Academic literature on the topic 'Poincaré-Birkhoff-Witt'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poincaré-Birkhoff-Witt.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poincaré-Birkhoff-Witt"
Bonfiglioli, Andrea, and Roberta Fulci. "A New Proof of the Existence of Free Lie Algebras and an Application." ISRN Algebra 2011 (March 7, 2011): 1–11. http://dx.doi.org/10.5402/2011/247403.
Full textReyes, Armando, and Héctor Suárez. "BASES FOR QUANTUM ALGEBRAS AND SKEW POINCARÉ-BIRKHOFF-WITT EXTENSIONS." MOMENTO, no. 54 (February 3, 2017): 54. http://dx.doi.org/10.15446/mo.n54.62431.
Full textMichaelis, Walter. "The Dual Poincaré-Birkhoff-Witt Theorem." Advances in Mathematics 57, no. 2 (August 1985): 93–162. http://dx.doi.org/10.1016/0001-8708(85)90051-9.
Full textBerger, Roland. "The quantum Poincaré-Birkhoff-Witt theorem." Communications in Mathematical Physics 143, no. 2 (January 1992): 215–34. http://dx.doi.org/10.1007/bf02099007.
Full textLevandovskyy, Viktor, and Anne V. Shepler. "Quantum Drinfeld Hecke Algebras." Canadian Journal of Mathematics 66, no. 4 (August 1, 2014): 874–901. http://dx.doi.org/10.4153/cjm-2013-012-2.
Full textNiño, A., and A. Reyes. "Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions." Algebra and Discrete Mathematics 30, no. 2 (2020): 207–29. http://dx.doi.org/10.12958/adm1307.
Full textCasas, José Manuel, Manuel A. Insua, and Manuel Ladra. "Poincaré–Birkhoff–Witt theorem for Leibniz n-algebras." Journal of Symbolic Computation 42, no. 11-12 (November 2007): 1052–65. http://dx.doi.org/10.1016/j.jsc.2007.05.003.
Full textMakar-Limanov, L. "A Version of the Poincaré-Birkhoff-Witt Theorem." Bulletin of the London Mathematical Society 26, no. 3 (May 1994): 273–76. http://dx.doi.org/10.1112/blms/26.3.273.
Full textHoffbeck, Eric. "A Poincaré–Birkhoff–Witt criterion for Koszul operads." manuscripta mathematica 131, no. 1-2 (November 3, 2009): 87–110. http://dx.doi.org/10.1007/s00229-009-0303-2.
Full textLaurent-Gengoux, Camille, Mathieu Stiénon, and Ping Xu. "Poincaré–Birkhoff–Witt isomorphisms and Kapranov dg-manifolds." Advances in Mathematics 387 (August 2021): 107792. http://dx.doi.org/10.1016/j.aim.2021.107792.
Full textDissertations / Theses on the topic "Poincaré-Birkhoff-Witt"
Cortiñas, Guillermo. "Cuantización y teorema de Poincaré-Birkhoff-Witt." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95761.
Full textRonchetti, Niccolò. "Il Diamond lemma e il teorema di Poincaré-Birkhoff-Witt sugli anelli." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1185/.
Full textBerger, Roland. "Propriété de Poincaré-Birkhoff-Witt dans les espaces et groupes quantiques différentiels." Lyon 1, 1992. http://www.theses.fr/1992LYO10001.
Full textHerlemont, Basile. "Differential calculus on h-deformed spaces." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0377/document.
Full textThe ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$
Deneufchâtel, Matthieu. "Intégrales Itérées en Physique Combinatoire." Phd thesis, Université Paris-Nord - Paris XIII, 2012. http://tel.archives-ouvertes.fr/tel-00736727.
Full textRiviere, Salim. "Sur l'isomorphisme entre les cohomologies de Hochschild et de Chevalley-Eilenberg." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00785201.
Full textKane, Ladji. "Combinatoire et algorithmique des factorisations tangentes à l'identité." Thesis, Paris 13, 2014. http://www.theses.fr/2014PA132059/document.
Full textCombinatorics has solved many problems in Mathematics, Physics and Computer Science, in return these domains inspire new questions to combinatorics. This memoir entitled "Combinatorics and algorithmics of factorization tangent to indentity includes several works on the combinatorial deformations of the shuffle product. The aim of this thesis is to write factorizations wich principal term is the identity through the use of tools relating mainly to combinatorics on the words (orderings, grading etc). In the classical case, let F be the free algebra. Due to the fact that F is an enveloping algebra, one has an exact factorization of the identity of End(F) = F⨶F as an infinite product of exponentials (End(F) being endowed with the shuffle product on the left and the concatenation on the right, a faithful representation of the convolution product) as follows : first on begins with a PBW basis, second one computes the family of coordinate forms and then non-trivial (combinatorial) properties of theses families in duality gives the factorization. Starting from the other side and writing the same product does give exactly identity only under very restrictive conditions that we clarify here. In many other (deformed) cases, the explicit construction of pairs of bases in duality requires combinatorial and algorithmic studies that we provide in this memoir
Petracci, Emanuela. "Equations fonctionnelles et algèbres de Lie." Phd thesis, 2003. http://tel.archives-ouvertes.fr/tel-00008854.
Full textalgébriques relatifs à une superalgèbre de Lie qui peuvent être
réduits à la résolution d'une équation fonctionnelle. Cette
technique a permis d'obtenir des résultats qui sont nouveaux
aussi pour une algèbre de Lie ordinaire et qui sont indépendants
de la classification des algèbres de Lie.
Book chapters on the topic "Poincaré-Birkhoff-Witt"
Polishchuk, Alexander, and Leonid Positselski. "Poincaré-Birkhoff-Witt bases." In University Lecture Series, 81–99. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/ulect/037/04.
Full textBueso, José, José Gómez-Torrecillas, and Alain Verschoren. "Poincaré-Birkhoff-Witt Algebras." In Algorithmic Methods in Non-Commutative Algebra, 109–35. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0285-0_3.
Full textKharchenko, Vladislav. "Poincaré-Birkhoff-Witt Basis." In Lecture Notes in Mathematics, 71–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22704-7_2.
Full text"Poincaré–Birkhoff–Witt and Cartier–Milnor–Moore." In Bimonoids for Hyperplane Arrangements, 678–716. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108863117.022.
Full text