Journal articles on the topic 'Poincaré Disk Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Poincaré Disk Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
FERRARI, FRANCO. "FIELD THEORIES ON THE POINCARÉ DISK." International Journal of Modern Physics A 11, no. 30 (1996): 5389–404. http://dx.doi.org/10.1142/s0217751x96002467.
Full textNielsen, Frank. "The Siegel–Klein Disk: Hilbert Geometry of the Siegel Disk Domain." Entropy 22, no. 9 (2020): 1019. http://dx.doi.org/10.3390/e22091019.
Full textAnguelova, Lilia, John Dumancic, Richard Gass, and L. C. R. Wijewardhana. "Dark energy from inspiraling in field space." Journal of Cosmology and Astroparticle Physics 2022, no. 03 (2022): 018. http://dx.doi.org/10.1088/1475-7516/2022/03/018.
Full textWei, Yuan, Zhaobo Chen, and Earl H. Dowell. "Nonlinear Characteristics Analysis of a Rotor-Bearing-Brush Seal System." International Journal of Structural Stability and Dynamics 18, no. 05 (2018): 1850063. http://dx.doi.org/10.1142/s0219455418500633.
Full textHan, W. B. "Dynamics of particles in slowly rotating black holes with dipolar halos." Proceedings of the International Astronomical Union 3, S248 (2007): 498–99. http://dx.doi.org/10.1017/s1743921308019935.
Full textZHANG, KUNPENG, and QIAN DING. "LATERAL AND TORSIONAL VIBRATIONS OF A TWO-DISK ROTOR-STATOR SYSTEM WITH AXIAL CONTACT/RUBS." International Journal of Applied Mechanics 01, no. 02 (2009): 305–26. http://dx.doi.org/10.1142/s1758825109000137.
Full textLócsi, Levente. "A hyperbolic variant of the Nelder–Mead simplex method in low dimensions." Acta Universitatis Sapientiae, Mathematica 5, no. 2 (2013): 169–83. http://dx.doi.org/10.2478/ausm-2014-0012.
Full textNAZARENKO, A. V. "DIRECTED RANDOM WALK ON THE LATTICES OF GENUS TWO." International Journal of Modern Physics B 25, no. 26 (2011): 3415–33. http://dx.doi.org/10.1142/s0217979211101831.
Full textPetoukhov, S. V. "GENETIC CODING SYSTEM ANDALGEBRAIC HOLOGRAPHY." Metaphysics, no. 2 (August 25, 2022): 113–27. http://dx.doi.org/10.22363/2224-7580-2022-2-113-127.
Full textBELYKH, VLADIMIR, IGOR BELYKH, and ERIK MOSEKILDE. "HYPERBOLIC PLYKIN ATTRACTOR CAN EXIST IN NEURON MODELS." International Journal of Bifurcation and Chaos 15, no. 11 (2005): 3567–78. http://dx.doi.org/10.1142/s0218127405014222.
Full textLiu, Yi, Heng Liu, and BoWen Fan. "Nonlinear dynamic properties of disk-bolt rotor with interfacial cutting faults on assembly surfaces." Journal of Vibration and Control 24, no. 19 (2017): 4369–82. http://dx.doi.org/10.1177/1077546317724602.
Full textFerrarello, Daniela, Maria Flavia Mammana, and Eugenia Taranto. "Non-Euclidean Geometry with Art by Means of GeoGebra." International Journal for Technology in Mathematics Education 26, no. 3 (2019): 113–19. http://dx.doi.org/10.1564/tme_v26.3.02.
Full textDiz-Pita, Érika. "Global dynamics of a predator-prey system with immigration in both species." Electronic Research Archive 32, no. 2 (2024): 762–78. http://dx.doi.org/10.3934/era.2024036.
Full textHei, Di, Yong Fang Zhang, Mei Ru Zheng, Liang Jia, and Yan Jun Lu. "Stability and Bifurcation of Nonlinear Bearing-Flexible Rotor System with a Single Disk." Advanced Materials Research 148-149 (October 2010): 141–46. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.141.
Full textHollebrands, Karen F., AnnaMarie Conner, and Ryan C. Smith. "The Nature of Arguments Provided by College Geometry Students With Access to Technology While Solving Problems." Journal for Research in Mathematics Education 41, no. 4 (2010): 324–50. http://dx.doi.org/10.5951/jresematheduc.41.4.0324.
Full textSchneider, Klaus R. "THE POINT CHARGE OSCILLATOR: QUALITATIVE AND ANALYTICAL INVESTIGATIONS." Mathematical Modelling and Analysis 24, no. 3 (2019): 372–84. http://dx.doi.org/10.3846/mma.2019.023.
Full textZhu, Youfeng, Zibo Wang, Qiang Wang, Xinhua Liu, Hongyu Zang, and Liang Wang. "Nonlinear Dynamic Analysis of Rotor Rub-Impact System." Shock and Vibration 2019 (November 29, 2019): 1–20. http://dx.doi.org/10.1155/2019/4867364.
Full textTelesphore, Tiendrebeogo, Yacouba Rachid Coulibaly Cheick, and Badolo Maliki. "Robust Formal Watermarking Model Based on the Hyperbolic Geometry for Image Security." International Journal of Recent Technology and Engineering (IJRTE) 9, no. 3 (2020): 617–29. https://doi.org/10.35940/ijrte.C4651.099320.
Full textEbrahimi, Reza, Mostafa Ghayour, and Heshmatallah Mohammad Khanlo. "Effects of some design parameters on bifurcation behavior of a magnetically supported coaxial rotor in auxiliary bearings." Engineering Computations 34, no. 7 (2017): 2379–95. http://dx.doi.org/10.1108/ec-04-2017-0141.
Full textYan, Hongbo, Enzuo Liu, Pengbo Zhao, Pei Liu, and Rui Cao. "Study on Chaotic Peculiarities of Magnetic-Mechanical Coupled System of Giant Magnetostrictive Actuator." Mathematical Problems in Engineering 2020 (November 25, 2020): 1–15. http://dx.doi.org/10.1155/2020/6864795.
Full textYousefi, Masoud, R. D. Firouz-Abadi, and Hassan Haddadpou. "Nonlinear support effects on the aeroelastic stability of multi-stage turbine rotors." Engineering Solid Mechanics 13, no. 3 (2025): 2434–258. https://doi.org/10.5267/j.esm.2025.5.002.
Full textLi, Zi Gang, and Ming Li. "Non-Linear Dynamics of a Flexible Multi-Rotor Bearing System with a Fault of Parallel Misalignment." Applied Mechanics and Materials 138-139 (November 2011): 104–10. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.104.
Full textPrishlyak, Oleksandr. "Regular Octagons in Hyperbolic Geometry." In the world of mathematics, no. 1 (2) (2024): 88–103. https://doi.org/10.17721/1029-4171.2024/2.10.
Full textIllés, Eduárd, Dániel Jánosi, and Tamás Kovács. "Orbital dynamics in galactic potentials under mass transfer." Astronomy & Astrophysics 692 (December 2024): A240. https://doi.org/10.1051/0004-6361/202348274.
Full textSarkar, Arunoday, Chitrak Sarkar та Buddhadeb Ghosh. "A novel way of constraining the α-attractor chaotic inflation through Planck data". Journal of Cosmology and Astroparticle Physics 2021, № 11 (2021): 029. http://dx.doi.org/10.1088/1475-7516/2021/11/029.
Full textBarbaresco, Frédéric. "Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation." Entropy 22, no. 6 (2020): 642. http://dx.doi.org/10.3390/e22060642.
Full textPratama, Febriyana Putra, and Julan Hernadi. "KONSISTENSI AKSIOMA-AKSIOMA TERHADAP ISTILAH-ISTILAH TAKTERDEFINISI GEOMETRI HIPERBOLIK PADA MODEL PIRINGAN POINCARE." EDUPEDIA 2, no. 2 (2018): 161. http://dx.doi.org/10.24269/ed.v2i2.148.
Full textBalakan, Gülcan, and Oğuzhan Demirel. "The Formulas of Möbius-Bretschneider and Möbius-Cagnoli in the Poincaré Disc Model of Hyperbolic Geometry." Al-Mustansiriyah Journal of Science 32, no. 1 (2021): 31. http://dx.doi.org/10.23851/mjs.v32i1.932.
Full textBabalic, Elena Mirela, та Calin Iuliu Lazaroiu. "Generalizedα-Attractor Models from Elementary Hyperbolic Surfaces". Advances in Mathematical Physics 2018 (2018): 1–24. http://dx.doi.org/10.1155/2018/7323090.
Full textBARBU, CATALIN. "Mathieu’s theorem in the Poincar´e disc model of hyperbolic geometry." Creative Mathematics and Informatics 20, no. 1 (2011): 16–19. http://dx.doi.org/10.37193/cmi.2011.01.09.
Full textRakhmetullina, Zhenisgul, Indira Uvaliyeva, and Farida Amenova. "Differential equations of motion of a material point in the perpendicular plane to the plane of the gravitating disk." Indonesian Journal of Electrical Engineering and Computer Science 24, no. 3 (2021): 1307–14. https://doi.org/10.11591/ijeecs.v24.i3.pp1307-1314.
Full textDemirel, Oğuzhan, Damla Topal, and Leyla Aslan. "The Beckman–Quarles Theorem in Hyperbolic Geometry." Journal of Mathematics 2021 (March 16, 2021): 1–4. http://dx.doi.org/10.1155/2021/5552198.
Full textBARBU, CATALIN, and LAURIAN-IOAN PISCORAN. "Some hyperbolic concurrency results in the Poincare disc." Carpathian Journal of Mathematics 28, no. 1 (2012): 9–15. http://dx.doi.org/10.37193/cjm.2012.01.19.
Full textAzarov, A. A., A. M. Gouskov, and G. Y. Panovko. "Precession of a rotor with a different number of discrete radial elastic damping supports." Bulletin of the National Engineering Academy of the Republic of Kazakhstan 93, no. 3 (2024): 256–66. http://dx.doi.org/10.47533/2024.1606-146x.65.
Full textUngar, Abraham A. "The Hyperbolic Pythagorean Theorem in the Poincaré Disc Model of Hyperbolic Geometry." American Mathematical Monthly 106, no. 8 (1999): 759–63. http://dx.doi.org/10.1080/00029890.1999.12005114.
Full textUngar, Abraham A. "The Hyperbolic Pythagorean Theorem in the Poincare Disc Model of Hyperbolic Geometry." American Mathematical Monthly 106, no. 8 (1999): 759. http://dx.doi.org/10.2307/2589022.
Full textNikolov, Svetoslav, and Valentin Nedev. "Bifurcation Analysis and Dynamic Behaviour of an Inverted Pendulum with Bounded Control." Journal of Theoretical and Applied Mechanics 46, no. 1 (2016): 17–32. http://dx.doi.org/10.1515/jtam-2016-0002.
Full textMøller, Jesper, and Kateřina Helisová. "Power diagrams and interaction processes for unions of discs." Advances in Applied Probability 40, no. 2 (2008): 321–47. http://dx.doi.org/10.1239/aap/1214950206.
Full textMøller, Jesper, and Kateřina Helisová. "Power diagrams and interaction processes for unions of discs." Advances in Applied Probability 40, no. 02 (2008): 321–47. http://dx.doi.org/10.1017/s0001867800002548.
Full textZhang, Jun Hong, Zhen Peng He, Wen Peng Ma, Liang Ma, and Gui Chang Zhang. "Coupled Bending-Torsional Vibration Analysis of Rotor System with Two Asymmetric Disks." Applied Mechanics and Materials 130-134 (October 2011): 2335–39. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2335.
Full textLiu, Zhenxing, Zhansheng Liu, Yu Li, and Guanghui Zhang. "Dynamics response of an on-board rotor supported on modified oil-film force considering base motion." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 2 (2016): 245–59. http://dx.doi.org/10.1177/0954406216682052.
Full textBarabanov, Nikita E., and Abraham A. Ungar. "Differential Geometry and Binary Operations." Symmetry 12, no. 9 (2020): 1525. http://dx.doi.org/10.3390/sym12091525.
Full textPhadatare, Hanmant P., and Barun Pratiher. "Dynamic stability and bifurcation phenomena of an axially loaded flexible shaft-disk system supported by flexible bearing." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 15 (2020): 2951–67. http://dx.doi.org/10.1177/0954406220911957.
Full textWen, Chuanmei, Yuqi Li, Long Jin, and Dayong Yang. "Bifurcation and Stability Analysis of a Bolted Joint Rotor System Contains Multi-Discs Subjected to Rub-Impact Effect." Processes 10, no. 9 (2022): 1763. http://dx.doi.org/10.3390/pr10091763.
Full textKim, Sitae, Sangwon Byun, and Junho Suh. "Effects of Tilting Pad Journal Bearing Design Parameters on the Pad-Pivot Friction and Nonlinear Rotordynamic Bifurcations." Applied Sciences 10, no. 16 (2020): 5406. http://dx.doi.org/10.3390/app10165406.
Full textNINNEMANN, HOLGER. "GUTZWILLER’S OCTAGON AND THE TRIANGULAR BILLIARD T*(2,3,8) AS MODELS FOR THE QUANTIZATION OF CHAOTIC SYSTEMS BY SELBERG’S TRACE FORMULA." International Journal of Modern Physics B 09, no. 13n14 (1995): 1647–753. http://dx.doi.org/10.1142/s0217979295000719.
Full textSaeed, Nasser A., Emad Mahrous, Emad Abouel Nasr, and Jan Awrejcewicz. "Nonlinear Dynamics and Motion Bifurcations of the Rotor Active Magnetic Bearings System with a New Control Scheme and Rub-Impact Force." Symmetry 13, no. 8 (2021): 1502. http://dx.doi.org/10.3390/sym13081502.
Full textChi, Ian, Martin Fraas, and Tina Tan. "Poincaré disk as a model of squeezed states of a harmonic oscillator." Journal of Mathematical Physics 66, no. 6 (2025). https://doi.org/10.1063/5.0252902.
Full textУшхо, А. Д. "On self-oscillations of one kinetic model." Вестник Адыгейского государственного университета, серия «Естественно-математические и технические науки», no. 2(321) (October 11, 2023). http://dx.doi.org/10.53598/2410-3225-2023-2-321-19-26.
Full textLechtenfeld, Olaf, and Don Zagier. "A hyperbolic Kac-Moody Calogero model." Journal of High Energy Physics 2024, no. 6 (2024). http://dx.doi.org/10.1007/jhep06(2024)093.
Full text