Academic literature on the topic 'Poisson equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poisson equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poisson equation"
Daribayev, Beimbet, Aksultan Mukhanbet, and Timur Imankulov. "Implementation of the HHL Algorithm for Solving the Poisson Equation on Quantum Simulators." Applied Sciences 13, no. 20 (October 20, 2023): 11491. http://dx.doi.org/10.3390/app132011491.
Full textAlqhtani, Manal, Khaled M. Saad, Rasool Shah, Wajaree Weera, and Waleed M. Hamanah. "Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media." Symmetry 14, no. 7 (June 27, 2022): 1323. http://dx.doi.org/10.3390/sym14071323.
Full textFortunato, Daniel, and Alex Townsend. "Fast Poisson solvers for spectral methods." IMA Journal of Numerical Analysis 40, no. 3 (November 29, 2019): 1994–2018. http://dx.doi.org/10.1093/imanum/drz034.
Full textEL-HANBALY, A. M., and A. ELGARAYHI. "Exact solutions of the collisional Vlasov equation." Journal of Plasma Physics 59, no. 1 (January 1998): 169–77. http://dx.doi.org/10.1017/s0022377897006132.
Full textYuan, Hong Fen, and Valery V. Karachik. "DUNKL-POISSON EQUATION AND RELATED EQUATIONS IN SUPERSPACE." Mathematical Modelling and Analysis 20, no. 6 (November 23, 2015): 768–81. http://dx.doi.org/10.3846/13926292.2015.1112856.
Full textSchmidt, Gunther, and Hartmut Strese. "BEM for poisson equation." Engineering Analysis with Boundary Elements 10, no. 2 (1992): 119–23. http://dx.doi.org/10.1016/0955-7997(92)90040-e.
Full textVedenyapin, V. V., T. V. Salnikova, and S. Ya Stepanov. "Vlasov-Poisson-Poisson equations, critical mass and kordylewski clouds." Доклады Академии наук 485, no. 3 (May 21, 2019): 276–80. http://dx.doi.org/10.31857/s0869-56524853276-280.
Full textGharib, Gharib M., and Rania Saadeh. "Reduction of the Self-dual Yang-Mills Equations to Sinh-Poisson Equation and Exact Solutions." WSEAS TRANSACTIONS ON MATHEMATICS 20 (October 26, 2021): 540–46. http://dx.doi.org/10.37394/23206.2021.20.57.
Full textLabovskiy, S. M., and M. F. Getimane. "POISSON PROBLEM FOR A LINEAR FUNCTIONAL DIFFERENTIAL EQUATION." Tambov University Reports. Series: Natural and Technical Sciences 21, no. 1 (2016): 76–81. http://dx.doi.org/10.20310/1810-0198-2016-21-1-76-81.
Full textZhang, Zhehao. "A New Fractional Poisson Process Governed by a Recursive Fractional Differential Equation." Fractal and Fractional 6, no. 8 (July 29, 2022): 418. http://dx.doi.org/10.3390/fractalfract6080418.
Full textDissertations / Theses on the topic "Poisson equation"
Bäck, Viktor. "Localization of Multiscale Screened Poisson Equation." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-180928.
Full textDi, Cosmo Jonathan. "Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209863.
Full textIn this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.
We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./
L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés.
Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble.
Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Vogrinc, Jure. "Poisson equation and weak approximation for Metropolis-Hastings chains." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/56621.
Full textZhou, Dong. "High-order numerical methods for pressure Poisson equation reformulations of the incompressible Navier-Stokes equations." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/295839.
Full textPh.D.
Projection methods for the incompressible Navier-Stokes equations (NSE) are efficient, but introduce numerical boundary layers and have limited temporal accuracy due to their fractional step nature. The Pressure Poisson Equation (PPE) reformulations represent a class of methods that replace the incompressibility constraint by a Poisson equation for the pressure, with a suitable choice of the boundary condition so that the incompressibility is maintained. PPE reformulations of the NSE have important advantages: the pressure is no longer implicitly coupled to the velocity, thus can be directly recovered by solving a Poisson equation, and no numerical boundary layers are generated; arbitrary order time-stepping schemes can be used to achieve high order accuracy in time. In this thesis, we focus on numerical approaches of the PPE reformulations, in particular, the Shirokoff-Rosales (SR) PPE reformulation. Interestingly, the electric boundary conditions, i.e., the tangential and divergence boundary conditions, provided for the velocity in the SR PPE reformulation render classical nodal finite elements non-convergent. We propose two alternative methodologies, mixed finite element methods and meshfree finite differences, and demonstrate that these approaches allow for arbitrary order of accuracy both in space and in time.
Temple University--Theses
CARMO, FABIANO PETRONETTO DO. "POISSON EQUATION AND THE HELMHOLTZ-HODGE DECOMPOSITION WITH SPH OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12140@1.
Full textFUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
A equação diferencial parcial de Poisson é de fundamental importância em várias áreas de pesquisa, dentre elas: matemática, física e engenharia. Para resolvê-la numericamente utilizam-se vários métodos, tais como os já tradicionais métodos das diferenças finitas e dos elementos finitos. Este trabalho propõe um método para resolver a equação de Poisson, utilizando uma abordagem de sistema de partículas conhecido como SPH, do inglês Smoothed Particles Hydrodynamics. O método proposto para a solução da equação de Poisson e os operadores diferenciais discretos definidos no método SPH, chamados de operadores SPH, são utilizados neste trabalho em duas aplicações: na decomposição de campos vetoriais; e na simulação numérica de escoamentos de fluidos monofásicos e bifásicos utilizando a equação de Navier-Stokes.
Poisson`s equation is of fundamental importance in many research areas in engineering and the mathematical and physical sciences. Its numerical solution uses several approaches among them finite differences and finite elements. In this work we propose a method to solve Poisson`s equation using the particle method known as SPH (Smoothed Particle Hydrodynamics). The proposed method together with an accurate analysis of the discrete differential operators defined by SPH are applied in two related situations: the Hodge-Helmholtz vector field decomposition and the numerical simulation of the Navier-Stokes equations.
Zhang, Mei. "Some problems on conservation laws and Vlasov-Poisson-Boltzmann equation /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ma-b23749465f.pdf.
Full text"Submitted to Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [90]-94)
Mayboroda, Svitlana. "The poisson problem on Lipschitz domains." Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4133.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (January 25, 2007) Vita. Includes bibliographical references.
Labra, Bahena Luis R. "Multilevel Solution of the Discrete Screened Poisson Equation for Graph Partitioning." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10638940.
Full textA new graph partitioning algorithm which makes use of a novel objective function and seeding strategy, Product Cut, frequently outperforms standard clustering methods. The solution strategy on solving this objective depends on developing a fast solution method for the systems of graph--based analogues of the screened Poisson equation, which is a well-studied problem in the special case of structured graphs arising from PDE discretization.
In this work, we attempt to improve the powerful Algebraic Multigrid (AMG) method and build upon the recently introduced Product Cut algorithm. Specifically, we study the consequences of incorporating a dynamic determination of the diffusion parameter by introducing a prior to the objective function. This culminates in an algorithm which seems to partially eliminate an advantage present in the original Product Cut algorithm's slower implementation.
Денисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, V. M. Bohopolskyi, and N. E. Shypilov. "Master Equation for a Localized Particle Driven by Poisson White Noise." Thesis, Sumy State University, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67936.
Full textMakarov, Mihail. "On the second poisson structure for the Korteweg-de Vries equation /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487949508367548.
Full textBooks on the topic "Poisson equation"
Blossey, Ralf. The Poisson-Boltzmann Equation. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24782-8.
Full textPonce, Augusto C. Elliptic PDEs, measures and capacities: From the Poisson equation to nonlinear Thomas-Fermi problems. Zürich: European Mathematical Society, 2016.
Find full textVorobiev, Leonid G. A symplectic Poisson solver based on fast Fourier transformation: The first trial. Tsukuba-shi, Ibaraki-ken Japan: National Laboratory for High Energy Physics, 1995.
Find full textBarros, Saulo R. M. The Poisson equation on the unit disk: A Multigrid solver using polar coordinates. Sankt Augustin, W.-Germany: Gesellschaft f"ur Mathematik und Datenverarbeitung, 1986.
Find full textScholma, J. K. A Lie algebraic study of some integrable systems associated with root systems. Amsterdam, the Netherlands: Centrum voor Wiskunde en Informatica, 1993.
Find full textCenter, Langley Research, ed. Study of Gortler vortices by compact schemes. [Hampton, Va: Langley Research Center, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Steady and unsteady three-dimensional transonic flow computations by integral equation method: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textO, Demuren A., and United States. National Aeronautics and Space Administration., eds. Computations of complex three-dimensional turbulent free jets. Norfolk, Va: Institute for Computational and Applied Mechanics, Old Dominion University, 1997.
Find full textK, Wright, and United States. National Aeronautics and Space Administration., eds. A study entitled research on orbital plasma-electrodynamics: Progress report, period of performance, March 27, 1994 - June 29, 1994. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textSoh, Woo Y. Direct coupling methods for time-accurate solution of incompressible Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textBook chapters on the topic "Poisson equation"
Wartak, Marek S. "Poisson Equation." In Introduction to Simulations of Semiconductor Lasers, 94–121. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003265849-6.
Full textHong, Sung-Min, Anh-Tuan Pham, and Christoph Jungemann. "Poisson Equation." In Computational Microelectronics, 175–76. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0778-2_10.
Full textSleeman, Brian D. "Partial Differential Equations, Poisson Equation." In Encyclopedia of Systems Biology, 1635–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_274.
Full textCurry, Joan E. "Poisson-Boltzmann Equation." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_15-1.
Full textCurry, Joan E. "Poisson-Boltzmann Equation." In Encyclopedia of Earth Sciences Series, 1240–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_15.
Full textHackbusch, Wolfgang. "The Poisson Equation." In Elliptic Differential Equations, 29–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54961-2_3.
Full textHerná-Lerma, Onésimo, and Jean Bernard Lasserre. "The Poisson Equation." In Markov Chains and Invariant Probabilities, 103–20. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8024-4_8.
Full textHackbusch, Wolfgang. "The Poisson Equation." In Elliptic Differential Equations, 27–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-11490-8_3.
Full textSuzuki, Takashi. "Boltzmann-Poisson Equation." In Mean Field Theories and Dual Variation - Mathematical Structures of the Mesoscopic Model, 269–96. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-154-3_9.
Full textGonis, Antonios, and William H. Butler. "The Poisson Equation." In Graduate Texts in Contemporary Physics, 203–25. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1290-4_9.
Full textConference papers on the topic "Poisson equation"
Govindugari, Nithin Reddy, and Hiu Yung Wong. "Study of Using Variational Quantum Linear Solver for Solving Poisson Equation." In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732984.
Full textCappelli, Luca, Giuseppe Murante, and Stefano Borgani. "Numerical limits in the integration of Vlasov-Poisson equation for Cold Dark Matter." In 2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), 431–38. IEEE, 2025. https://doi.org/10.1109/pdp66500.2025.00067.
Full textDizdaroglu, B. "Healed photomontage via Poisson equation." In 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531333.
Full textMarshall, Ian, Piotr Kielanowski, Anatol Odzijewicz, Martin Schlichenmeier, and Theodore Voronov. "Poisson properties of Hill's equation." In XXVI INTERNATIONAL WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS. AIP, 2007. http://dx.doi.org/10.1063/1.2820969.
Full textStańczy, Robert. "Stationary solutions of the generalized Smoluchowski–Poisson equation." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-31.
Full textMechrez, Roey, Eli Shechtman, and Lihi Zelnik-Manor. "Photorealistic Style Transfer with Screened Poisson Equation." In British Machine Vision Conference 2017. British Machine Vision Association, 2017. http://dx.doi.org/10.5244/c.31.153.
Full textKweyu, Cleophas, Martin Hess, Lihong Feng, Matthias Stein, and Peter Benner. "REDUCED BASIS METHOD FOR POISSON-BOLTZMANN EQUATION." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2103.5891.
Full textChua, C., C. Y. Kee, Y. S. Ang, and L. K. Ang. "Generalized Poisson-Boltzmann Equation In Fractional Dimension." In 2022 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2022. http://dx.doi.org/10.1109/icops45751.2022.9812974.
Full textKhawwan, Hasan Ali, and Ali Al-Fayadh. "Laplace substitution method for solving Poisson equation." In THE FOURTH AL-NOOR INTERNATIONAL CONFERENCE FOR SCIENCE AND TECHNOLOGY (4NICST2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0202192.
Full textYun Ge, Baicai Yin, Yanfeng Sun, and Hengliang Tang. "3D face texture stitching based on Poisson Equation." In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icicisys.2010.5658726.
Full textReports on the topic "Poisson equation"
Day, Marcus S., Phillip Colella, Michael J. Lijewski, Charles A. Rendleman, and Daniel L. Marcus. Embedded Boundary Algorithms for Solving the Poisson Equation on Complex Domains. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/771633.
Full textChao, E. H., S. F. Paul, R. C. Davidson, and K. S. Fine. Direct numerical solution of Poisson`s equation in cylindrical (r, z) coordinates. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/304205.
Full textJohansen, H., and P. Colella. A Cartesian grid embedded boundary method for Poisson`s equation on irregular domains. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/459443.
Full textBhuiyan, L. B., and C. W. Outhwaite. Modified Poisson-Boltzmann Equation in the Electric Double Layer Theory for an Electrolyte with Size Asymmetric Ions. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada201410.
Full textKavouklis, C. A sixth order Mehrstellen scheme with an application to the Method of Local Corrections for the 3D Poisson equation. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1879264.
Full textLasater, M. S., C. T. Kelley, A. G. Salinger, D. L. Woolard, and P. Zhao. Solution of the Wigner-Poisson Equations for RTDs. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada446723.
Full textGlynn, Peter W. A Lyapunov Bound for Solutions of Poisson's Equation. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada220223.
Full textW.W. Lee and R.A. Kolesnikov. On Higher-order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/950698.
Full textLai, Ming-Chih, Zhilin Li, and Xiaobiao Lin. Fast Solvers for 3D Poisson Equations Involving Interfaces in an Finite or the Infinite Domain. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada454445.
Full textBatygin, Yuri K. Spectral Method for 3-dimensional Poisson's Equation in Cylindrical Coordinates with Regular Boundaries. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/784945.
Full text