Order PLL." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67070.

Full text
Abstract:
For those surface mounted permanent magnet synchronous motors (PMSM), a fractional order phase lock loop (FO-PLL) sensorless control method is proposed. On the basis of PMSM model in stationary coordinate, a rotor flux linkage observer is constructed. By designing the modified integrator and introducing the high pass filter, output saturation distortion or numeric overflow caused by integrator zero drift are solved. The observing results have no DC component. Moreover, a fractional order PLL is designed to estimate the PMSM rotor angle and speed. Parameters of FO-PLL controller are tuned and optimized via ITAE criterion. System indiscrimination degree is improved effectively. By using Oustaloup recursive filter, high order integer order approximation to fractional order integrator is realized. Last, the effectiveness and engineering application of the proposed method are verified on a MATLAB based PMSM control simulation platform.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Yinquan, Chao Bi, Quan Jiang, Song Lin, Nay Lin Htun Aung, and A. A. Mamun. "Natural Frequency of Stator Core of PM Synchronous Motor." In ASME 2014 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/isps2014-6911.

Full text
Abstract:
As the degree of office automation to improve, more and more automation equipments are utilized in office. Moreover, numbers of motors are employed in automation to realize multiple functions to attract customers. As a result, the motor which can run more quietly are highly demanded than ever. One of the main causes of noise production in motors is resonance between the electromagnetic forces e.g. Unbalanced Magnetic Pulls (UMPs) and the stator and the frame of the motor. Therefore, the accurate determination of the natural frequencies of stator at the design stage becomes very important [1]. Researchers have studied motor natural frequencies, vibration and acoustic signals in recent years [2]–[5]. In this paper, the PMSM stator mathematic model has introduced and validated by 12 slots and 5 pole-pairs PM surface mounting Synchronous motor M1 simulation case study. The dynamic responses of the model with high frequency excitation force are studied through simulation and experimental approach to further validate the analytical model.
APA, Harvard, Vancouver, ISO, and other styles
7

Hrbacek, Jan, Vladislav Singule, and Pavel Houska. "Design of PMSM-based electric motor test stand." In 2014 16th International Conference on Mechatronics - Mechatronika (ME). IEEE, 2014. http://dx.doi.org/10.1109/mechatronika.2014.7018327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piippo, Antti, Marko Hinkkanen, and Jorma Luomi. "Adaptation of Motor Parameters in Sensorless PMSM Drives." In 2007 7th International Conference on Power Electronics and Drive Systems. IEEE, 2007. http://dx.doi.org/10.1109/peds.2007.4487697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen Yiguang, Pan Wei, Wang Ying, Tang Renyuan, and Wang Jing. "Interior composite-rotor controllable-flux PMSM - memory motor." In Proceedings of the Eighth International Conference on Electrical Machines and Systems. IEEE, 2005. http://dx.doi.org/10.1109/icems.2005.202566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Yinquan, Chao Bi, Quan Jiang, Song Lin, Phyu Nu Hla, Nay Lin Htun Aung, and A. A. Mamun. "Analytical and Numerical Study Rotor Faults in PM Synchronous Motor." In ASME 2013 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/isps2013-2857.

Full text
Abstract:
In order to achieve high area density of HDD to 10Tbit/in2, both radial and axial direction Repeatable Run-Out (RRO) and None repeatable Run-Out (NRRO) of spindle motor in HDD should be significantly reduced. That means the high performance spindle motor is need. Currently, the spindle motor used in HDD uses a rotating shaft FDB which structure likes slender cantilever beam to support the rotor and the problem of this kind of structure is reported in [1]. This structure cannot meet HDD high TPI requirements and should be replaced by the fixed shaft FDB spindle motor and the analytical model is shown in Fig. 1. Moreover, different types of Unbalance Magnetic Pull (UMP) of the Spindle motor and induced vibration should be fully studied. In order to fully understand motor vibration behavior, a thorough theoretical derivation of motor dynamics should be carried out as they can disclose clearly the global performance of the motor. Generally, four types of UMP reported in [1]–[3] can generate the motor lateral and axis vibration and produce motor acoustic noise. Researchers have studied vibration and acoustic signals in recent years[1]–[6]. In this paper, the PMSM mathematic model has introduced and validated by 12 slots and 5 pole-pairs PM surface mounting Synchronous motor M1 simulation case study. This type of Permanent Magnetic Synchronous motor (PMSM) is using in many applications, e.g.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography