Dissertations / Theses on the topic 'Points for 3D reconstruction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Points for 3D reconstruction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tsang, Kin Ting. "Interactive 3D model reconstruction from images and quasi-dense points /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?COMP%202004%20TSANG.
Full textIncludes bibliographical references (leaves 59-62). Also available in electronic version. Access restricted to campus users.
Duguet, Florent. "Rendu et reconstruction de très gros nuages de points 3D." Nice, 2005. http://www.theses.fr/2005NICE4031.
Full textFayolle, Pierre-Alain. "Reconstruction 3D d'objets par une representation fonctionnelle." Phd thesis, Université d'Orléans, 2007. http://tel.archives-ouvertes.fr/tel-00476678.
Full textBartoli, Adrien. "Reconstruction et alignement en vision 3D : points, droites, plans et caméras." Phd thesis, Grenoble INPG, 2003. http://tel.archives-ouvertes.fr/tel-00004360.
Full textLiu, Kun. "Multi-View Oriented 3D Data Processing." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0273/document.
Full textPoint cloud refinement and surface reconstruction are two fundamental problems in geometry processing. Most of the existing methods have been targeted at range sensor data and turned out be ill-adapted to multi-view data. In this thesis, two novel methods are proposed respectively for the two problems with special attention to multi-view data. The first method smooths point clouds originating from multi-view reconstruction without impairing the data. The problem is formulated as a nonlinear constrained optimization and addressed as a series of unconstrained optimization problems by means of a barrier method. The second method triangulates point clouds into meshes using an advancing front strategy directed by a sphere packing criterion. The method is algorithmically simple and can produce high-quality meshes efficiently. The experiments on synthetic and real-world data have been conducted as well, which demonstrates the robustness and the efficiency of the methods. The developed methods are suitable for applications which require accurate and consistent position information such photogrammetry and tracking in computer vision
Vural, Elif. "Robust Extraction Of Sparse 3d Points From Image Sequences." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609888/index.pdf.
Full texthence, determining the scene structure and cameras up to a projective transformation. The extension of the two-view reconstruction to multiple views is achieved by estimating the camera projection matrix of each additional view from the already reconstructed matches, and then adding new points to the scene structure by triangulating the unreconstructed matches. Finally, the reconstruction is upgraded from projective to metric by a rectifying homography computed from the camera calibration information. In order to obtain a refined reconstruction, two different methods are suggested for the removal of erroneous points from the scene structure. In addition to the examination of the solution to the reconstruction problem, experiments have been conducted that compare the performances of competing algorithms used in various stages of reconstruction. In connection with sparse reconstruction, a rate-distortion efficient piecewise planar scene representation algorithm that generates mesh models of scenes from reconstructed point clouds is examined, and its performance is evaluated through experiments.
Boudjemaï, Farid. "Reconstruction de surfaces d'objets 3D à partir de nuages de points par réseaux de neurones 3D-SOM." Lille 1, 2006. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/bcedde4b-f138-4193-8cec-20a49de14358.
Full textGélard, William. "Modélisation 3D et suivi visuel pour caractériser le phénotype de variétés de tournesol." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30207/document.
Full textThe constant increasing food and energy demand in the world associated to global warming and climate change issues, pushed the researchs in plant breeding to move towards the improvement of crops performance and development of a more sustainable agriculture. To meet these demands, the effort made by the researchers were focused on the development of high-throughput genotyping methods (i.e., the study of genome sequence of plants) and allowed the biologists to indentified the genotypes of a large amount of plants. Moreover, understanding the relationships that link the genotypes (DNA) to the phenotypes (visual characteristics) that evolve according environmental conditions like: light, water, drought, heat, etc. has become a main issue in agricultural research. While the genotyping methods were rapidly improved and automatized during the last decade, the phenotyping methods remain manual, sometimes destructive and non-replicable. The usual phenotyping methods consist to measure certain visual parameters of a plant such as: main stem heigh, number of leaves, leaf initiation angle or leaf area, but more importantly, be able to follow these parameters along the plant growth. Consequently, the number of plants to harvest is very important and the measurements are extremely time-consuming. The emergence and reliability of new technologies in computer vision and robotic have led the researchers to take an interest in them and to seek how they can be used in plant science. The thesis is focused on the design, development and validation of a high-throughput phenotyping method design for sunflower plant with an eye to amplify phenotyping capacities by Agronomists and Geneticists (and later varieties evaluators and seed producers). The aim is to improve, modernize and automatize the current phenotyping methods as a way to help the plant scientists to collect a large amount of data. Motivated by the wish to perform high-throughput plant phenotyping, we propose a 3D approach to automatically extract visual characteristics of sunflower plants grown in pot. First, a 3D point cloud of a plant is acquired with classical Structure-from-Motion techniques. A segmentation step is then proceeded to retrieve the main stem and the leaves. With the intention of following the visual characteristics during the plant growth, especially, the leaf area expansion rate of each leaf, a labelling step relying on the botanical model of a plant is performed to affect them a unique label that will not change over time. Finally, the visual characteristics are extracted and results obtained on sunflower plants demonstrate the efficiency of our method and make it an encouraging step toward high-throughput plant phenotyping
Calvet, Lilian. "Méthodes de reconstruction tridimensionnelle intégrant des points cycliques : application au suivi d’une caméra." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/11901/1/Calvet.pdf.
Full textLotfy, M. Y. "Stereoscopic image feature matching during endoscopic procedure." Thesis, Boston, USA, 2020. http://openarchive.nure.ua/handle/document/11836.
Full textStålberg, Martin. "Reconstruction of trees from 3D point clouds." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316833.
Full textRAVEENDIRAN, JAYANTHAN. "FAST ESTIMATION OF DENSE DISPARITY MAP USING PIVOT POINTS." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1208.
Full textDigne, Julie. "Géométrie inverse : du nuage de points brut à la surface 3D : théorie et algorithmes." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00557589.
Full textMacher, Hélène. "Du nuage de points à la maquette numérique de bâtiment : reconstruction 3D semi-automatique de bâtiments existants." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD006/document.
Full textThe creation of an as-built BIM requires the acquisition of the as-is conditions of existing buildings. Terrestrial laser scanning (TLS) is widely used to achieve this goal. Indeed, laser scanners permit to collect information about object geometry in form of point clouds. They provide a large amount of accurate data in a very fast way and with a high level of details. Unfortunately, the scan-to-BIM process remains currently largely a manual process because of the huge amount of data and because of processes, which are difficult to automate. It is time consuming and error-prone. A key challenge today is thus to automate the process leading to 3D reconstruction of existing buildings from point clouds. The aim of this thesis is to develop a processing chain to extract the maximum amount of information from a building point cloud in order to integrate the result in a BIM software
Diskin, Yakov. "Volumetric Change Detection Using Uncalibrated 3D Reconstruction Models." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429293660.
Full textBennis, Abdelhamid. "Contribution à la reconstruction 3D de bâtiments à partir de nuage de points de scanner laser terrestre." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0139/document.
Full textThe renovation and the improvement of the energy efficiency of existing housing stock is one of big challenges identified for coming decades. In front of this imperative, timber based elements for building renovation are more and more used due to their substantial improvement of the building insulation, aesthetic renewal and functional additions. However, this technology faces some difficulties, one of them is the improvement of the renovation projects automation, which is bound to the knowledge of the existing built geometry. The plans representing the existing state of the building are not always available, and if so, they may be not exact, because the modifications made on the building are usually undocumented. After a literature review of existing methods which are detailed the first chapter. The work within the framework of cooperation between the CRITTBois and CRAN have allowed to develop an automatic method for 3D building CAD model reconstruction from point clouds acquired by a terrestrial LASER scanner. The proposed method is composed of three main phases. The first one detailed in the second chapter, consists in segmenting the point cloud into planar patches representing the building facades. To decrease the segmentation algorithm complexity, the colorimetric information is also considered. The approach consists in making a colorimetric classification of the point cloud in a first step, then a geometrical segmentation of the point cloud using a robust segmentation algorithm (RANSAC). The third chapter presents the second phase of our approach consists in surface sampling steps modeling and boundary point extraction. Here, we consider a local threshold defined according to the approximated surface sampling steps. The aim of considering local threshold is to improve the reliability of the boundary point extraction algorithm and approximating the CAD model error. The last chapter presents the main three steps of the boundary model reconstruction method. The first step consists in classifying the regions defined by their boundary points into three types of regions: Irregularity Region (IR), Architectural Element Region (AER) as windows, and Facades Regions (FR) which represent the building facades defined by their outer boundaries. The second step consists in modeling these regions considering a Delaunay triangulation for the IR and a polyhedral model for the AER and the FR. The third step consists in making an approximation of the error in the model. The method reliability tests were conducted on real projects; they were performed by industrial construction and renovation professionals. The tests show that the quality of the 3D reconstruction remains strongly dependent to the acquisition factors and the scanned surface properties. Also, the approximation of the modeling error can predict in advance the errors on the CAD model
Goswami, Samrat. "Reconstruction and segmentation of 3D objects from point samples." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1101240670.
Full textDigne, Julie. "Inverse geometry : from the raw point cloud to the 3d surface : theory and algorithms." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00610432.
Full textCalvet, Lilian. "Méthodes de reconstruction tridimensionnelle intégrant des points cycliques : application au suivi d'une caméra." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2014. http://tel.archives-ouvertes.fr/tel-00981191.
Full textOesau, Sven. "Modélisation géométrique de scènes intérieures à partir de nuage de points." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4034/document.
Full textGeometric modeling and semantization of indoor scenes from sampled point data is an emerging research topic. Recent advances in acquisition technologies provide highly accurate laser scanners and low-cost handheld RGB-D cameras for real-time acquisition. However, the processing of large data sets is hampered by high amounts of clutter and various defects such as missing data, outliers and anisotropic sampling. This thesis investigates three novel methods for efficient geometric modeling and semantization from unstructured point data: Shape detection, classification and geometric modeling. Chapter 2 introduces two methods for abstracting the input point data with primitive shapes. First, we propose a line extraction method to detect wall segments from a horizontal cross-section of the input point cloud. Second, we introduce a region growing method that progressively detects and reinforces regularities of planar shapes. This method utilizes regularities common to man-made architecture, i.e. coplanarity, parallelism and orthogonality, to reduce complexity and improve data fitting in defect-laden data. Chapter 3 introduces a method based on statistical analysis for separating clutter from structure. We also contribute a supervised machine learning method for object classification based on sets of planar shapes. Chapter 4 introduces a method for 3D geometric modeling of indoor scenes. We first partition the space using primitive shapes detected from permanent structures. An energy formulation is then used to solve an inside/outside labeling of a space partitioning, the latter providing robustness to missing data and outliers
Avanthey, Loïca. "Acquisition et reconstruction de données 3D denses sous-marines en eau peu profonde par des robots d'exploration." Thesis, Paris, ENST, 2016. http://www.theses.fr/2016ENST0055/document.
Full textOur planet is mostly covered by seas and oceans. However, our knowledge of the seabed is far more restricted than that of land surface. In this thesis, we seek to develop a system dedicated to precise thematic mapping to obtain a dense point cloud of an underwater area on demand by using three-dimensional reconstruction. The complex nature of this type of system leads us to favor a multidisciplinary approach. We will examine in particular the issues raised by studying small shallow water areas on the scale of individual objects. The first problems concern the effective in situ acquisition of stereo pairs with logistics adapted to the sizes of the observed areas: for this, we propose an agile, affordable microsystem which is sufficiently automated to provide reproducible and comparable data. The second set of problems relates to the reliable extraction of three-dimensional information from the acquired data: we outline the algorithms we have developed to take into account the particular characteristics of the aquatic environment (such as its dynamics or its light absorption). We therefore discuss in detail the issues encountered in the underwater environment concerning dense matching, calibration, in situ acquisition, data registration and redundancy
Stefanik, Kevin Vincent. "Sequential Motion Estimation and Refinement for Applications of Real-time Reconstruction from Stereo Vision." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/76802.
Full textMaster of Science
Matiukas, Vilius. "Reconstruction of 3D object's surface image using linear beam." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120215_161626-44197.
Full textŠioje disertacijoje nagrinėjamas realaus trimačio objekto virtualizavimas – t. y. objekto paviršiaus modelio sukūrimas iš skenuotų vaizdų aibės, po to vizualizuojant šį modelį atvaizdo kompiuterio monitoriaus ekrane pavidalu. Tyrimų objektas – sudėtingos geometrinės formos erdvinio objekto paviršiaus atkūrimo elektroniniu pavidalu iš keleto nestruktūrizuotų taškų rinkinių, gautų nuskaitant objektą skirtingomis apžvalgos kryptimis, metodai ir algoritmai. Sudėtinga objekto forma pasirinkta tam, kad jos nebūtų galima perteikti paprasta matematine išraiška. Erdvinio objekto virtualizavimo procesą galima išskaidyti į šiuos keturis etapus: nestruktūrizuotų taškų rinkinio formavimą, filtravimą, apjungimą ir rekonstravimą. Pirmojo etapo metu, naudojant optinius jutiklius ir kontaktinį skaitymo metodą, objektas nuskaitomas skirtingomis apžvalgos kryptimis, taip gaunant keletą objekto paviršiaus nestruktūrizuotų taškų rinkinių. Antrame etape pašalinami taškai, atsiradę dėl optinių iškraipymų, atspindžių ir šešėlinių sričių įtakos. Trečiame etape atskiri taškų rinkiniai apjungiami į visumą. Paskutinis etapas skirtas erdvinio objekto paviršių aproksimuojančiam tinkleliui gauti. Pagrindinis šio darbo tikslas buvo rekonstruoti erdvinio objekto paviršiaus atvaizdą, objektą apšviečiant linijiniu šviesos pluoštu. Šio tikslo buvo siekiama tobulinant esamus metodus arba kuriant naujus, o taip pat statistiniais metodais vertinant rekonstrukcijos tikslumą. Disertacijos... [toliau žr. visą tekstą]
Ambrož, Ondřej. "Rekonstrukce 3D scény z obrazových dat." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237174.
Full textBediz, Yusuf. "Automatic Eye Tracking And Intermediate View Reconstruction For 3d Imaging Systems." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607528/index.pdf.
Full textSalman, Nader. "From 3D point clouds to feature preserving meshes." Nice, 2010. http://www.theses.fr/2010NICE4086.
Full textMost of the current surface reconstruction algorithms target high quality data and can produce some intractable results when used with point clouds acquired through profitable 3D acquisitions methods. Our first contribution is a surface reconstruction, algorithm from stereo vision data copes with the data’s fuzziness using information from both the acquired D point cloud and the calibrated images. After pre-processing the point cloud, the algorithm builds, using the calibrated images, 3D triangular soup consistent with the surface of the scene through a combination of visibility and photo-consistency constraints. A mesh is then computed from the triangle soup using a combination of restricted Delaunay triangulation and Delaunay refinement methods. Our second contribution is an algorithm that builds, given a 3D point cloud sampled on a surface, an approximating surface mesh with an accurate representation of surface sharp edges, providing an enhanced trade-off between accuracy and mesh complexity. We first extract from the point cloud an approximation of the sharp edges of the underlying surface. Then a feature preserving variant of a Delaunay refinement process generates a mesh combining a faithful representation of the extracted sharp edges with an implicit surface obtained from the point cloud. The method is shown to be flexible, robust to noise and tuneable to adapt to the scale of the targeted mesh and to a user defined sizing field. We demonstrate the effectiveness of both contributions on a variety of scenes and models acquired with different hardware and show results that compare favourably, in terms of accuracy, with the current state of the art
Шумило, Д. О. "Інформаційна технологія 3D-реконструкції обличчя людини." Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/79570.
Full textHejl, Zdeněk. "Rekonstrukce 3D scény z obrazových dat." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236495.
Full textKulkarni, Amey S. "Motion Segmentation for Autonomous Robots Using 3D Point Cloud Data." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1370.
Full textHammoudi, Karim. "Contributions to the 3D city modeling : 3D polyhedral building model reconstruction from aerial images and 3D facade modeling from terrestrial 3D point cloud and images." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00682442.
Full textKudryavtsev, Andrey. "3D Reconstruction in Scanning Electron Microscope : from image acquisition to dense point cloud." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD050/document.
Full textThe goal of this work is to obtain a 3D model of an object from its multiple views acquired withScanning Electron Microscope (SEM). For this, the technique of 3D reconstruction is used which isa well known application of computer vision. However, due to the specificities of image formation inSEM, and in microscale in general, the existing techniques are not applicable to the SEM images. Themain reasons for that are the parallel projection and the problems of SEM calibration as a camera.As a result, in this work we developed a new algorithm allowing to achieve 3D reconstruction in SEMwhile taking into account these issues. Moreover, as the reconstruction is obtained through cameraautocalibration, there is no need in calibration object. The final output of the presented techniques isa dense point cloud corresponding to the surface of the object that may contain millions of points
Vahalík, Tomáš. "Rekonstrukce 3D modelu prostředí a lokalizace kamery." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236029.
Full textDehbi, Youness [Verfasser]. "Statistical relational learning of semantic models and grammar rules for 3D building reconstruction from 3D point clouds / Youness Dehbi." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/112228585X/34.
Full textBournez, Elena. "Etude du rôle de la végétation dans la création de microclimats urbains : approche combinée de mesures et de modélisations à différentes échelles." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD043/document.
Full textThe urban heat island phenomenon causes thermal discomfort to residents. lmproving the microclimate in urban areas is therefore one of the concerns of urban plan ners. The greening of cities (with lawns, trees, green roofs, etc.) is a promising solution, as the transpiration of plants and the shadows of trees have a significant impact on the thermal balance of the surrounding atmosphere. This act must be planned to optimize the benefits of vegetation. A key challenge today is thus the development of a microclimatic simulation model capable of reproducing the climatic conditions of a street, or even a vegetated urban neighborhood, with the aim of proposinga decision support tool for the development of sustainable cities. The aim of this thesis is to study how to consider vegetation and especially trees, in a 30 microclimatic model to simulate the microclimate of a neighborhood. Two models, LASER/F and RATP were applied at the scale of a tree and an urban park to carry out this study
Alkhadour, Wissam M. "Reconstruction of 3D scenes from pairs of uncalibrated images. Creation of an interactive system for extracting 3D data points and investigation of automatic techniques for generating dense 3D data maps from pairs of uncalibrated images for remote sensing applications." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4933.
Full textAl-Baath University
The appendices files and images are not available online.
Ochmann, Sebastian Klaus [Verfasser]. "Automatic Reconstruction of Parametric, Volumetric Building Models from 3D Point Clouds / Sebastian Klaus Ochmann." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1188731599/34.
Full textAlkhadour, Wissam Mohamad. "Reconstruction of 3D scenes from pairs of uncalibrated images : creation of an interactive system for extracting 3D data points and investigation of automatic techniques for generating dense 3D data maps from pairs of uncalibrated images for remote sensing applications." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4933.
Full textYu, Shuda. "Modélisation 3D automatique d'environnements : une approche éparse à partir d'images prises par une caméra catadioptrique." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00844401.
Full textKáňa, David. "Využití obecně orientovaných snímků v geoinformatice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-392292.
Full textAngladon, Vincent. "Room layout estimation on mobile devices." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20745/1/ANGLADON_Vincent.pdf.
Full textFries, Niklas. "Uneven Image Point Distribution in Camera Pre-Calibration and its Eects on 3D Reconstruction Errors." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136495.
Full textGuillemot, Thierry. "Méthodes et structures non locales pour la restaurationd'images et de surfaces 3D." Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0006/document.
Full textIn recent years, digital technologies allowing to acquire real world objects or scenes have been significantly improved in order to obtain high quality datasets. However, the acquired signal is corrupted by defects which can not be rectified materially and require the use of adapted restoration methods. Until the middle 2000s, these approaches were only based on a local process applyed on the damaged signal. With the improvement of computing performance, the neighborhood used by the filter has been extended to the entire acquired dataset by exploiting their self-similar nature. These non-local approaches have mainly been used to restore regular and structured data such as images. But in the extreme case of irregular and unstructured data as 3D point sets, their adaptation is few investigated at this time. With the increase amount of exchanged data over the communication networks, new non-local methods have recently been proposed. These can improve the quality of the restoration by using an a priori model extracted from large data sets. However, this kind of method is time and memory consuming. In this thesis, we first propose to extend the non-local methods for 3D point sets by defining a surface of points which exploits their self-similar of the point cloud. We then introduce a new flexible and generic data structure, called the CovTree, allowing to learn the distribution of a large set of samples with a limited memory capacity. Finally, we generalize collaborative restoration methods applied to 2D and 3D data by using our CovTree to learn a statistical a priori model from a large dataset
Gråd, Martin. "Improving Conventional Image-based 3D Reconstruction of Man-made Environments Through Line Cloud Integration." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148452.
Full textFlötotto, Julia. "Un système de coordonnées associé à un échantillon de points d'une variété: définition, propriétés et applications." Phd thesis, Université de Nice Sophia-Antipolis, 2003. http://tel.archives-ouvertes.fr/tel-00832487.
Full textDa, Tran Kai Frank. "L'interpolation de formes." Phd thesis, Université de Nice Sophia-Antipolis, 2002. http://tel.archives-ouvertes.fr/tel-00832486.
Full textCrabtree, Gärdin David, and Alexander Jimenez. "Optical methods for 3D-reconstruction of railway bridges : Infrared scanning, Close range photogrammetry and Terrestrial laser scanning." Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67716.
Full textVock, Dominik. "Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-141582.
Full textAbayowa, Bernard Olushola. "Automatic Registration of Optical Aerial Imagery to a LiDAR Point Cloud for Generation of Large Scale City Models." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1372508452.
Full textForsman, Mona. "Point cloud densification." Thesis, Umeå universitet, Institutionen för fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-39980.
Full textDutta, Somnath. "Moving Least Squares Correspondences for Iterative Point Set Registration." Technische Universität Dresden, 2019. https://tud.qucosa.de/id/qucosa%3A35721.
Full text